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ABSTRACT
Significant research progress and understanding about the
nature of coordination has been made over the years. De-
velopment of the DCOP and DEC-MDP frameworks in the
past decade has been especially important. Although these
advances are very important for multi-agent coordination
theory, they overlook a set of coordination behaviors and
phenomena that have been observed empirically by many
researchers since the early years of the field. The goal of
this paper is to challenge researchers in multi-agent coordi-
nation to develop a comprehensive formal framework that
explains these empirical observations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems
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1. INTRODUCTION
The study of coordination and cooperation among agents

has been at the heart of the multi-agent field since its in-
ception [11, 5]. Since this early work, significant research
progress and understanding about the nature of coordina-
tion has been made [8, 9, 19, 13, 10, 20]. Especially im-
portant has been the development of distributed constraint
optimization (DCOP) [24] and decentralized Markov deci-
sion processes (DEC-MDPs) [1] frameworks over the last
decade. These formal frameworks allow researchers to un-
derstand not only the inherent computational complexity
of coordination problems, but also how to build optimal or
near-optimal coordination strategies for a wide variety of
multi-agent applications.

These directions are very important for multi-agent coor-
dination theory but overlook a set of coordination behaviors
and phenomena that have been observed empirically by re-
searchers since the early years of the field. These behaviors
have often been exploited by researchers building efficient
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heuristic coordination mechanisms, but rarely are they un-
derstood deeply or explained formally.1 Exploiting these
phenomena usually requires taking a more statistical view of
coordination behavior and taking into consideration the un-
derlying distributed search process being coordinated. This
is in contrast with current formal approaches that look for
some explicit structural interaction pattern associated with
a problem description that reduces computational complex-
ity.

The goal of this paper is to challenge researchers in
multi-agent coordination to develop a comprehensive for-
mal framework that explains these empirical observations.
A deeper, formal understanding of these phenomena could
help researchers develop new and more efficient coordina-
tion strategies—possibly similar to how the study of phase
transitions in NP-hard problems [16] opened up new per-
spectives to researchers studying computational complexity
and search mechanisms.

In the remainder of this paper, we will discuss the follow-
ing coordination phenomena that need to be better under-
stood and, ideally, explained more formally: 1) that struc-
tural interrelationships among agent activities inherent in
the problem description are not necessarily indicative of the
communication complexity necessary for effectively coordi-
nating agents, 2) that modifying local problem solving to
make it more predictable or less responsive or decreasing
the frequency of coordination sometimes improves agent co-
ordination, 3) that a greedy and incremental approach to
coordination can be an appropriate heuristic, and 4) that
dynamic adaptation of a coordination strategy to the cur-
rent state of the network problem solving can be effective.

2. COORDINATION AND INTERACTION
Most of the formal research in coordination theory uses

the explicit structural patterns of interaction among agents
in reducing the computational effort required to find an op-
timal strategy. These structural relationships are typically
obtained from characteristics of the problem description.
An early example of this approach was work on transition
independent DEC-MDPs [15], where actions taken in one
agent do not affect the outcome of actions taken by an-
other agent. However, we hypothesize that the existence
of these structural relationships does not always indicate
the communication requirements necessary for implement-
ing an effective coordination strategy. An example of this
was the observation by Mostafal that, for at least one class

1There are some exceptions [6, 17], however those are limited
to specific and narrowly defined coordination problems.
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of problems with structural interaction patterns that (on
the surface) indicated that explicit communication of agent
states would be advantageous, it was very hard to find spe-
cific problem instances of this class where the optimal coor-
dination strategy actually required communication [14]. A
slightly different but related observation was made in the
early work on solving DEC-MDPs [22]. The approach they
used first solved a centralized version of the coordination
problem framed as a Multi-agent Markov Decision Process
(MMDP). In this MMDP solution, agents were aware of the
state of other agents, which implied that the distributed im-
plementation of each agent’s policy required the agent to
communicate its current state to other agents at each time
step. Through analysis of this optimal centralized policy, it
was shown that many of these communication actions were
unnecessary, and that an optimal coordination policy could
still be maintained in at least two-agent examples. From
our perspective, what was even more interesting occurred
when approximations were introduced to this optimal pol-
icy derived from the MMDP solution by assuming, from a
statistical perspective, what were the likely problem-solving
states of the other agent given their local control policies.
With these heuristics, they demonstrated that they could
eliminate large amounts of communication with only a slight
reduction in optimality.

