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ABSTRACT
In most of the existing literature on multi-unit auctions,
i.e. auctions selling several identical goods together, it is
assumed that bidders demand a single item. Yet this as-
sumption is not valid in most practical auction settings, as
often bidders wish to purchase multiple goods. Computing
equilibrium strategies in multi-unit uniform-price auctions
for bidders with multi-unit demand is an open problem for
almost two decades. It is known that they exist in pure
strategies, but not how to compute them. Our work ad-
dresses this key open problem, when there are no comple-
mentarities. More specifically, we examine a model where
each bidder’s value for the units beyond the first are com-
puted by multiplying the value for the first unit of the good
(the most desired one) by preset weights, and then gener-
alize this model by allowing these weights to be different
for each participating bidder. We characterize the equilib-
ria and compute equilibrium strategies for both mth and
(m + 1)th price sealed-bid auctions; then we give some ex-
amples examining the properties of these strategies in the
process. We conduct experiments that show up to 25% im-
provement in the performance of trading agents using these
strategies as opposed to some heuristic strategies previously
used.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence

General Terms
Economics

Keywords
multi-unit sealed-bid auctions, multi-unit demand bidders,
game theory, equilibrium strategies, strategic demand re-
duction

1. INTRODUCTION
Auctions are nowadays used to trade a wide range of goods
and have become quite well known to the general public
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with the advent of online auction houses, such as eBay. A
lot of the auction theory literature focuses on single unit
auctions, and it is assumed that any results translate to the
multi-unit auction case, meaning auctions that sell several
identical goods. This is indeed mostly true, if the partici-
pating bidders only desire to purchase a single unit of these
goods.[11] However, in a number of real world scenarios, bid-
ders want to purchase multiple units of these goods. We say
that a bidder hasmulti-unit demand when she desires to buy
multiple units of the good sold in a multi-unit auction. Ex-
amples of such auctions are the US treasury bills auctions
and the FCC spectrum auctions. In fact, the latter have
reinvigorated the research on auctions with multi-unit de-
mand bidders in the mid 90’s. Before reviewing some of the
literature on this problem, we stress that the US treasury
bills auctions and the FCC spectrum auctions are sealed-bid
uniform-price auctions.1 In fact, uniform pricing, meaning
that all the winners pay the same price, are by far the most
common auction pricing model; and even open-cry, ascend-
ing auctions have been shown under certain conditions, such
as risk neutrality, to be (weakly) strategically equivalent to
sealed-bid auctions.[11] This motivates why most of the re-
lated work examines uniform-price sealed-bid auctions, and
why we examine the same setting in this paper.

Now, a lot of the related work has looked into particular
properties of these auctions, and in particular what is called
(strategic) demand reduction. The idea is that sometimes it
can be beneficial to a bidder to reduce her demand and re-
quest less units than she desires, because that would reduce
the competition for these items and therefore reduce the
price paid by everyone: since bidders reduce their demand,
the savings in the price that they pay for the remaining
items could outweigh the potential loss in valuations from
not obtaining the non-requested units. This effect has been
studied in the FCC spectrum auctions and other settings, see
e.g. [21, 6]. This effect means that the auction is no longer
efficient as bidders with lower valuations can win, since some
bidders may decide not to bid for their whole demand even
if they have relatively high valuations.

Another source of inefficiency [1] is the the fact that bid-
ders will shade their bids, which means that they will strate-
gically reduce any bids after the first and this reduction in-
creases as each bidder places bids for lower valued items; this
will also cause bidders with lower valuations for their first
items to win against bidders with higher valuations for their
last items, hence the inefficiency. Why does this strategic re-

1We do acknowledge that the FCC auctions had multiple
rounds which changes the setting somewhat.
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duction of bids take place and why is it more pronounced for
the last bids placed by each bidder? The answer is that the
closing price can be set by any bid and therefore a lower bid
placed for one of the least desirable (last) items often sets
the price paid for all items that a bidder wins. Therefore, it
is in her interest to reduce her last bids. If the bidder does
not have market power and cannot affect the final prices
then a bidder need not shade her bids.[14, 15] However, in
most cases a bidder will affect the prices and therefore bid
shading will take place.

Most of the existing literature has provided tools that can
analyze simple settings, with usually 2 bidders only or even
only one bidder with multi-unit demand and a number of
other bidders with single-unit demand, see e.g. [4, 5, 16]. In
addition to this limitation, other work has conducted empir-
ical studies as well.[8, 9]. There has been a fair deal more
work that we cannot review here due to the space limita-
tions; for a recent survey of multi-unit auctions see [10]. We
are aware of no work, though, that has been able to provide
tools or characterize the equilibria for more general settings.

