
Automatic Rule Identification for Agent-Based Crowd
Models Through Gene Expression Programming

Jinghui Zhong1, Linbo Luo1, Wentong Cai1, Michael Lees2

1School of Computer Engineering, Nanyang Technological University, Singapore
2Section Computational Science, University of Amsterdam, Netherlands
{jinghuizhong, lbluo, aswtcai}@ntu.edu.sg, m.h.lees@uva.nl

ABSTRACT
Agent-based modelling of human crowds has now become an
important and active research field, with a wide range of ap-
plications such as military training, evacuation analysis and
digital game. One of the significant and challenging tasks in
agent-based crowd modelling is the design of decision rules
for agents, so as to reproduce desired emergent phenom-
ena behaviors. The common approach in agent-based crowd
modelling is to design decision rules empirically based on
model developer’s experiences and domain specific knowl-
edge. In this paper, an evolutionary framework is proposed
to automatically extract decision rules for agent-based crowd
models, so as to reproduce an objective crowd behavior. To
automate the rule extraction process, the problem of finding
optimal decision rules from objective crowd behaviors is for-
mulated as a symbolic regression problem. An evolutionary
framework based on gene expression programming is devel-
oped to solve the problem. The proposed algorithm is tested
using crowd evacuation simulations in three scenarios with
differing complexity. Our results demonstrate the feasibil-
ity of the approach and shows that our algorithm is able to
find decision rules for agents, which in turn can generate the
prescribed macro-scale dynamics.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence, Intelligent agents; I.6.3 [Simulation and Mod-
eling]: Applications

General Terms
Algorithms

Keywords
Agent-Based Modelling, Crowd Simulation, Decision Rules,
Evolutionary Algorithm, Gene Expression Programming

1. INTRODUCTION
Crowd modelling and simulation has now become an im-

portant and active research field with various applications
including military training, evacuation analysis and digital
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game [5, 28, 31]. One of the common approaches to simu-
lating the dynamics of a crowd is the agent-based modelling
(ABM) paradigm. It models each individual in a crowd as
an intelligent and autonomous agent. Each agent can per-
ceive information and make decisions independently based
on decision rules. Due to the significant increase in comput-
ing power, ABM has gained tremendous attention recently.
Various agent-based crowd models [11, 20, 22, 24, 30] have
been proposed to simulate the dynamics of crowds. A thor-
ough survey on crowd modelling and simulation technologies
can be found in [33].

However, designing a suitable agent-based model to re-
produce particular crowd behaviors (e.g., crowd behaviors
extracted from videos) is a challenging task. One of the key
difficulties lies in designing suitable decision rules for agents.
In addition, after decision rules are initially designed, model
calibration is used to try and match the model dynamics
with some observed real world dynamics. However, depend-
ing on the rules which have been defined, this may or may
not be possible. Moreover, the process of calibration is also
time consuming and tedious.

In this paper, instead of treating model design and cali-
bration as a two-stage process, we propose an evolutionary
framework, which is capable of automatically evolving deci-
sion rules and calibrating these rules. The proposed frame-
work provides a feasible approach to extract the individual
agent rules from a prescribed objective crowd behavior (e.g.,
those extracted from videos), so that an agent-based model
using the rules can reproduce (or approximate) the objec-
tive crowd behaviors. This work is not only limited to crowd
modelling, but also addresses a very fundamental question in
ABM in general. That is, given some observed macroscopic
emergent phenomena (e.g., crowd behavior), can we auto-
matically identify a set of micro-scale dynamics (agent rules)
which generate the macro-scale dynamics. We show that for
some cases this type of process is feasible. Clearly, once the
rules for reproducing specific desired emergent phenomena
are obtained, we can adjust the rules to do sensitivity or
“what-if” scenario analysis.

To automate the rule identification process, we first de-
fine our rule representation according to the general “sense-
think-act” paradigm of human decision making process [12].
The problem of finding decision rules for particular crowd
dynamics is then formulated as a symbolic regression prob-
lem. An evolutionary framework is then developed to solve
the problem. In the proposed evolutionary framework, a
group of candidate decision rules are randomly generated,
each represented by a compact and linear gene expression
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chromosome. A similarity measure mechanism is designed
to compare the simulated results with the desired crowd be-
haviors and evaluate the fitness values of decision rules. The
chromosomes are then evolved repeatedly using genetic op-
erators, until meeting the terminal condition. To validate
the effectiveness of the proposed algorithm, we use three
scenarios of crowd egress simulation.
The remainder of the paper is organized as follows. Sec-

tion 2 describes the related work. Section 3 describes the
proposed evolutionary framework for identifying decision rules.
Section 4 presents the simulation studies and experimental
results. Finally, Section 5 describes the conclusions.

