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ABSTRACT

Avoiding collisions is one of the vital tasks for systems of au-
tonomous mobile agents. We focus on the problem of find-
ing continuous coordinated paths for multiple mobile disc
agents in a 2-d environment with polygonal obstacles. The
problem is PSPACE-hard, with the state space growing ex-
ponentially in the number of agents. Therefore, the state
of the art methods include mainly reactive techniques and
sampling-based iterative algorithms.

We compare the performance of a widely-used reactive
method ORCA with three variants of a popular planning
algorithm RRT* applied to multi-agent path planning and
find that an algorithm combining reactive collision avoid-
ance and RRT* planning, which we call ORCA-RRT* can
be used to solve instances that are out of the reach of ei-
ther of the techniques. We experimentally show that: 1)
the reactive part of the algorithm can efficiently solve many
multi-agent path finding problems involving large number
of agents, for which RRT* algorithm is often unable to find
a solution in limited time and 2) the planning component
of the algorithm is able to solve many instances containing
local minima, where reactive techniques typically fail.

Categories and Subject Descriptors

I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents, Multiagent systems

General Terms

Algorithms; Measurement; Performance; Experimentation

Keywords

Path finding problem; multi-agent solver; planning; reactive
technique

1. INTRODUCTION
One of the fundamental tasks for a team of mobile agents

is planning trajectories for the agents so as to avoid collisions
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between them. The problem arises in a variety of application
domains such as in the teams of autonomous robots or in air
traffic management systems.

The problem of finding coordinated paths for a group of
agents is studied since 1980s. In theory it is well known that
finding even non-optimal collision-free paths from defined
start positions to goal positions for a group of objects in
restricted 2-d space is PSPACE-hard [3] and thus (unless
P=PSPACE) there exist instances that cannot be solved in
polynomial time.

Recent advancements in the field of multi-agent path plan-
ning include methods that solve restricted variant of the
cooperative path finding problem, where point-like agents
move using synchronous discrete steps on a graph. For this
variant of the problem there exist complete polynomial al-
gorithms such as BIBOX [7] or Push & Rotate [1], non-
polynomial (but often effective) optimal algorithms [6] and
anytime algorithms [9]. However, the graph abstraction used
in this problem formulation is not suitable for systems where
the size of the agents cannot be neglected.

Research in trajectory planning for multiple agents has
been made in the field of decoupled and centralized contin-
uous planning domains. Decoupled approaches often offer
better efficiency, but lose completeness. Frequently used de-
coupled technique is prioritized planning [2]. Here priorities
are assigned to agents which specify the order in which their
single-agent planning will take place. Each agent takes into
account the plans of all agents with higher priority as mov-
ing obstacles. This method can be very efficient especially in
uncluttered environments, but it is intrinsically incomplete.
The method requires that the individual re-planning takes
place in the space-time. It is relatively straightforward to
perform such planning with forward search algorithms such
as A*, but it remains unclear how should be such a planning
efficiently done in continuous space e.g. using some of the
sampling-based algorithms.

Little attention has been devoted so far to the problem
of finding coordinated trajectories for agents in continuous
environments with polygonal obstacles. A straightforward
solution is to construct the joint state space of all agents
and search such a space using one of the sampling-based
methods for continuous path planning. Alternatively, one
can resort to a reactive collision avoidance techniques that
proved to be very efficient in practice. The most prominent
representatives of the two mentioned approaches are RRT*
and ORCA.

In 2011 Karaman and Frazzoli [4] published the RRT*
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algorithm, an anytime extension of RRT (rapidly explor-
ing random tree [5]) that is probabilistically complete and
asymptotically optimal. The algorithm is designed for con-
tinuous state spaces in which it can efficiently find a path
from a given start state to a given goal region by incremen-
tally building a tree that is rooted at the start state and
spans towards randomly sampled states from some given
state space. Once such a tree first reaches the goal region,
we can follow its edges backwards to obtain the first feasible
path from start state to the target region. With more and
more samples being added to the tree, the solution incre-
mentally improves.

Optimal reciprocal collision avoidance (ORCA) is one of
the many methods based on velocity obstacle paradigm. It
was proposed in 2011 by Jur van den Berg et al. [8] and
demonstrated to be capable of generating collision-free mo-
tion for a large number of agents in a cluttered workspace
with local guarantees on optimality and safety. Even though
ORCA is a powerful tool for solving multi-agent collision
avoidance, there are many instances of the problem that it
is not able to solve due to the lack of cooperation and plan-
ning. An example of such an instance is any scenario where
an agent has to make a long trip away from a narrow corridor
to clear the way to another agent.