Hence, computing equilibrium strategies in multi-unit uni-
form-price auctions for bidders with multi-unit demand is an
open problem for almost two decades. McAdams[12, 13] has
shown that such equilibria (isotone equilibria to be more
specific) exist in pure strategies, but not how to compute
them. In fact, their proof is based on fixed point theorems,
where continuity would be violated if the equilibrium does
not exist; we do not believe that this analysis can be used in
any way to compute the equilibria and the fact that no one
has been able to compute these equilibria for a decade since
reinforces this belief. Therefore, our work addresses this key
open problem (using a different analysis), when there are no
complementarities between the valuations that each bidder
has for the desired items. This is the main contribution of
this paper. More specifically:

• We initially examine certain properties of the equilib-
rium strategies which hold generally, for all the models
we will use (Section 3.1), and which will be used in the
computation of the equilibria. The only property that
we do not prove is that the bids are strictly decreasing
in most cases, the exceptions being demand reduction
and insufficient competition.

• Then, we examine a model where each bidder’s valu-
ation for the units beyond the first are computed by
multiplying the value for the first unit of the good (the
most desired one) by preset weights. For example, if
each bidder wishes to purchase up to 3 units, then
if the value for the first one is v then the value for
the second and third ones could be 70% and 50% of
v respectively. What differentiates the bidders are the
values v, while the percentages are the same for all.
We give an algorithm for computing the equilibrium
strategies for both mth and (m + 1)th price auctions
(in Sections 3.2 and 3.3 respectively). Our algorithm is
able to predict demand reduction as well as bid shad-
ing. We then give some examples to clarify certain
points of the equilibrium computation.

• Afterwards, in Section 4, we generalize the model to
cover all possible valuations (provided that there are
no complementarities). To do this, we allow each par-
ticipating bidder to have different weights for her valu-
ations. This means that one bidder’s second valuation

might be 50% of her first one and another one might
have this be at 100%, etc. We show how to general-
ize the algorithms to cover this general model as well.
We also give examples which describe the properties
of the equilibrium. For example, that the bids for the
first items are only indirectly affected by the weights
for the latter items.

• We conduct experiments that show an improvement of
usually 5% to 25% in most cases in the performance
of trading agents using these strategies (with only few
cases showing a drop in profit of up to 1%); we look at
the literature regarding the Trading Agent Competi-
tion [22] in order to select heuristic strategies that we
compare against.

2. THE MODEL
In this section we formally describe the auction models used
in the paper and present the notation used. We will compute
Bayes-Nash equilibria for sealed-bid auctions where m ≥ 1
identical items are being sold at a uniform price. The two
most common auction settings in this context are the mth

and (m+1)th price auctions, in which the top m bids placed
will be awarded one item each at a price equal to the mth

and (m + 1)th highest bid respectively; in this paper, we
compute the equilibria for both these auction variants. Our
model follows in general the models used when computing
equilibria in the auction theory literature [11].

More specifically, we assume that N indistinguishable bid-
ders participate in the auction. Each bidder i wants to pur-
chase up to λ units of the item being sold, i.e. has a λ-unit
demand. The restriction that λ ≤ m exists, meaning that a
bidder cannot demand more items than the number available
for sale and also λN > m as otherwise there are not enough
bidders to create competition and the auction is trivial! We
also assume that bidders are risk neutral, which means that
they only care about maximizing their expected profit, and
that their utilities do not have externalities, meaning that
they only care about maximizing their own profit without
caring at all how their actions will affect the profit of the
other bidders they compete against.

We assume that each bidder i has private valuations v1i , . . . ,
vλi for these items; these valuations correspond to the margi-
nal profit from obtaining the first up to λth unit. The
marginal profit of the jth items is defined as the profit a
bidder obtains by acquiring j items minus the profit from ac-
quiring (j−1) items. In this way we can define any possible
case regarding the valuations. For example in the case that
the goods are partially substitutable, then v1i ≥ . . . ≥ vλi , as
the value of getting the first item is higher than the addi-
tional value from getting the second etc. They could also be
additive (when v1i = . . . = vλi ), which means that the value
of getting λ′ ≤ λ items is λ′v1i . On the other hand, it could
also denote complementarities, when ∃j : vji > vj−1

i . For
example, if the bidder wants exactly three items (and gets
value β from them), and has no desire to obtain less items,
then v1i = v2i = 0 and v3i = β. However, in this paper,
we do not examine complementarities. Note that a bidder’s
utility from wining k items in the auction is the sum of the
marginal profits v1i , . . . , v

k
i for the first k items.

Now, we choose to represent the vector of valuations as a
vector of weights αi = {α1

i , . . . , α
λ
i }, multiplied by valuation

vi, which means that ∀j : vji = αj
ivi. In the analysis we will
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present in this paper, this always will be the first valuation
v1i w.l.o.g.; this is done so that the results are easier to fol-
low, but it is not an assumption that need to be made for
our models and subsequent analysis to work. Using this no-
tation, the profit (or utility) Ui of bidder i when the closing
price of the auction is π is:

Ui =

{
(
∑k

j=1 α
j
i )vi − kπ if bidder i wins k items,

0 if bidder i does not win any items.

We make the standard assumption from game theory that
the valuations of different bidders are independent of each
other which means that the valuations vi of the bidders are
i.i.d. random variables drawn from a known prior distribu-
tion with cumulative distribution function (cdf) F (v), which
is the same for all bidders. Furthermore, we examine two
different models regarding the valuations of the bidders:

• We initially assume that the vector of weights α is
common for all bidders; this model will be henceforth
called the “common weight vector model”.