2. RELATED WORK
Design of decision rules is a crucial step in the agent-based

crowd modelling process. The popular and effective method
is to incorporate social and psychological factors to mimic
the human decision process [10, 19, 21, 29, 30]. For exam-
ple, Luo et al. [21] proposed an agent-based crowd model,
which incorporates physiological, emotional and social at-
tributes in the decision making process of agents. Fridman
et al. [10], study the impacts of cultural attributes (e.g.,
personal spaces, speed, pedestrian avoidance side and group
formations) on crowd dynamics. Integrating various factors
to build effective decision rules for agent model is a difficult
task which requires extensive experience and domain-specific
knowledge.
Recently, evolutionary algorithms (EAs) have been uti-

lized to assist the development and calibration of agent-
based models. Calvez and Hutzler [1, 2] proposed to use ge-
netic algorithm (GA) to tune parameters of an ant foraging
model, and discussed some relevant issues such as the noise
in fitness evaluation and parallel implementation. Stonedahl
and Uri Wilensky [27] proposed to formulate model explo-
ration task as search problems by designing appropriate ob-
jective functions. They introduced a new software tool named
“Behavior Search”which uses GA to explore parameter space
of agent-based model. In [26], Stonedahl and Uri Wilen-
sky applied GA to calibrate the parameters of an Artifi-
cial Anasazi model. Junges and Klügl [17] proposed to use
learning-based methodologies to assist the design of a mul-
tiagent model. They used a simple pedestrian evacuation
scenario to show that learning techniques such as genetic
programming have potential to assist the model develop-
ment process. Smith [25] used GA to find specific behavioral
rules for a Cowbird model, so as to generate certain static
self-organized pattern such as the number of neighbors for
individual agents.
As for agent-based crowd models, most of the existing

work focuses on calibrating the parameter settings. For ex-
ample, Decraene et al. [4] proposed an EA-based framework
named CASE to explore the parameter settings for agent-
based crowd models. Examples of agent-based crowd model
calibration using CASE framework can be found in [3, 15].
Johansson [16] proposed an EA to adjust the parameters
of the social force model so that the simulated crowd can
match the crowd behavior extracted from video.
In general, our work differs from the above works in that

we focus on evolving the structures (i.e., decision rules) of
agent models for generating highly dynamic crowd behav-
iors. Moreover, we aim to identify rules from specific objec-
tive crowd behaviors over a period of time, so as to reproduce
the macro-scale emergent behaviors. Our work provides an

integrated framework to automate the rule design and cali-
bration process for agent-based crowd models.

3. THE PROPOSED FRAMEWORK
In this section, we propose to use gene expression pro-

gramming (GEP) to extract rules for agent-based models,
aiming to reproduce some prescribed crowd behaviors. First,
the problem of identifying decision rules from an objective
crowd behavior is formulated as a symbolic regression prob-
lem. Then an evolutionary framework based on gene expres-
sion programming is developed to solve the problem.

3.1 Problem Definition
In agent-based crowd modelling, individuals are modelled

as intelligent agents which have their own attributes and can
make decision independently based on those decision rules.
Modelling the decision making process of human is impor-
tant for designing the decision rules. We assume that the
agents follow the “sense-think-act” paradigm [12] to make
decisions. The decision rules identified by our framework
describe the “think” part of this process, or more generally
the decision making process. For this work we simplify the
think process to consider a single choice, whereby an agent
has to make a single decision by considering a series of op-
tions. We therefore break down the decision making process
further into a sensing phase, an assessment phase and a de-
cision phase.

Sensing phase: In this phase, the decision maker per-
ceives environment features {λ1, λ2, ...} and discovers the
alternative options {A1, A2, ...}. For example, when peo-
ple evacuating from a room, the perceived information can
be the distance to each exit gate and the flow rate of each
exit gate. Different exit gates are alternative options for the
same decision (i.e., which exit to choose).