The goal of this paper is to analyze the problem of plan-
ning collision-free continuous paths for multiple holonomic
agents and evaluate the performance of the two approaches
in 2-d polygonal environments.

We study the applicability of the RRT* algorithm for
multi-agent path planning and compare it with ORCA –
one of the most widely used techniques for the problem,
which has been successfully used in several software and
hardware multi-agent implementations. Moreover, we pro-
pose a novel variant of RRT* algorithm that is specifically
suited for multi-agent path planning. The new ORCA-RRT*
combines RRT* planning with reactive collision avoidance.
Our experiments show that the combined algorithm is able
to solve instances that were not solved by either of the tech-
niques alone. Further, on many other instances the new
algorithm provides higher quality solution that the other al-
gorithms.

The rest of the paper is structured as follows. In Section 2,
we state the multi-agent path finding problem. Then, in Sec-
tion 3 we describe the multi-agent RRT* and introduce three
variants of the algorithm that are applicable for multi-agent
path planning in continous environments. The paper is con-
cluded by a large-scale experimental analysis comparing the
performance of the individual algorithms.

2. PROBLEM STATEMENT
We define the multi-agent path finding problem as fol-

lows. Consider n agents operating in 2-dimensional Eu-
clidean space with polygonal obstacles. The starting posi-
tions of agents are given as n-tuple (s1, . . . , sn), where si is
the starting position of i-th agent. The n-tuple (d1, . . . , dn)
gives the agents’ destinations. We assume that the agents
have disc-shaped bodies, where the radius of agent i is de-
noted as ri. The final trajectory of i-th agent πi(t) is a map-
ping R → R

2 of time t to 2 dimensional Euclidean space of
the agent, where πi(0) = si. The time tdi is the minimal
time after which the i-th agent remains at its destination,

tdi = min(ti|∀t ∈ 〈ti,∞) : πi(t) = di).

Let O ⊂ R
2 denote the regions of the space occupied by

the obstacles. Then, the collision-free property of the set of
multi-agent trajectories can be defined as

CF ({π1, . . . , πn}, O) = true iff

∀i, j, t, i 6= j : dist(πi(t), πj(t)) > ri + rj

and

∀i, t : D(πi(t), ri) ∩O = ∅,

where dist(x, y) is Euclidean distance in 2 dimensional space
and D(πi(t), ri) denotes a disc of radius ri centered at πi(t).
The task is to find n-tuple (π1, . . . , πn) such that the agents
never collide and the sum of times agents spend on the path
to their final destinations is minimal. The problem state-
ment is defined as follows:

Find (π1, . . . , πn) s. t.

CF ({π1, . . . , πn}, O) = true
n
∑

i=1

tdi is minimal.

3. RRT* FOR MULTI-AGENT PATH FIND-

ING
The RRT* algorithm was originally designed for single-

agent motion planning, however, it can be adapted to solve
multi-agent path planning problems. In this section we will
discuss how can be the RRT* algorithm leveraged in a multi-
agent setting.

We let the RRT* algorithm operate in the joint state space
J = C1 × . . . × Cn, where Ci ⊆ R

2 is the state space of
the i-th agent. The initial state in the joint state space is
xinit = (s1, . . . , sn), goal state is xgoal = (d1, . . . , dn) and
any other sampled state is also n-tuple containing positions
of all agents. The algorithm searches for a path p : [0, 1]→ J
from xinit to xgoal, which can be then decomposed into a
set trajectories {πi} for each individual agent i. The pseu-
docode of RRT* algorithm for multi-agent path planning is
exposed in Algorithm 1.

The distance metric used in the algorithm is the sum of
Euclidean distances of all n agents:

dist(x,y) =

n
∑

i=1

distE(xi, yi),

where x, y ∈ J and xi, yi ∈ Ci.
Now, we provide definitions of the following RRT* primi-

tive procedures:
Nearest Neighbor: Given a graph T = (V,E) and a state

x ∈ J , the function Nearest(T,x) returns a vertex v ∈ V
that is the closest to state x in terms of the distance metric
dist(·, ·).

Near Vertices: Given a graph T = (V,E), a state x ∈
J and the numbers n,m ∈ N, the function Near(T,x, n)
returns a set {y : y ∈ V ∧ dist(x,y) < rn}, where rn =

γ(logn/n)1/d, γ is a constant and d = 2n is the dimension
of the space J .