Zhang and Lesser achieved similar results in their recent
work on multi-agent reinforcement learning [27] where they
used a DCOP algorithm to coordinate agent learning to ap-
proximate a centralized learning algorithm. In this case,
they realized that instead of having one massive DCOP that
spanned all agents, they could break the DCOP into a set of
much smaller independent DCOPs, which significantly re-
duced the amount of communication required to implement
the coordinated learning, with only a slight reduction in the
utility of the learned policies of the agents. In developing
this dynamic decomposition of the DCOP, they used a sta-
tistical view of agents’ states based on their current policy
to find situations in which not knowing the current states of
specific agents would not significantly decrease other agents’
utility. Again, the need for communication among agents
did not always relate directly to structural interaction in
the problem description, especially when a slight decrease
in overall utility was acceptable. We hypothesize that there
is something going on that has not been modeled by the
explicit structural relationships on agent activities as de-
fined by the problem description. It is not the existence
of all interaction relationships that needs to be modeled,
but something more nuanced where a trade-off between op-
timality and communication can be expressed. A theory
is needed that connects the characteristics of the problem
description and the character of optimal or near-optimal co-
ordination strategies. When only the agents’ key interac-
tions are considered, the agents often appear significantly
more loosely connected (more nearly decomposable [18])
than would be expected by the existence of all structural
interactions among agents.

There is also another intuition present in these examples.
The constraints coming from the local ordering of agent ac-
tivities are exploited implicitly by the coordination strategy
to reduce the need for explicit coordination among agents.
To the degree that there is flexibility in how to organize
local problem solving, it becomes more likely that the co-
ordination strategy can find a combined ordering of local

agent activities that reduces the need for explicit coordina-
tion among agents. From this perspective, the introduction
of non-optimal local behavior, if done astutely, can present
new options for finding combined agent activity orderings;
thus, potentially reducing coordination overhead.

3. COORDINATION AND COMPUTATION
Another way of thinking about the observations in Sec-

tion 2 is in terms of what assumptions one agent can make
about the state of other agents with whom they potentially
interact. In learning theory, this idea is discussed in terms
of the concept of a non-stationary environment: the more
non-stationary the environment is, the harder the learning.
Thus, coordination techniques that can decrease or change
the nature of the non-stationary environment in multi-agent
learning caused by concurrent learning in neighboring agents
can improve learning performance significantly in terms of
both the speed of convergence and the likelihood that con-
vergence will actually occur. The basic approach developed
by the multi-agent reinforcement community is to make the
local agent learning algorithm change in slower and/or more
predictable ways [2, 26, 28]. In this way, even though indi-
vidual agent learning may not be as efficient from a local
perspective, learning from a system-wide perspective can
converge more quickly and to better solutions.

This issue of a non-stationary environment also occurred
in different guises in earlier work on developing both heuris-
tic and formal coordination strategies. These examples have
an interesting connection with the multi-agent reinforcement
learning example discussed above: they all involve the use
of iterative algorithms, where the same basic process is re-
peated on each cycle as new information is received. Brooks
and Lesser coined the term “simultaneous-update uncer-
tainty” to describe this non-stationary environment charac-
teristic [3]. They worked on the problem of distributed traf-
fic light control using an iterative algorithm and developed
such techniques as modulating the magnitude of changes on
any cycle, giving priority to certain neighboring traffic light
agents’ information changes over other agents’ information,
and modulating the frequency of updates based on the state
of the agents’ current traffic control pattern. All of these
strategies decreased simultaneous-update uncertainty and
improved performance. Similarly, Fernandez, et al., found
that the “active introduction of message delays by agents
can improve performance and robustness while reducing the
overall network load” for distributed constraint satisfaction
algorithms (DCSP) [4].

Our intuition for explaining this behavior relates to how
an iterative improvement search process works. If the search
is started with a tentative solution that is partially correct,
performance improves significantly. However, even without
a good starting point, this type of search can still be ef-
fective because it can often find tentative solutions quickly
that contain fragments/partial-solutions that correspond to
fragments of the correct solution. These fragments direct
the search process to find the correct solution. For example,
consider a distributed search such as asynchronous weak-
commitment search (AWC) [23] used by Fernandez, et al. [4],
where each agent is solving a component of the overall prob-
lem. If the coordination does not allow clusters of agents
to form consistent solutions with sufficient frequency due
to stationarity issues, then the distributed search will take
much longer in the case of complete algorithms such as AWC
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and, in the case of incomplete algorithms, lead to oscillation
or convergence to suboptimal solutions. Thus, by slowing
down the frequency of updates, it is more likely that groups
of agents will construct consistent fragments of the overall
solution; this will in turn speed up the overall search process.
Another way of framing this is that all these “heuristic ap-
proaches are intended to reduce the oscillation during search
caused by concurrent learning or local partial solution up-
date. In some sense, they serialize or coordinate agents’ local
search activities to improve the performance” [25].