Assessment phase: The second phase is to assess each
alternation option. This phase is the most important and
complex part in the decision making process. Whether an
alternative option is good or not is dependent on the specific
context, and various physical, social and psychological fac-
tors. We can regard the process of assessing an alternative
option Ai as a function which maps perceived features to a
reward value:

δi = ϕ(λi,1, λi,2, ..., λi,n) (1)

where ϕ is the reward function, {λi,1, λi,2, ..., λi,n} is the fea-
ture values corresponding to Ai, n is the number of features
considered, and δi is the reward value of Ai.

Decision phase: Given the above formulation, this phase
simply chooses the best option, i.e. the option with the
largest reward.

Based on the above assumptions of the decision mak-
ing process, designing decision rules for agent-based crowd
model is actually a process of finding the corresponding re-
ward functions. In this paper, we focus on single decision
cases, where agent only needs to make a single decision with
multiple alternative options. The behavior of agents is de-
termined by a single reward function (ϕ). However, in sec-
tion 5 we discuss how to generalize the approach to multiple
decisions.

Generally, the reward function ϕ can be modelled as a
combination of perceived features and some functions (e.g.,
numerical operators, logical operators, or user defined oper-
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Figure 1: The structure of chromosome in gene ex-
pression programming.

ators). Denoted the feature set as:

T = {λ1, λ2, ..., λn} (2)

where each λi is a perceived feature and the function set as:

F = {f1, f2, ..., fm} (3)

where each fi is a function that maps one or more perceived
features to a numerical value. If the desired crowd behavior
(e.g., those extracted from video data) and the components
of feature set and function set are given, finding the opti-
mal decision rules for the model to reproduce the desired
crowd behavior can be regarded as the following symbolic
regression problem: Given an objective crowd behavior, a
feature set T , and a function set F , finding a symbolic re-
ward function ϕ : ℜn → ℜ to assess the alternative options
of agents, so that the simulated crowd behavior based on the
“sense-think-act” paradigm can match the objective behavior.

Take a simple evacuation model for example, where people
in the crowd choose from a set of exit gates (EGs) according
to the following decision rules: “Let E be the set of gates
with distance (d) < d0. If E ̸= ∅ then choose the gate in
E with the shortest distance, otherwise choose the gate with
the largest width (w).” In this model, the feature set can be

T = {d,w} (4)

The function set can be

F = {+,−, ∗, /, sig(x)} (5)

where sig(x) is the sign function defined as:

sig(x) =

{
0, if x ≤ 0

1, otherwise
(6)

A feasible symbolic reward function to reproduce the objec-
tive crowd behavior can be defined as:

ϕ(d,w) = sig(d0 − d)/d− sig(d− d0)/w (7)

3.2 Algorithm Design
Genetic programming (GP) is a well-known EA for identi-

fying knowledge from large data set [6, 23]. Gene expression
programming (GEP) is a specialization of GP which has
been proposed by Ferreira [7]. It uses fixed length, linear
strings of chromosomes to represent tree structure solutions
and uses genetic operators to evolve the chromosomes. An
advantage of GEP over traditional GPs is that its chromo-
somes are linear, compact and easy to genetically manipu-
late. The GEP is shown to perform better than traditional
GPs on various applications [8] [32]. Therefore, in this pa-
per, we adopt the GEP to search rules for the agent-based
model. In traditional GEP, a chromosome may consist of
one or more genes of equal length. In this paper, we con-
sider a simplified GEP with single-gene chromosomes.

Figure 2: Example of an expression tree.

3.2.1 Chromosome Representation
In the proposed algorithm, each chromosome is repre-

sented by a vector of symbols with fixed length. The vector
consists of two parts, namely the “Head” and the “Tail”, as
shown in Fig. 1. Each element of the “Head” can be a func-
tion or a terminal, while each element of the “Tail” can only
be a terminal. In this paper, the elements in the feature
set are used as terminals. For example, given a function set
F = {+,−, ∗, /, sin, exp} and a feature set T = {x, y}, a
typical GEP chromosome with length of 17 can be:

X = [+, ∗, sin, /, y,−, exp, x, y, x, x, y, y, y, x, y, x] (8)

Each chromosome can be converted to an expression tree
(ET) using a breadth first traversal scheme. For example,
the chromosome expressed in (8) can be converted to an
ET as shown in Fig. 2, which can be further expressed in a
mathematical formula as

(exp(x)/x) ∗ y + sin(y − x) (9)

The length of the “Head” (H) and that of the “Tail” (L)
are fixed. In order to ensure that any chromosome can result
in a valid ET, H and L should have the following relation:

L = H · (u− 1) + 1 (10)

where u is the number of arguments of the function with
the most arguments. In this paper, we consider u 6 2.
Thus, we have L = H + 1. Note that there may exist some
redundant elements which are not useful for building the
ET. But these redundant elements may become useful to
build ETs in future evolution.