Local Steering Procedure: Given two states x and y, a
domain-specific local steering procedure Steer(x,y) returns
true if the steering procedure is able to connect the state x
to the state y. In the context of multi-agent path finding,
the steering procedure seeks for a set of paths {pi} such that
pi(0) = xi and pi(1) = yi for each agent i and all paths are
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mutually collision-free. We consider three different methods
for local steering which are discussed in detail in Section 3.1.
Find best parent: Given a graph T = (V,E), a set X ⊆ V

and a state x ∈ J , the function FindBestParent(T,X, x)
returns the best parent vertex v ∈ X for state x, i.e. the
vertex that yields the lowest cost of path xinit → x.

Rewire: Given a graph T = (V,E), a set X ⊆ V and
a state x ∈ J the function Rewire(T,X, x) examines all
vertices from X to see whether their cost can be improved
by going through the new vertex x. If there are any such
vertices, the tree is rewired so that these vertices become
children of x, which allows them to improve the cost of their
path from the initial state xinit.

The main loop of the multi-agent RRT* algorithm (see
Algorithm 1) works as follows: Until interrupted, the algo-
rithm samples states from the joint state space J (line 4).
Each such a random sample is used in an attempt to extend
the tree. First, the nearest vertex from the tree T to the ran-
dom sample s is determined (line 5). Then, the algorithm
attempts to connect the vertex x to the random sample s
using the local steering procedure (line 6). If the two points
can be connected using the local steering procedure the algo-
rithm proceeds to its optimizing part, otherwise it tries again
with another sample. Then a set of vertices Xnear that are
within a specified distance to the x is determined (line 7).
The Xnear set serves two purposes: Firstly it is used to find
the best parent for the new vertex x (line 8). Secondly, af-
ter the new vertex x is added to the tree, the vertices from
Xnear are rewired if it improves their cost (line 10).

Once the goal state1 is successfuly added to the tree, one
can follow the links backwards to obtain a valid path from
the state xinit to the state xgoal. However, even after the
first solution has been returned, the algorithm does not stop
iterating. Instead, the algorithm continously extends and
rewires the tree, which leads to incremental discovery of fur-
ther higher-quality paths.

Algorithm 1 Multi-agent RRT*

1: V ← {xinit};E ← ∅;
2: while not interrupted do
3: T = (V,E);
4: s← Sample();
5: x← Nearest(T, s);
6: if Steer(x, s) then
7: Xnear ← Near(T, s, |V |);
8: xp ← FindBestParent(T,Xnear, s);
9: V ← V ∪ {x};E ← E ∪ {(xp,x)};

10: Rewire(T,Xnear, s);
11: end if
12: end while

3.1 Multi-agent Extensions
The crucial component influencing the performance of the

RRT* algorithm is the local steering procedure. We consider
a multi-agent steering function of the following form:

1Here we assume that the point xgoal is sampled with a
certain non-zero probability (e.g. 1%) to overcome the need
to define the goal as a region instead of a point.

Steer(x,y) =














true if ∃ {πi} s.t. {πi} = E(x,y, O)
and CF ({πi}, O)
and ∃t ∀i πi(t) = yi

false otherwise

,

where x,y ∈ J . The function E(x,y, O) : J × J ×P(R2)→
Π1 × . . .×Πn is an extension function that returns a set of
paths {πi}, where πi is a path for agent i such that πi(0) =
xi and ∃td s.t. ∀t ≥ td : πi(t) = yi. Note that the steering
procedure returns true only if the trajectories generated by
the extension function are 1) avoiding all static obstacles
and 2) the trajectories are mutually collision-free.

We study three methods that can serve as a valid exten-
sion function for the multi-agent steering procedure: 1) Line
extension connects individual agents using straight lines, 2)
VisibilityGraph extension connects individual agents using
the optimal single-agent path, and 3) ORCA extension gen-
erates joint path by simulating ORCA algorithm, where each
agent tries to follow its single-agent optimal path.

3.1.1 Line Extension

The first considered extension method is a relatively straight-
forward extension of classical single-agent RRT* planner as
exposed in [4], which connects two states using straight line
paths. In a multi-agent setting, we connect each of the
agents by a straight path:

ELine(x,y, O) = {line(xi, yi)},

where the line(x, y) : R2 × R
2 → Π is a function defined as

line(xi, yi) = πi(t) =

{

xi + vi · t
yi−xi

|yi−xi|
for t < |yi−xi|

vi

yi otherwise
,

where vi denotes the maximal speed of the i-th agent. Ob-
serve that such a trajectory prescribes that the agent i should
move to the point yi along the straight line at maximum
speed; when the point yi is reached, the agent stays there.
Note that it can happen that a solution returned by this
method is rejected by the steering procedure if a) any of the
trajectories intersects some of the obstacles or b) some of
the trajectories are in mutual collision.