• We then examine the general model, where each bidder
i has a different vector of weights αi, which is private
knowledge of each bidder. We assume that the possible
weight vectors α have a predetermined, known prob-
ability distribution h(α).2 This model will be hence-
forth called the (general) “asymmetric weight vec-
tor model”.3

We will consider bidding strategies gα(v) defined over the
support of distribution F (v), meaning any value v such that
f(v) > 0, where f is the pdf (probability density func-
tion) of distribution F . These strategies return a vector
of bids gα(v) = {gα,1(v), . . . , gα,λ(v)}. Now, each bidder i
tries to maximize his profit by submitting a vector of λ bids
b1i , . . . , b

λ
i for the desired items, where b1i ≥ . . . ≥ bλi ≥ 0;

these bids are ordered because the auction mechanism will
sort all bids and select the highest ones as winners. At
the equilibrium, these “optimal” bids for the agent are those
given from the equilibrium strategies gαi

(vi). Thus the bids

maximizing the objective function should be bji = gαi,j(vi).
In the next sections, we characterize the equilibria first for

the common weight vector model and then for the general
model.

3. COMMON WEIGHT VECTOR MODEL
In this section, we compute the symmetric equilibrium strate-
gies that the bidders adopt in the setting where all bidders
have the same vector of weights, which will be denoted as
α. Note that as this is the same for all bidders we drop
the subscript. These equilibrium strategies are symmetric
meaning that bidders with the same valuation v will submit
the same bids gα(v). Initially, we examine some properties
of the equilibrium strategies and compute the probability

2We will present the equilibria for this model for h(α) being
a discrete distribution, i.e. that the set of possible weight
vectors α has a finite number of elements. However, these
results can be extended in a straight forward way to contin-
uous distributions corresponding to infinite many possible
weight vectors α; in fact, we present such an example later.
3It is also possible to examine this model when the models
of each bidder are known. This is in fact a little harder to
solve and we will detail this in Example 5.

distributions which will subsequently be used to character-
ize the equilibrium strategies of the mth and (m+1)th price
auctions in Sections 3.2 and 3.3 respectively.

As the strategy of each agent-bidder depends on the strate-
gies of the opponents, we need to first compute the probabil-
ity distributions of top m order statistics of all bids placed
by her opponents. In simple terms, how many items (if
any) are won by the agent depends on whether his first, sec-

ond, . . ., and λth bids are respectively higher than the mth,
(m− 1)th, . . ., and (m− λ+ 1)th highest of the bids placed
by his opponents. Let us denote the kth highest bid placed
by opponents as B(k). Then, assuming that the opponents
follow the equilibrium strategies, we can compute the prob-
ability distribution of this bid Φk(x) = Prob[B(k) ≤ x] as
follows:

Φk(x) =
k∑

j=1

∑

d1,...,dmin{j,λ}
s.t.:

∑
l ldl=j−1

(N − 1)!

(N − 1−∑
l dl)!

∏
l dl!

(1−F (g−1
α,λ(x)))

dλ

·
∏
l<λ

(F (g−1
α,l+1(x))−F (g−1

α,l(x)))
dl(F (g−1

α,1(x)))
N−1−∑

l dl (1)

To explain how this complex formula is derived, consider the
following: to have B(1) ≤ x it must be that all the top bids
of all opponents are also ≤ x, and as their distribution has
cdf F (g−1

α,1(x)), this means that Φ1(x) = Prob[B(1) ≤ x] =

F (g−1
α,1(x)))

N−1. In order to have a bid x be between the

(j− 1)th and jth highest opponent bids, it must be the case
that it is lower than the lowest (i.e. λth) bid of dλ opponents,
between the lth and (l+1)th bid of dl opponents and higher
than the top bid of the remaining (N−1−∑

l dl) opponents,
where

∑
l ldl = j−1. Note that, since it is dl ≥ 0,∀l, it must

be dl = 0, ∀l ≥ j. There are
( N−1

d1,...,dλ

)
ways to select combi-

nations of opponents that fit this pattern for each particular
combination of the values {d1, . . . , dλ}. From these facts, we

compute the probability Prob[B(j) ≤ x ≤ B(j−1)] and since

Prob[B(j) ≤ x ≤ B(j−1)] = Prob[B(j) ≤ x]−Prob[B(j−1) ≤
x] = Φj(x)−Φj−1(x), we derive equation 1.

The derivative of equation 1 is:

Φ
′
k(x) =

k∑

j=1

∑

d1,...,dmin{j,λ}
s.t.:

∑
l ldl=j−1

(N − 1)!

(N − 1−∑
l dl)!

∏
l dl!