3.2.2 Fitness Evaluation
To evaluate the fitness of a chromosome, we need to define

a distance measure between the simulated and prescribed
crowd behaviors. By considering the spatial and temporal
features of the two crowds, we can measure the distance of
two crowds M0,M1 by

D(M0,M1) =

∑K
t=1

(∑N
i=1(|ξ

t
i0 − ξti1|)

)
K ·N (11)

where K is the total number of time steps; N is the total
number of representative points; ξti0 is the behavior feature
of M0 at the ith representative point of time step t ; and ξti1
is the behavior feature of M1 at the ith representative point
of time step t. We can choose N points that are evenly
distributed in the region as the representative points to es-
timate the behavior feature of the crowd at each time step.
There are various features that can be used, such as the
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flow rate and the density distribution. In this paper, we use
the density distribution as behavior feature to measure the
distance between two crowd behaviors. As suggested in Hel-
bing’s work [14], we use the following equation to compute
the density of the crowd at location x at time step t:

ρ(x, t) =
C∑

i=1

1

πR2
exp[−∥ri(t)− x∥2/R2] (12)

where C is the number of agents in the observed region; ri(t)
is the position of the i-th agent and R is a constant (e.g., R
= 2).

3.2.3 Algorithm Operators
The first step of the algorithm is to generate a set of ran-

dom chromosomes (i.e., the initial population). Then in the
second step, the fitness of each chromosome is evaluated
by running the simulation using the reward function rep-
resented by the chromosome. The best chromosome of the
generation is stored as the best-so-far solution. After that,
the algorithm repeatedly carries out the following steps until
meeting the terminal condition.
Selection: The selection operation selects promising chro-

mosomes in the current population to form a new population
for the next generation. In the proposed algorithm, the com-
monly used binary tournament selection strategy is used to
select chromosomes.
Mutation: In this step, every element at any position

of each chromosome is subject to a random change with a
predefined mutation rate (pm). Note that elements of the
chromosome can only be changed to a feasible random value
according to their types (e.g., elements of “Tails” can only
be a terminal).
Transposition: The transposition is performed on each

chromosome with a probability of 0.1. It replaces some con-
secutive elements of the “Head” with an insertion sequence
(IS). Firstly, a random insertion point in the “Head” part is
chosen (except the starting point of the“Head”). The length
of the IS can not be larger than that of the sequence from
the insertion point to the end of the “Head”. After that,
the sequence downstream from the insertion point would be
replaced by the IS.
Crossover: The crossover operator exchanges elements

between two randomly chosen individuals with a predefined
crossover rate (px). In this paper, two kinds of crossover are
used: one-point, and two-point crossover operations. Both
crossover operations work in the same manner as their GA
counterparts [7].
Fitness Evaluation: After generating the new popula-

tion, the fitness values of all new individuals are evaluated
and the best-so-far solution is updated.

4. SIMULATION STUDIES
In this section, we investigate the performance of the pro-

posed algorithm. First, a crowd evacuation simulation for
testing is desribed. We then describe three scenarios and
two underlying behavioural rules used to test the algorithm
(resulting in six case studies). Finally, we present the results
and analysis.

4.1 A Crowd Evacuation Model for Testing
In this subsection, a crowd evacuation model is developed

to test the algorithm. In the model, a number of agents

Figure 3: Four important factors to influence the
action of agents.

are randomly distributed in an enclosed region. There are
several exit gates (EGs) in the region. Agents are supposed
to select an exit gate to move towards it and evacuate from
the region.

A two-level model is adopted. At the lower level, we use
the social force model [13] to guide the motions of agents.
The social-force model uses virtual forces to guide the mo-
tions of agents. The force imposed on an agent is expressed
as:

fi = mi
dvi
dt

= fi0 +
∑

j(j ̸=i)

fij +
∑
w

fiw (13)

where mi and
dvi
dt

are the mass and acceleration rate of the
agent; fio , fij and fiw are attractive force towards the goal,
repulsive force from other agent and repulsive force from the
static obstacles (e.g., wall) respectively.