3.1.2 Visibility Graph Extension

Another considered method uses the single-agent optimal
paths (i.e. optimally avoids obstacles, but ignores interac-
tions among the agents) between the points xi and yi. In 2-d
polygonal environments, one can efficiently find such a path
by constructing a visibility graph and subsequently by find-
ing the shortest path in such a graph. Let the shortest path
in the visibility graph of i-th agent be represented as a se-
quence of edges (ei1, . . . , eimi

). The resulting trajectory of
agent i will follow this path. The Visibility Graph extension
function can be formally defined as

EV G(x,y, O) = {segments(xi, yi)},

where segments(xi, yi) : R
2 × R

2 → Π is a function defined
as
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segments(xi,yi) = πi(t)

=















source(eij) + vi · t
eij
|eij |

for t ∈ (

j−1∑

k=1

|eik|

vi
,

j∑

k=1

|eik|

vi
), j ∈ 〈1,mi〉

yi otherwise

,

where source(e) function returns the source vertex of the
edge e. Note that the trajectories returned by this method
are guaranteed to be obstacle avoiding, therefore, the steer-
ing procedure may only reject them if the resulting trajec-
tories are in mutual collision.

3.1.3 ORCA Extension

The last considered extension method generates trajec-
tories by following optimal single-agent paths together with
Optimal Reciprocal Collision Avoidance (ORCA) technique,
which is used for reactive collision avoidance between the
agents. ORCA is a decentralized reactive collision avoid-
ance method based on the velocity-obstacle paradigm that
performs optimization in the space of velocity vectors for
each agent. During ORCA, each agent creates a velocity
obstacle for every other agent based on their currently ob-
served position and velocity. Each such a velocity obstacle
cuts out a half-plane in the space of possible velocities for
the agent. Given the agent’s desired velocity and the con-
straints induced by the other agents, a linear program with
n − 1 constraints is constructed and solved to obtain the
optimal velocity vector the agent should follow in the next
time step [8].

To provide the desired velocity vector in each time step,
we use the same visibility graph based navigation as in the
visibility graph extension method. At each timestep, the
agent finds the optimal path from its current position to
its destination on the visibility graph and sets the desired
velocity vector to point at this direction.

The ORCA extension function is defined as

EORCA(x,y, O) = {πi}

where πi is a trajectory of i-th agent obtained by simulating
the ORCA method with x as start positions and y as goal
positions.

The trajectories returned by ORCA are guaranteed to be
obstacle avoiding. They are also guaranteed to be mutually
collision-free. However, due to the reactive nature of the
algorithm, the method is not guaranteed to find a solution
if a solution exists. Since some of the executions may end
up in infinite loops or deadlocks, it is not uncommon to
see the agents being stuck at one point and never reach
their designated target position. Therefore one has to bound
the maximum number of timestep each ORCA simulation is
allowed to perform.

Our hypothesis is that there is a significant number of
problem instances that cannot be solved by ORCA alone,
but that could be efficiently solved by multi-agent RRT*
with ORCA extensions.

An example of an artificial instance that was not solved
by ORCA is in Figure 1. In such a scenario, the reactive
technique tryies to resolve the conflict by letting both agents
to go back in the corridor, but at some point it decides to
return back to its desired directon, resulting in a deadlock
situation.

(a) two disk shaped agents exchange their positions

(b) two teams of disk shaped agents exchange their
positions

Figure 1: Example of instances solved by ORCA-
RRT* that was not solved by ORCA (lines show
trajectories πi(t))

4. EXPERIMENTAL ANALYSIS
In this section we experimentally evaluate features of pro-

posed extension of multi-agent RRT* algorithm. We com-
pare three RRT* based algorithms - Line RRT*, Visibility
Graph RRT* and ORCA RRT* with reactive ORCA. The
experiments have been performed on four types of 2-d test-
ing environments – empty, door, cross and maze environ-
ments (see Figure 2). All environments are constrained by
a fixed boundary having 1000x1000 dimension. The met-
rics for comparison has been focused on success rate of the
algorithms and the quality of the solution for various envi-
ronment settings. The measured parameters are:

• idealistic solution cost is the cost of a solution for
which the CF function in Equation 1 is relaxed in
a way that it omits its first constraint i.e. permits
collisions between agents. The idealistic (i.e. lower
bound) solution cost is defined as

tideal =
n
∑

i=1

tdi .