(1−F (g−1
α,λ(x)))

dλ

·
∏
l<λ

(F (g−1
α,l+1(x))− F (g−1

α,l(x)))
dl(F (g−1

α,1(x)))
N−1−∑

l dl

(
(N−1−

∑
l

dl)
F ′(g−1

α,1(x))
dg−1

α,1(x)

dx

F (g−1
α,1(x))

−dλ
F ′(g−1

α,λ(x))
dg−1

α,λ
(x)

dx

1− F (g−1
α,λ(x))

+
∑
l<λ

dl
(F ′(g−1

α,l+1(x))
dg−1

α,l+1
(x)

dx
− F ′(g−1

α,l(x)))
dg−1

α,l
(x)

dx

F ′(g−1
α,l+1(x))− F (g−1

α,l(x))

)
(2)

3.1 Properties of the Equilibrium Strategies
We now present properties of the best response strategies for
this problem. As the equilibrium strategies are the best
response strategies to the equilibrium strategies themselves,
these properties will be shared by the equilibrium strategies
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themselves. Note that these properties hold for the general
model as well.
Property 1: The jth bid bji depends only on the marginal
profit from obtaining the jth item as well as the rank (j) of
the bid; it does not depend at all on the other valuations for
the other items that the bidder wishes to obtain.
To prove this property think as follows: obviously it depends
on the marginal profit vji = αj

ivi as, by bidding higher, the
bidder increases the probability of winning j items rather
than (j − 1), thus increasing his profit by an amount equal
to the marginal profit vji . At the same time, this bid may
also set the price for the top j items she wins (or (j−1) top
items in the case of the (m + 1)th price auction), therefore
the bid bji depends on this number j as well. By this last
argument, the bid does not depend on the marginal profits

vj
′

i , j′ < j, as the actual valuations for these items do not
matter (only how many they are). The bid cannot set the
payment for any item after the jth, therefore the bid does

not depend on the marginal profits bj
′

i , j′ > j.
Property 2: The bids must be ordered.
This follows immediately from the fact that the auction will
order all bids from all bidders and select the m highest ones
as winning bids. Each bidder will in turn get a number of
items - let it be j - and her profit will be the sum of the
marginal profits for the first j items. These j items were
won by the jth highest bid placed by this bidder, therefore
whichever orders the bids are submitted, in the end they
are sorted by the auction from highest to lowest. Therefore,
w.l.o.g. we place the restriction that b1i ≥ . . . ≥ bλi ≥ 0,
where 0 is assumed to be the price indicating that a bidder
is not willing to participate in the auction.

In general, we make the following observation about the
bids:
CLAIM 1. Provided that there are no complementarities
and sufficient competition between the bidders, the bids
from a bidder are strictly decreasing (unless they are zero):
∃l ≤ λ : b1i > . . . > bli and, if l < λ, then bl+1

i = . . . = bλi = 0.
This claim is based on our observations from the cases we

examined while conducting this research. We do not prove
this fact, as it is quite difficult for all possible opponent
bids. An argument why this holds is that the competition
for winning the jth desired unit is less than that for winning
one more, i.e. the (j + 1)th one. Furthermore, when there
are no complementarities the value from obtaining the jth

unit is higher than that of the next one. Therefore, it is
reasonable that the bid bj > bj+1.

There are cases which are not covered by this claim. These
are the following:
Property 3: Demand reduction, which means bidding 0 for
the last items.This covers the case that the last bids are zero
(without the valuations being zero): bl+1

i = . . . = bλi = 0.
Property 4: Insufficient competition, which is defined as
a case when a bidder is certain to win one or more units
no matter the bids from the other bidders. This only hap-
pens when the number of units m > λ(N−1), meaning that
a bidder will win a unit even if all opponents win λ units
(the maximum number). In some cases the bids for the first
units do not matter at all, but in some cases they may set
the winning price, therefore to be safe in this case, we can
assume that all the top bids are equal: b1i = . . . = bl+1

i ,
where l = m− λ(N − 1).
Property 5: Complementarities can lead to bids being
equal. More specifically, a complementarity exists when

∃k′, k : k′ < k ∧
∑k−1

j=k′ v
j
i

k−k′ < vki , because in that case ob-

taining the kth unit will give more profit than the average
marginal profit from obtaining any of the previous (k − k′)
units. In such a case it is possible that bk

′
i = . . . = bki .

These properties are important because they will be used
in the algorithms for computing the equilibrium strategies.
More specifically we can now compute the necessary condi-
tions that give the equilibrium strategies for this model. We
next analyze the mth and (m + 1)th price auctions respec-
tively in the next two sections.

3.2 m-th Price Auctions
In this section, we characterize the equilibrium strategies for
the mth price auction. We will start by characterizing the
equilibria when there is no demand reduction (Theorem 1)
and then describe the algorithm for the general case, which
will use that earlier theorem. We also give a number of
examples.

Theorem 1. The equilibrium strategy for the setting that
we examine (when the bids are not equal to each other) is
given by the system of differential equations:

(αkvi − gα,k(vi))Φ
′
m−k+1(gα,k(vi)) = (3)

k(Φm−k+1(gα,k(vi))− Φm−k(gα,k(vi)))

where Φ and Phi′ are computed from equations 1 and 2.
The boundary condition is gα,k(v

L) = vL, where vL is the
lower valuation allowed, meaning the lower bound of the sup-
port of the prior distribution F .