On top of the social-force model, the higher-level decision
making of the agents (i.e., choosing an exit) is determined by
the decision rules. The final decisions are influenced by var-
ious factors that the agents perceive from the environment.
In this evacuation model, we only consider four important
factors as shown in Fig. 3.

The first factor (d) is the distance to the EG. Intuitively
agents are more likely to choose an EG with a shorter dis-
tance. The second factor (w) is the width of the EG. A wider
EG would lead to a larger evacuation rate and a shorter evac-
uation time. The third factor (η) is the number of agents
ahead of the decision maker, who are moving towards the
same EG. This factor is related to the waiting time for evac-
uation. A larger η would result in a longer evacuation time.
The fourth factor (s) is the speed of the agent.

Before running our algorithm, we need some objective be-
haviors. In principle the objective behaviors should be ob-
tained by extracting from video data and then rules can be
evolved that match the real world crowd. However, this
doesn’t lend itself to testing the methodology. Instead, we
define some decision rules (from literature), and run sample
simulations to obtain output crowd dynamics. And then we
use the sample simulation output as the prescribed or de-
sired behavior. What we hope is that the approach should
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Figure 4: The first scenario.

Figure 5: The second scenario.

be able to identify the same rules as in the sample simula-
tions.
The decision rules are implicitly represented by a symbolic

function: ϕ(λ1, λ2, ..., λn). Since we only consider four fac-
tors to determine the decision, the feature set of the reward
function is:

T = {d, η, s, w} (14)

The function set can be any numerical operators, logi-
cal operators, and user defined functions. In this study, we
consider the following five basic numerical operators as the
function set for simplicity:

F = {+,−, ∗, /, f(x) = −x} (15)

4.2 Scenario Design
Based on the defined crowd evacuation model, we design

three scenarios for testing. The first scenario is a 24m ×
14m rectangle room with four walls, as shown in Fig. 4.
Each wall contains an EG. The widths of the EGs are dif-
ferent. Agents reaching any of the four EGs are considered
successfully evacuated from the room. The second scenario
contains two layers of gates, as shown in Fig. 5. The crowd
behavior in the second scenario is a bit more complicated
than those in the first scenario, as the agents need to pass
through the gates at the second layer. Agents which reach
any of the second layer of gates are considered successfully
evacuated from the room. The third scenario is designed
based on a real world nightclub [18], as shown in Fig. 6. It
contains 15 inner gates and five exit gates. An agent reach-
ing any of the exit gates is considered successfully evacuated
and removed from the simulation. The crowd behavior in
the third scenario is more complicated than the first two sce-

Figure 6: The third scenario.

narios, as there are more gates and rooms all of which are
distributed irregularly. We design different scenarios with
increasing complexity, so as to investigate the performance
of our algorithm in identifying rules for different objective
crowd behaviors.

4.3 Objective Crowd Behaviors
We generate six different objective crowd behaviors for

testing. The six objective crowd behaviours are generated
by running simulations on the three scenarios using two dif-
ferent evacuation strategies (underlying rules) respectively.
The first evacuation strategy is named distance first (“DF”),
where agents always choose the EG with the nearest dis-
tance. The second evacuation strategy is the LifeBelt method
(“LB”) [9]. This method recommends EG to agents based
on three factors: the time to reach an exit gate (TEG),
the number of individuals expected in the destination EG
(EP ), and the number of individuals that can possible es-
cape through that exit per unit time (EC). The predicted
evacuation time is calculated by:

τ = TEG+
EP

EC
(16)

Since EC is in proportion to the width of the EG (w), we
simply use the following formula to calculate the predicted
evacuation time.

τ ≈ d

s
+

η

w
(17)

Agents will choose the EG with the smallest τ . The LifeBelt
method has been shown to produce good evacuation per-
formance based on the empirical experiment with real hu-
mans [9].

4.4 Experiments and Simulation Results
In the simulations, we evenly divide the region into square

grids and use the center points of the grids as the represen-
tative points for density estimation and then fitness eval-
uation. The lattice size of the 1st, 2ed, and 3rd scenarios
are set to be 1m, 1m, and 2m respectively. The preferred
speed of all agents is set to be s = 1m/s and the param-
eters of the GEP algorithm are set as follows: population
size (popsize) = 10, the length of “Head”(H) = 6, maxi-
mum generation (maxgen) = 100, mutation rate (pm) =
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Table 1: Algorithm performances on the six in-
stances