The goal arrival time tdi is obtained by computing
a single-agent optimal path for each agent using the
visibility graph.

• suboptimality measure gives indicative quality ratio
by comparison of the given solution to the lower bound
of the solution provided by idealistic solution cost. It
shows how many times is the given solution worse than
the idealistic solution. It is defined as

suboptimality =

n∑

i=1

tdi

tideal
.

• success rate shows the percentage of scenarios solved
by the algorithms. The success rate depends on sub-
optimality in a way that a given solution is successful
only if its suboptimality is lower than a defined thresh-
old. If the algorithm does not provide any solution
within time frame defined by experiment setting, it is
automatically considered unsuccessful.
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(a) Empty environment (b) Door environment (c) Cross environment (d) Maze environment

Figure 2: Problem environments

4.1 Benchmark set
The experiment has been performed on a benchmark set

composed of four environments as depicted in Figure 2 with
the number of agents varying from 2 to 10 and the agent
body radii ranging from 50 to 100. For each combination of
environment, number of agents and agent radius, the bench-
mark set contains 10 different settings of agents’ start and
goal positions, altogether 2160 benchmark scenarios. Since
RRT* is a stochastic algorithm, we run the algorithm five
times with different random seeds for each problem instance.
Altogether, the presented experimental results are based on
34560 runs.

The benchmark set was created by an algorithm that guar-
antees that for each problem instance there is exactly one
collision cluster i.e. the path finding problem cannot be di-
vided into mutually non-colliding groups of agents, which
would be easier to solve. This is guaranteed by adding
agent’s random start and goal positions iteratively only when
a collision occurs between agent’s shortest path from start
to goal and any other agent’s shortest path. The procedure
that creates a problem instance is given in Algorithm 2.

Algorithm 2 Create problem instance

1: for i in 1:numberOfAgents do
2: colliding = false
3: while not colliding do
4: start = randomSample
5: goal = randomSample
6: path = findShortestPath(start, goal, obstacles)
7: if path exists then
8: colliding = findCollision(path, allPaths)
9: end if

10: end while
11: allPaths.add(path)
12: starts.add(start)
13: goals.add(goal)
14: end for

An example of one such generated problem instance is
depicted in Figure 3. It shows the maze environment with
10 agents of minimal radus r = 50 and maximal radius r =
100 and the corresponding optimal single-agent trajectories
obtained by running the A* algorithm on a visibility graph.

In the next sections we will discuss the results of exper-
imental evaluation from the perspective of the instance set
coverage/success rate of the algorithms and the solution
quality/suboptimality.

(a) (b)

Figure 3: Example of maze environment – 10 agents
with radii a) 50, b) 100 with corresponding single
agent optimal paths.

4.2 Success rate
We compare the success rate of four implemented algo-

rithms with respect to different numbers of agents and dif-
ferent radii of agents. The limit on runtime of the tested
algorithms has been set to 5 seconds. To illustrate the distri-
bution of solution quality, we plot these graphs for different
suboptimality thresholds:

• Figure 4 uses no suboptimality threshold and contains
all instances.

• In Figure 5 we consider all solutions having subopti-
mality over 5 as unsuccessful.

• In Figure 6 we consider all solutions having subopti-
mality over 2.5 as unsuccessful.

We can observe three significant phenomena. Firstly, the
success rate of RRT* based algorithms Line-RRT* and Vis-
ibility Graph-RRT* drops fast with increasing number of
agents. This behavior was expected because the planning
takes place in a state space exponential in the number of
agents. These algorithms are therefore able to solve the de-
fined problems for the number of agents up to approximately
5 in the studied scenarios. Note that RRT* is provably prob-
abilistically complete [4], but for some instances given the
limited runtime the algorithm was not able to find even the
first feasible solution. On the other hand the success rate of
both RRT* algorithms is stable with changing threshold.