Proof. The bids placed by agent i are sorted from high-
est to lowest and thus w.l.o.g. it is b1i ≥ . . . ≥ bλi ≥ 0.
The last constraint follows from the fact that the bids must
be non-negative in order to be valid. Given these bids, the
expected profit of the agent is:

EPi(b
1
i , . . . , b

λ
i )=

λ∑
k=1

(vi

k∑
j=1

αj−kbki )(Φm−k+1(b
k
i )−Φm−k(b

k
i ))

+

λ−1∑
k=1

∫ bki

bk+1
i

(vi

k∑
j=1

αj − kω)Φ
′
m−k(ω)dω

+

∫ bλi

0

(vi

λ∑
j=1

αj − λω)Φ
′
m−λ(ω)dω (4)

The partial derivatives of EPi are:

ϑEPi

ϑbki
= (αkvi−bki )Φ

′
m−k+1(b

k
i )−k(Φm−k+1(b

k
i )−Φm−k(b

k
i ))

(5)
To find the bids that maximize the expected profit EPi we
use Lagrange multipliers. By introducing factors δk to con-
vert the constraints on the bids from inequalities to equal-
ities, these constraints become: bki − bk+1

i = δ2k. Then, the
Lagrange equation becomes:

Λ(b1i , . . . , b
λ
i , μ1, . . . , μλ, δ1, . . . , δλ) =

−EPi(b
1
i , . . . , b

λ
i ) +

λ∑
k=1

μk(b
k
i − bk+1

i − δ2k)
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The values of the variables which maximize this equation are
found by setting the partial derivative for all the dependent
variables to 0:

ϑΛ

ϑμk
= 0 ⇔ bki − bk+1

i = δ2k

ϑΛ

ϑδk
= 0 ⇔ μkδk = 0

ϑΛ

ϑbki
= 0 ⇔ ϑEPi

ϑbki
=

{
μk − μk−1 if k>1,

μ1 if k=1.

However, as we assumed that there is no demand reduction
and no bids are equal to each other, this means that all
μi = 0,4 hence the optimal bids are given by:

(αkvi − bki )Φ
′
m−k+1(b

k
i ) = k(Φm−k+1(b

k
i )− Φm−k(b

k
i ))

and since at the equilibrium it should be: bki = gα,k(vi), this
leads to the system of differential equations 3.

To prove the boundary condition: when a bidder has the
lowest possible valuation vL, then she would never bid higher
than vL, as she would potentially lose profit by winning. On
the other hand, it cannot be optimal to bid less than vL for
any valuations, because an opponent would take advantage
of this to win by bidding at least vL even if he had a low
valuation too. Therefore, that bidder needs to bid vL.

To accommodate the possibility of some bids being equal
to each other, we extend the above theorem as follows:

Theorem 2. The equilibrium strategy for this setting is
given by the following algorithm:
1. b1i = b2i = . . . = bk

∗
i , where k∗ = max{1, m+1−(N−1)λ}

2. Remove from the system of equations 3 the equations
having ∀k < k∗ and replace them with: gα,k(x) = gα,k∗(x)
3. For Λ = k∗ . . . λ do:
4. Solve the system of equations 3 setting λ := Λ

5. If Λ < λ and ϑEPi

ϑbΛ+1
i

∣∣∣
bΛ+1
i =vL

> 0, then continue loop

(use equation 5 and compute Φ from the solutions of step 4)
6. else stop loop
7. Return the last found solution from step 4

Proof. The first step of the algorithm checks whether a
bidder will win some items for certain due to lack of com-
petition. These are k∗ − 1 = m − (N − 1)λ items, so the
bids for these must be as low as possible; however they can
never become lower than the next bids (only equal to these),

hence they are set equal to bk
∗

i . In step 2, because of these
equalities, this means that when maximizing the Lagrange
equation, we should set δk = 0, ∀k < k∗, which means that
μk 	= 0 and therefore the corresponding equations in 3 are
no longer valid: they need to be removed and any reference
to bidding functions gα,k(x) must be replaced bygα,k∗(x), as

bki = bk
∗

i .
The loop which follows examines whether there is demand

reduction, meaning that bidders will prefer to bid for Λ items
(where Λ < λ). They will bid for at least k∗ items though,
so the loop starts from that value. In each iteration, first
the equilibrium is found (conditional on reduced demand Λ)
in step 4, and then step 5 checks whether it is optimal to
bid for one more item, if all the opponents bid for Λ items:

4In the next theorem we will deal with the other cases, i.e.
bids equal to each other

this happens exactly when ϑEPi

ϑbΛ+1
i

> 0 at the point when

bΛ+1
i = vL and for some vi > vL, as this means that bidding
bΛ+1
i = vL + ε, ε > 0 would increase the expected profit. If
it is optimal to get more items, then our assumption that
bidders would limit themselves at Λ items is incorrect, and
the loop is continued. Of course we do not need to perform
this check if Λ = λ.

Finally, when the loop ends or Λ = λ, then value of Λ has
the correct value of how many items a bidder should limit
herself to, and therefore that solution gives the equilibrium
strategies.