CASE Succ Avg Std

S1DF 100% 0.0 0.0
S1LB 36.7% 0.0127 0.0115
S2DF 100% 0.0 0.0
S2LB 50% 0.0066 0.0077
S3DF 100% 0.0 0.0
S3LB 23.3% 9.9E-4 7.5E-4

Table 2: Examples of the best solutions found by
the proposed algorithm.
CASE Original ϕ Simplified ϕ

S1DF
−(d) −d

(s/((s+ d)−−(d))) 1/(1 + 2d)
((s+−(w)) + (w − d)) 1− d

S1LB
(((s/d)− (η/w)) +−(d)) 1/d− η/w − d

−((d+ ((η/s)/w))) −(d+ η/w)
((η/− (w))− d) −(d+ η/w)

S2DF
(((η ∗ s)− d)− n) −d
(((w ∗ s)− w)− d) −d
(s/(s+ (d ∗ d))) 1/(1 + d2)

S2LB
(((d− d)− (η/w))− (s ∗ d)) −(d+ η/w)
−((((s/s) + d) + (η/w))) −(1 + d+ η/w)

−((((w + η)/w) + (s+ d))) −(2 + d+ η/w)

S3DF
((s+−(d)) ∗ d) 1− d2

(s/d) 1/d
((s− d) ∗ d) d− d2

S3LB
(s/((s+ d) + (η/w))) 1/(1 + d+ η/w)
−((d+ ((η/w) + s))) −(1 + d+ η/w)

((−(η)/(w ∗ s)) +−(d)) −(d+ η/w)

0.1, and crossover rate (px) = 0.7. As evolutionary algo-
rithms are stochastic search algorithms, which may gener-
ate different results in different runs, we run the proposed
algorithm for 30 independent times on each test instance.
The simulation results and related videos can be found at
http://crowds.sce.ntu.edu.sg/index.php/research/mrcm.
Table 1 lists the experimental results on the six case stud-

ies that are created with three scenarios using both “DF”
and “LF” strategy respectively. In Table 1, “SiDF” is the
case where the objective crowd is obtained from scenario i
and using the “DF” evacuation strategy, while “SiLB” is the
case where the objective crowd is obtained from scenario i
and using the “LB” evacuation strategy. “Succ” is the suc-
cessful rate of finding the optimal solution (i.e., fitness (D)
= 0); “Avg” is the average of the best fitness values found
in the 30 runs, and “Std” is the standard deviation of the
best fitness values found in the 30 runs. It can be observed
that the proposed algorithm has 100% successful rate on all
three test instances which use the “DF” evacuation strategy.
As for the three instances which use the “LB” strategy, the
proposed algorithm is also able to find optimal rules to re-
produce the objective crowd behaviors in some runs (i.e.,
“Succ” > 0). Clearly, the successful rate of the three in-
stances using “LB” strategy can be enhanced by increasing
the computation budget (e.g., increase the size of population
and the maximum number of generations).
Fig. 7 shows the average of the best-so-far fitness values

(fbest) versus the number of fitness evaluations. To clearly

Figure 7: Average of the best fitness values versus
the number of fitness evaluations.

Figure 8: The accumulated number of agents evac-
uated from the gates.

show the evolution trend of fbest, we use a log plot. When
fbest reduces to zero, the curve will stop. The results show
that the fbest quickly drops to zero on the three instances
which use the “DF” evacuation strategy. This validates the
high efficiency of the proposed algorithm in identifying rel-
atively simple decision rules. Meanwhile, as for the other
three instances, the fbest becomes smaller as the number
of evaluations increases. That means the reproduced crowd
behaviors are becoming closer to the desired ones.

Table 2 shows 18 examples of the best solutions found by
the proposed algorithm. The fitness values of all 18 solutions
are equal to zero (i.e., D = 0). The results demonstrate
that our algorithm is able to find different optimal rules to
produce the same objective crowd behavior. For example,
in the first three rows of Table 2, the three optimal solutions
are −(d), (s/((s+ d)−−(d))), and ((s+−(w)) + (w − d)).
They can be simplified as −d, 1/(1 + 2d), and 1 − d (using
s = 1m/s). Although they have different expressions, they
all lead to the same decision, i.e., always choose the nearest
EG.
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Table 3: Impacts of the number of agents (C) on the
performances of the algorithm
C OS Succ Avg C OS Succ Avg