Second, the success rate of the ORCA reactive technique
drops with the increasing radii of the agents. This can be
partly explained by the existence of corridors in the test sce-
narios that with the increasing radii of the agents become
”narrow” and therefore hard to solve locally. If the agents
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Figure 4: Success rate of tested algorithms on test instances, no threshold
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Figure 5: Success rate of tested algorithms on test instances, threshold 5
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Figure 7: Rank histograms for running time 5 seconds
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are small, then they can swap positions without leaving the
corridor, which is easy to achieve using local collision avoid-
ance. If the agents are large, then there will be corridors
that can accommodate only one agent at a time, which re-
quires longer term planning, where one agent keeps the way
clear for the other agent to pass which is only achievable
with planning approaches.

Further, we can observe that the solutions generated by
ORCA are often of low quality (notice the difference between
Figure 4(d) and 5(d)). This typically happens in crowded
environments, where are the agents likely to get stuck in
slowly evolving deadlock situations.

Third, the success rate of the ORCA-RRT* algorithm is
close to one for both high number of agents and high agent
radius. It drops only with the combination of high extremes
of both parameters. This behavior is achieved by the com-
bination of planning and reactive approaches. The planning
component is able to solve the instances that require plan-
ning, while the reactive component is able to solve instances
with higher numbers of agents.

Moreover, we can see that the success rate of ORCA-
RRT* deteriorates much less rapidly with decreasing thresh-
old than pure ORCA, which implies that ORCA-RRT* in
general finds in the given runtime limit higher quality so-
lutions than pure ORCA alone. Since the first extension
in ORCA-RRT* is in fact identical to running pure ORCA,
these results confirm that the algorithm exhibits incremen-
tal behavior, i.e. it improves the quality of the generated
solution in time.

An important observation is that the there are instances
that neither of the algorithms was able to solve on its own,
but that got solved when the two algorithms were com-
bined. For many other instances the combination of RRT*
and ORCA provided a higher-quality result within the given
runtime limit than each of the algorithms alone.

4.3 Suboptimality
Figure 7 and 8 show the histograms of ranks assigned to

algorithms for run-time limits 5 and 1 seconds. A rank from
1 to 4 is assigned to each algorithm for each experiment ac-
cording to its solution suboptimality compared to other al-
gorithms. If two algorithms achieve the same suboptimality,
the ranks are assigned to them randomly. If an algorithm
was not able to find any solution, its rank is 4. Rank 1 means
that an algorithm achieved lowest suboptimality for partic-
ular problem instance. Difference between figures 7 and 8
shows how the ranks of the algorithms (e.g. solution qual-
ity – suboptimality) depend on the running time limit. We
observe that VisibilityGraph-RRT* algorithm achieved the
worst ranks. Line-RRT* is slightly better due to it’s abil-
ity to sample the state space very fast. ORCA algorithm
achieved the second rank and ORCA-RRT* always achieved
the first rank in the majority of problem instances. The
difference between Figure 7 and 8 shows that while ORCA
finds the best solution early, it does not benefit from added
runtime. The variants of RRT* incrementally improve the
solution and thus their performance is more dependent on
the given runtime limit.

The results of the experiments confirm the ability of ORCA-
RRT* to find higher-quality solutions compared to both
RRT* variants. As a complement to the best problem in-
stance set coverage, the ORCA-RRT* is also dominant in
terms of the quality of the returned solution.

5. CONCLUSIONS
In this paper we studied the problem of finding coor-

dinated paths for holonomic agents in 2-d polygonal en-
vironments. This problem is challenging due to its pro-
hibitive complexity. We studied several RRT*-based algo-
rithms for multi-agent coordinated path finding and a reac-
tive approach ORCA. We found that while both approaches
have limited coverage of the problem instance space, an ap-
proach combining planning and reactive technique benefits
from both its parts, providing a better problem instance set
coverage and higher solution quality.

We call the new algorithm ORCA-RRT*. While RRT*-
based algorithms often suffer from the exponential growth of
the state space and thus are unable to solve instances with
high number of agents, the reactive part of ORCA-RRT*
is able to overcome this problem. On the other hand reac-
tive techniques are often unable to solve problems containing
local minima. Due to its RRT* planning part the ORCA-
RRT* algorithm can avoid such local minima by random
sampling of the state space.

ORCA-RRT* is an anytime algorithm, which can itera-
tively improve the provided solution. We experimented with
several running time limits and examined the differences in
the provided solutions. In the future work we plan to de-
ploy the ORCA-RRT* on hardware agents and investigate
possibility of the extension towards non-holonomic agents.
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Multi-agent RRT*: Sampling-based cooperative
pathfinding (extended abstract). In Proceedings of the
AAMAS’13, 2013.

1123