Now we proceed to examine a number of examples:

Example 1. Assume that N ≥ 2 bidders participate in
the auction, where m = 2 units are for sale. Each bidder
wishes to purchase λ = 2 units with valuation vi for the
first unit drawn from the uniform distribution on [0, 1], i.e.
F (x) = x, x ∈ [0, 1], and the value of the second unit is αvi,
i.e. the weight α2 = α, where α ≤ 1.
In this case, k∗ = 1, so there are no guaranteed items to be
won.
We set Λ = 1 (step 3 of the algorithm) and compute the
solution: gα,1(vi) =

1
2
vi. (step 4)

We verify that ϑEPi

ϑb2i

∣∣∣
b2
i
=0

> 0 when the opponents bid b1i =

1
2
vi and b2i = 0, therefore the loop is continued. (step 5)

Setting Λ = 2, meaning that there is no demand reduction,
we compute the solution:

gα,1(vi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

(
N−1
N+1α + 1

)
vi when vi ≤ 2

N−1
N+1

α

N−1
N+1

α+1

N−1
N vi+

(
N−1
N+1α−N−1

N 2
N−1
N+1

α

N−1
N+1

α+1

)( 2

N−1
N+1

α

N−1
N+1

α+1

vi

)N−2
o.w.

gα,2(vi) =
N − 1

N + 1
αvi

This is the equilibrium bidding strategy, as Λ = λ and the
loop of the algorithm terminates.

Notice that there are two cases for the first bid gα,1(vi) be-
cause the distribution F has a maximum possible valuation
vH = 1. This means that bids from the second bid can only
go as much as high as N−1

N+1
α, which affect Φ2, which in turn

changes the function for gα,1(vi) for values vi > 2
N−1
N+1

α

N−1
N+1

α+1
.

Furthermore, notice that the bidding strategy for the first
bid does depend on α. It might seem that this contradicts
property 1, however, as we will see more clearly in the ex-
amples of Section 4, this is not so. What happens is that
the parameter α enters the equation (indirectly) through
the computation of the distributions of the opponent bids
Φ; this α refers to how this parameter changes their second
value of all bidders (and hence their second bids).

3.3 (m+1)-th Price Auctions

Theorem 3. The equilibrium strategy for the setting that
we examine is given by the algorithm of Theorem 2, with
the change that in step 4 the following system of differential
equations needs to be solved:

(αkvi − gα,k(vi))Φ
′
m−k+1(gα,k(vi)) = (6)

(k − 1)(Φm−k+2(gα,k(vi))−Φm−k+1(gα,k(vi)))
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Proof. Similar to the mth price auction, the bids placed
by agent i are b1i ≥ . . . ≥ bλi ≥ 0. Given these bids, the
expected profit of the agent is:

EPi(b
1
i , . . . , b

λ
i ) =

λ−1∑
k=1

∫ bki

bk+1
i

(vi

k∑
j=1

αj − kω)Φ
′
m−k+1(ω)dω

+

λ−1∑
k=1

(vi

k∑
j=1

αj−kbk+1
i )(Φm−k+1(b

k+1
i )−Φm−k(b

k+1
i ))

+

∫ bλi

0

(vi

λ∑
j=1

αj − λω)Φ
′
m−λ(ω)dω (7)

The partial derivatives of EPi are:

ϑEPi

ϑbki
=(αkvi−bki )Φ

′
m−k+1(b

k
i )−(k−1)(Φm−k+2(b

k
i )−Φm−k+1(b

k
i ))

(8)

If an assumption is made that no bids are equal to each
other, then we need to take the first order conditions: ϑEPi

ϑbki
=

0 and since at the equilibrium it must be: bki = gα,k(vi), this
leads to the system of differential equations 6. The bound-
ary conditions remain the same.

To account for the possibility of bids being equal to neigh-
boring bids, we use the same reasoning as in Theorem 2,
hence why the rest of the algorithm remains the same.

We can now give two more properties of the equilibrium:
Property 6: Bidder bid truthfully for the first item in this
auction.
Indeed, this is known and it is trivial to prove, by setting
k = 1 in equation 6.
Property 7: It is easier to solve the system of this theorem
than than of Theorem 1.
Since we know that b1i = vi in this theorem, the size of the
problem reduces by 1, and the system of differential equation
has (λ−1) equations and (λ−1) unknown functions. The one
from Theorem 1 has λ equations and λ unknown functions,
so it is harder to solve.

We will give two examples; one where there is demand
reduction and another with insufficient competition:

Example 2. Assume that N ≥ 2 bidders participate in
the auction, where m = 2 units are for sale. Each bidder
wishes to purchase λ = 2 units with valuation vi for the
first unit drawn from the uniform distribution on [0, 1], i.e.
F (x) = x, x ∈ [0, 1], and the value of the second unit is αvi,
i.e. the weight α2 = α, where α ≤ 1.
In this case, applying the algorithm we can check that when
α < 1, the bidder will bid gα,1(vi) = vi and gα,2(vi) = 0:
there is demand reduction to one unit.