20 DF 100% 0.0 20 LB 36.7% 0.00122
50 DF 100% 0.0 50 LB 30% 0.0029
100 DF 100% 0.0 100 LB 20% 0.0081
150 DF 100% 0.0 150 LB 16.7% 0.0135
200 DF 100% 0.0 200 LB 36.7% 0.0127
500 DF 100% 0.0 500 LB 33.3% 0.0284

To visually analyze the solution found by the algorithm in
the worst case we run a simulation using the worst best-so-
far solution found by the GEP in the “S1LB” test instance.
The worst best-so-far solution is ϕ = −((s ∗ (−(w) + d))),
with the fitness value being D = 0.04441. We also run a sim-
ulation where each agent choose a random EG. Fig. 8 shows
the accumulated number of evacuated agents versus the time
step at the four EGs. In Fig. 8, “Objective” represents the
results of the objective crowd behavior, “GEP” represents
the results of the simulation where agents choose EGs based
on ϕ, and “Random” represents the results of the simulation
where agents choose EGs randomly. It can be observed that
the“random”results at four EGs are much different from the
“Objective” results, while the “GEP” results are always very
similar to the“Objecitve”results. These results demonstrate
that the proposed algorithm can effectively discover rules for
the agent-based crowd model to reproduce (or approximate)
desired crowd behaviors.

4.5 Algorithm Analysis
In this subsection, we study the impacts of the number of

agents (C) on the performance of the algorithm. We gen-
erate 12 test instances where the objective crowd behaviors
are obtained from the first scenario. The first six instances
use the“DF”evacuation strategy, while the last six instances
use the “LB”evacuation strategy. For each evacuation strat-
egy, the number of agents for the six test instances are set
to be 20, 50, 100, 150, 200 and 500 respectively. Other pa-
rameters are set the same as in the previous simulations.
Our proposed algorithm is carried out for 30 independent
evolution runs on each test instance and the successful rate
(“Succ”) and the average of the 30 best-so-far fitness values
(“Avg”) are recorded for analysis.
Table 3 lists the “Succ” and the “Avg” versus the num-

ber of agents. From these results, we could infer that: 1)
For objective crowd behaviors which use relatively simple
rules such as the “DF” strategy, our method is very effec-
tive in finding the optimal decision rule, regardless of the
number of agents. For example, our method achieves 100%
successful rate on all six test instances where the objective
crowd behaviors using “DF” evacuation strategy; 2) As for
crowd behaviors that use more complex rules, our algorithm
is still able to find the optimal rule in some cases, even
when the number of agents increases from small to large
(i.e., “Succ” > 0). The fluctuating values of “Succ” show
that the number of agents dose not have significant impacts
on the performance of the algorithm; and 3) The “Avg” gen-
erally increases as the number of agents increases. This is
due to the fact that the density would increase when the
number of agents increases.

5. CONCLUSIONS
In this paper, we have proposed an evolutionary frame-

work to identify decision rules for agent-based crowd model
so as to reproduce specific objective crowd behaviors. First
of all, the problem of identifying optimal decision rules from
objective crowd behaviors is formulated as a symbolic re-
gression problem. Then an evolutionary framework based
on the gene expression programming is developed to solve
the problem. The proposed framework is tested through test
instances with different levels of complexity and the results
demonstrate that our framework is able to find decision rules
to reproduce specific desired crowd behaviors.

This proposed framework automates the rule design and
calibration process in agent-based modelling. The key issue
in applying the proposed framework is to obtain the behav-
ior features of objective crowd behaviors, such as the density
distribution of agents over time. If these features are avail-
able (e.g., extracted from videos), then our framework can
be used to find rules that generate the macro-scale dynam-
ics.

There are several interesting future work directions. The
first direction is to extend the proposed framework to con-
struct and calibrate multi-decision crowd model, where agents
can take multiple types of decisions. For example, in the
evacuation scenario, an agent needs to not only choose an
exit gate, but also search missing group members. In such
cases, multiple reward functions are required to control the
behaviors of all agents. By incorporating multi-gene tech-
niques of the gene express programming, the proposed frame-
work can be extended to evolve multi-decision crowd models.
The second direction is to apply the proposed framework to
optimize the decision rules, aiming to achieve certain desired
objectives. For example, finding the best evacuation rules to
minimize the evacuation time. The third promising direction
is to extend the proposed framework to evolve both decision
rules and parameters simultaneously. In many applications
where the given model is incomplete or partially not well-
defined, tuning both parameters and structures (i.e., deci-
sion rules) can achieve better performance.
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