Unfortunately, to our knowledge a formal theory of dis-
tributed search that explains in detail why the above heuris-
tic approaches to improving agent coordination work has not
been developed. What is missing is a theory that explains
how both the character and frequency of incorrect or out-of-
date information affects the performance of a coordination
strategy and, ultimately, overall network problem solving.
The difficulty in developing such a formal theory is that the
consequences of this inaccurate information and associated
problem solving are not confined to individual agents but
can propagate throughout the agent network. Thus, there
is a need to incorporate some type of statistical model of the
distributed search process being coordinated and its associ-
ated intermediate states into a formal analysis framework
for explaining these phenomena.

4. COORDINATION AND ENVIRONMENT
The issue of moderating the frequency of coordination has

also come in another guise. Durfee and Lesser introduced the
trade-off between predictability and responsiveness, where
communication and computation costs associated with co-
ordination are modulated by varying the conditions when an
agent indicates that its current state does not match the ex-
pectations used in the current coordination strategy [7]. In
this case, a wider tolerance for variance from the expected
agent behavior leads to more predictability in a coordina-
tion strategy (since it is less likely to be revised) with the
consequence that the strategy was not as responsive to the
details of the current agents’ states and thus the coordina-
tion was not as precise. However, they observed that, given
the additional costs and delays of being highly responsive, it
may be better to use a less responsive coordination strategy.
Further, they found in one case that even if these additional
costs were discounted, it remained better to be more pre-
dictable because the coordination strategy was constantly
changing on each cycle, causing unnecessary backtracking
of agent problem solving in a way similar to what we dis-
cussed previously in Section 3.

More generally, depending on the statistics of the envi-
ronmental conditions in terms of resource availability, task
loading, and predictability of task behavioral characteris-
tics, very different coordination strategies are appropriate.
Without going into detail, here are our summaries of some
of the observations. The first observation is that in envi-
ronments where there is very high or very low task load-
ing or high variance in agent behavior, simple coordination
strategies work quite well.2 It is only in situations where
there is a “sufficient” level of predictability about agent be-

2Decker showed formally, for a specific task allocation prob-
lem, that if there was high variance in the number of tasks
associated with different agents more sophisticated coordi-
nation strategies that exploited meta-level control informa-
tion did better [6]. However, this does not contradict our

havior or intermediate levels of task loading that complex
coordination strategies are advantageous. This last point
relates to the nature of phase transition, where the diffi-
culty of solving problems increases significantly around the
phase transition. We suggest that there are similar phase
transitions going on in agent coordination and that it is in
those transition regions where more complex control is ad-
vantageous. The second observation is that even though
DCOPs can be used to build an optimal coordination strat-
egy, simpler non-optimal heuristic coordination strategies
that only consider the major interactions among agents and
do not deal with contingencies directly (or deal with them
in only limited ways) do quite well in most coordinating sit-
uations (see [20, 21]). These approaches re-coordinate when
necessary based on the actual contingent event rather than
attempt to prevent such situations from occuring. The intu-
ition behind this observation is again that agent interactions
in most situations are more loosely connected than would be
expected, and most incorrect coordination decisions can be
tolerated without severe harm to overall agent performance.
The question for us is whether there is a formal way from
looking at a problem and its environmental description to
understand what contingencies, agent activity horizons, and
problem-solving states of other agents need to be considered
in order for coordination to work effectively.

5. COORDINATION DYNAMICS
This final section deals with the dynamics of coordina-

tion. We have discussed above that, depending on the en-
vironmental characteristics, very different approaches to co-
ordination are appropriate. The same holds for the under-
lying distributed search or learning process being coordi-
nated. In this case, the character of the distributed search
process for a single problem may vary significantly over its
lifetime. Mailler and Lesser recognized this in developing a
very effective approach to distributed constraint satisfaction
where the scope of control (partial centralization of control)
varied on each cycle based on the current constraint inter-
actions among the partial solutions constructed at different
agents [12]. Similarly, Zhang and Lesser used a strategy for
coordinating multi-agent learners that dynamically changed
the scope of control based on the strength of interaction
among current learned policies of agents [27, 28]. More gen-
erally, a coordination strategy that can adapt to the current
situation seems crucial where the environment or network
problem solving is evolving dynamically and rapidly, and
different situations require different approaches to coordina-
tion.

6. CONCLUSIONS
Our intuition is that all these experimental behaviors and

phenomena are interrelated and that an integrated and for-
mal treatment of them by future generations of researchers
will lead to a much deeper understanding of the nature of co-
ordination and cooperation and, more generally, decentral-
ized control. Lacking from current formal frameworks are:
1) a statistical model of the underlying distributed search

basic point because the specific instances of high variance
in this case could be ascertained before the coordination
strategy was constructed (based on meta-level information)
rather than needing to be recognized during the execution
of the coordination strategy.
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process (network problem solving) that is being coordinated
and its associated intermediate states and 2) formal treat-
ment of concepts such as “near decomposability” and “sat-
isfiability” developed by Simon for understanding effective
coordination [18]. That is our challenge to the multi-agent
field.
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