Example 3. Assume that N = 2 bidders participate in
the auction, where m = 4 units are for sale. Each bidder
wishes to purchase λ = 4 units with valuation vi for the
first unit drawn from the uniform distribution on [0, 1]. The
value for the other units are α2vi ≥ α3vi ≥ α4vi.
In this case, applying the algorithm, we find that b1i = b2i .
However, now that system of equations can have an infi-
nite number of solutions, as ϑEPi

ϑb2i
= 0, ∀b2i ; we can choose

gα,1(vi) = gα,2(vi) = α1vi w.l.o.g. Then we check that no

bidder will want to bid for three items, as ϑEPi

ϑb3i
< 0, hence

there is demand reduction to two units.

4. THE GENERAL MODEL: BIDDERS WITH
ASYMMETRIC WEIGHT VECTORS

In this section, we extend the results of the previous sec-
tion to the general model where bidders can have differ-
ent weight vectors. In this way, it is possible to simulate
any possible combination of valuations for each bidder, pro-
vided that there are no complementarities meaning as long
as v1i ≥ . . . ≥ vλi .

Theorem 4. The algorithm of Theorem 2 still gives the
equilibrium strategy for a mth price auction in this setting,
with the change that equation 1 is replaced by:

Φk(x) =
k∑

j=1

∑
d1,...,dmin{j,λ}
s.t.:

∑
l ldl=j−1

(N − 1)!

(N − 1−∑
l dl)!

∏
l dl!

(1−F̃λ(x))
dλ

·
∏
l<λ

(F̃l+1(x)− F̃l(x))
dl(F̃1(x))

N−1−∑
l dl (9)

where:

F̃l(x) =
∑
α

h(α)F (g−1
α,l(x))

Proof. The main change compared to Theorems 2 and 1
is that the opponents can have a number of weight vectors
α each with probability h(α). This affects the distributions
of the opponent bids in the following ways:

1. The first bid of each opponent is given by distribution∑
α h(α)F (g−1

α,1(x)) = F̃1(x), which is obtained by us-
ing Bayes’ law.

2. Similarly using Bayes’ law, the probability of being
between the lth and (l + 1)th bids of one opponent is:∑

α h(α)
(
F (g−1

α,l+1(x))− F (g−1
α,l(x))

)
=∑

α h(α)F (g−1
α,l+1(x))−

∑
α h(α)F (g−1

α,l(x)) =

F̃l+1(x)− F̃l(x).

3. Finally, the probability of having a lower value than
the lowest bid is:

∑
α h(α)

(
1−F (g−1

α,λ(x))
)
=

∑
α h(α)−∑

α h(α)F (g−1
α,λ(x)) = 1− F̃λ(x).

That means that the terms F from the original equation

need to be replaced with the equivalent terms F̃ , which gen-
erates equation 9.

The same process extends Theorem 3:

Theorem 5. The algorithm of Theorem 3 still gives the
equilibrium strategy for a (m + 1)th price auction in this
setting, with the change that equation 1 is replaced by equa-
tion 9.

Now, it is time to re-examine Example 1:

Example 4. Assume the same setting as in Example 1,
with the difference that the weight α2 = α, is no longer the
same for all bidders, but rather the weights of every bidder
α2 are i.i.d. random variables drawn from the uniform dis-
tribution U [0, 1].
There is no demand reduction and the equilibrium is com-
puted as:

gα,2(vi) =
N − 1

N + 1
αvi
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gα,1(vi) =
1

2

(N − 1

N + 1
α∗ + 1

)
vi

where

a∗ =
1∑

α
h(α)
α

when vi ≤ 2
N−1
N+1

min{α}
N−1
N+1

α∗+1
.

We do not detail here the equilibrium strategies for values

vi > 2
N−1
N+1

min{α}
N−1
N+1

α∗+1
; this is a mathematical exercise. We want

to focus instead and point out certain properties of the equi-
librium strategies. One can notice that each bidder’s weight
α only affects directly her second bid. The first bid in not
affected, which is consistent with the properties of the equi-
librium that we detailed earlier. In addition, the first bid
placed by each bidder does not depend on her individual
weight α, but rather on an aggregate weight α∗ which is
equal to the harmonic mean of all the possible values that
α can take, weighted by the probability of each. This is the
indirect effect of the weights α to the first bids placed by
the bidders.

We can also examine this example for the case when the
weight αi of each bidder are known, i.e. they are common
knowledge to all bidders:

Example 5. Assume the same setting as in Example 4,
with the difference that the weights αi are known.
There is no demand reduction and the equilibrium is com-
puted as in Example 4, with the difference that now:

a∗ =
N∑
αi

1
αi

Again, we make the exact same observations, with the
difference that now the aggregate weight α∗ is equal to the
harmonic mean of all the bidders’ weights αi. This param-
eter indeed summarizes the indirect effect of the weights αi

(which in turn give the bidders’ valuations for getting a sec-
ond item) to the first bids placed by the agents.

5. EXPERIMENTAL EVALUATION
In this section, we conduct experiments to test the equilib-
rium strategies against heuristic strategies used in such an
auction setting in previous work.

First, we examined the literature on trading agent design
and the Trading Agent Competition (TAC): in TAC Classic,
the first benchmark game that was created for TAC, some of
the auctions used were mth price sealed bid auctions. These
were the auctions selling the hotel rooms, where m = 16 ho-
tel rooms of each type were available.[22] We examined the
strategies used in order to bid specifically in these auctions.
Some agents, see [7, 17], placed bids based on the historical
closing prices that were learnt from previous games, usually
some weighted average of the current price (which is zero at
the beginning) and the predicted price. Similarly, Walver-
ine[3] used a similar reasoning, however, the price predic-
tions were partly based on a principled competitive analysis
which attempted to stabilize price predictions based on the
information that has been observed in the current game; as
such it could be less sensitive to changes in the participants
strategies. Finally, in [19], the authors simply ignore the
effect of bid shading and split each bidder into multiple sub-
bidders where each one bids independently for each item;

the authors note that because of the competition effect, the
bid shading is essentially canceled, and examine the effect
of competition in [18] basing their work on [2]. However, in
all the TAC agents, we notice two common elements: (a)
demand reduction to 3, 4 or 5 units (out of the possible 8
desired) and (b) most agents are willing to place small bids
in order to grab a hotel cheaply even if they do think that
they can use it.

Based on this review, we chose the following strategies to
test:

1. Heuristic Strategy SI : this ignored the bid shading al-
together and assumed that there are N ′ = Nλ bidders,
as in [19].

2. Heuristic Strategy SR: this strategy uses the same
strategy as SI for b1 and bids a small percentage of
the valuation for the remaining ones. Essentially this
is inspired from the demand reductions strategies, but
does not go all the way to completely bidding zero,
thinking of the way that most TAC agents are willing
to pay something small to grab a good for a bargain
price (if they are lucky). [3, 7, 17, 19] To this end we
set this function to bid 25% of the second value in the
experiment.

3. Equilibrium Strategy SE : this is the equilibrium strat-
egy computed in this paper.

We conducted our experiments on the setting of Exam-
ple 1, for N = 4 bidders and values of α = 0.1, . . . , 0.9, 1.
(α = 0 has no meaning because there would be no multi-
unit demand) We will assume that between 1 and 3 bidders
using strategy SI and SR respectively compete against the
remaining agents who use strategy SE . The results of this
experiment are presented in Figure 1. Note that the error-
bars would very small and that is why there are not depicted
in this Figure. What we notice is that with the exception of
the case when there is only one agent using strategy SI (or
SR resp.) and then only for small values of α <= 0.5), we
see a significant improvement in the expected profit gener-
ated from using strategy SE, which varies between 5% and
25%. In the few cases, that this is not the case, the drop in
performance (in those few cases) is no more than 1%. Fur-
thermore, even in this case, when there is one bidder not
playing the equilibrium strategy, this bidder might be able
to do slightly better, however, if she were to switch to strat-
egy SE , then the profit of all bidders would improve; this
is theoretically guaranteed after all from the fact that SE

is an equilibrium strategy and no one bidder can gain by
deviating from it! And in fact, the explanation why SI (or
SR resp.) manages to outperform slightly SE in these few
cases stems exactly from the fact that we are now looking at
the relative performance of the strategies (not the absolute
value), therefore we face the issues described in [2, 18].

6. DISCUSSION AND CONCLUSIONS
In this paper, we characterized and computed the equilib-
rium strategies for both mth and (m+ 1)th price sealed-bid
multi-unit auctions, where the participating bidders have
multi-unit demand; this was an open problem for almost
two decades. We examined a number of properties of the
equilibrium and then examined two models, the second of
which is general enough to capture any set of bidder valua-
tions provided that there are no complementarities in these.
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Figure 1: Expected profit for: (left) 1 bidder using SI (resp. SR), (center) 2 bidders using SI (resp. SR), and
(right) 3 bidders using SI (resp. SR).

To the best of our knowledge, we are the first to give an
algorithm for computing the equilibrium strategies for this
problem and for any values of bidderN , items for sale m and
demand λ. In the end, we conducted experiments to exam-
ine what happens when comparing the equilibrium strategies
with other heuristic ones, like those used previously in the
literature; our experiments show an improvement of usually
5% to 25% in most cases when using the equilibrium strate-
gies (with only few cases showing a drop in profit of up to
1%).

Now, this work is far from over. The main issue is that
the systems of differential equations that need to be solved
are notoriously unstable, as we have observed in our previ-
ous work, when looking at asymmetric auctions.[20] Because
of this, in all the examples we gave, the equilibrium strate-
gies were computed analytically rather than computation-
ally. This does not mean that our theorems are incorrect;
far from it in fact. However, in order to be able to automati-
cally generate these strategies for any input, the parameters
N,m,λ, the weights and prior distributions for the valua-
tions and the weights, we need to resolve this issue.

Furthermore, as future work, we plan to examine ways
in which we might be able to extend our model to cover
also complementary valuations. Of course, this is not an
easy problem as even in the case of multiple auctions selling
complementary items, because in addition to the bid shading
the agent would have to face also the well-known exposure
problem.[11]
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