
Norm Approximation for Imperfect Monitors

Natasha Alechina
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

nza@cs.nott.ac.uk

Mehdi Dastani
Department of Information and

Computing Sciences
Universiteit Utrecht
The Netherlands

M.M.Dastani@uu.nl

Brian Logan
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

bsl@cs.nott.ac.uk

ABSTRACT
In this paper, we consider the runtime monitoring of norms with
imperfect monitors. A monitor is imperfect for a norm if it has
insufficient observational capabilities to determine if a given exe-
cution trace of a multi-agent system complies with or violates the
norm. One approach to the problem of imperfect monitors is to en-
hance the observational capabilities of the normative organisation.
However this may be costly or in some cases impossible. Instead
we show how to synthesise an approximation of an ‘ideal’ norm
that can be perfectly monitored given a monitor, and which is opti-
mal in the sense that any other approximation would fail to detect at
least as many violations of the ideal norm. We give a logical analy-
sis of (im)perfect monitors. We state the computational complexity
of the norm approximation problem, and give an optimal algorithm
for generating optimal approximations of norms given a monitor.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multi-agent systems

Keywords
Norms; Monitoring

1. INTRODUCTION
Norms have been widely proposed as a means of coordinating

and regulating the behaviours of agents within a multi-agent system
(MAS). In a normative multiagent system, the interaction between
agents and their environment is governed by a normative organ-
isation specified by a set of norms (obligations and prohibitions).
Individual agents update the state of the environment by performing
actions. The role of the normative organisation is to continuously
evaluate the state updates resulting from agent actions with respect
to the norms to 1) determine any new obligations to be fulfilled or
prohibitions that should not be violated (termed detached obliga-
tions and prohibitions), 2) check if any previously detached norms
are obeyed or violated in the current state, and 3) impose sanctions
when norms are violated. This continuous process is often imple-
mented by a so-called control cycle [9].

For a system of norms to have their intended effect, it must be
possible for the normative organisation to monitor the environment

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

updates to determine when norms are detached, and when a de-
tached norm is obeyed or violated. In general, previous work on
normative organisations has implicitly assumed that the environ-
ment is fully observable, and hence can be perfectly monitored. For
example, in determining whether a set of norms will have their in-
tended effect, [3] assumes the environment can be perfectly moni-
tored. In practice, this assumption may not hold. Norms specify the
ideal behaviours of an agent or agents independent of the realisation
of these behaviours in a particular MAS. However the environment
of a particular multi-agent system may not be fully observable, or
some facts may be observable only at great cost. For example, con-
sider a university norm ‘feedback should be returned to a student by
the deadline, otherwise a reminder is sent to the lecturer’. It is dif-
ficult to automatically monitor whether proper feedback has been
sent, but it is possible to check that a message contains a grade, a
minimal amount of text for each assessed component etc. As an-
other example, consider a long motorway where the norms to be
enforced are driving regulations, such as speed limit etc. It is too
expensive to position monitoring equipment so that the norms are
monitored along the entire motorway. In such environments, it is
impossible or infeasible for the normative organisation to monitor
(and so enforce) the ideal norms specified by the designer of the
normative system.

One way of solving this problem is to change the ‘ideal’ norms
such that all violations of the new norm become detectable. This
raises further problems: which of the possible modifications or ap-
proximations of the original ‘ideal’ norm is ‘closest’ to the intent
of the designer of the normative system. Continuing with the mo-
torway example, one possible choice is between using sparse but
accurate speed cameras (and essentially approximating the speed
limit norm to mean that speeding is not permitted in the neigh-
bourhood of the speed camera) or cheaper, more numerous but less
accurate cameras (which means that the norm is approximated to
prohibit speeding in more places, but adjusting the precise value of
the speed limit).

Such approximate norms are important for several reasons. Firstly,
norm-aware agents, e.g., [2], need to know which norms are actu-
ally in force in a normative MAS in order to make a rational de-
cision whether to comply with a norm. Secondly, the designer of
a normative MAS needs to know which approximations of norms
correspond to the behaviours that can actually be monitored by the
monitoring capabilities of a particular normative organisation in or-
der to determine whether the realisable approximation of a set of
ideal norms will have an effect that is sufficiently close to the ideal
system behaviour specified by the ideal norms.

The key contribution of this paper is to define a principled ap-
proach to norm approximation. Given a set of ‘ideal’ norms, a set
of observable properties and some relationships between observ-

117

able properties and norms, we show how to automatically synthe-
sise optimal (in the sense of minimising undetected violations) ap-
proximations of the ideal norms defined in terms of the observable
properties. We show that the procedure is also optimal in the sense
that its complexity matches the complexity of the norm approxima-
tion problem.

The structure of the paper is as follows. In section 2 we define
conditional norms and (perfect) monitors. In section 3 we introduce
an example. In section 4 we introduce imperfect monitors which do
not have perfect observational capabilities. In section 5 we provide
an optimal procedure for norm approximation. We survey related
work and conclude in section 6.

2. CONDITIONAL NORMS
We focus on conditional norms with deadlines and sanctions

[16], as these represent a reasonable compromise between expres-
sive power and ease of reasoning about norms and monitoring.

DEFINITION 1 (NORMS). Let cond, φ, d and san be boolean
combinations of propositional variables from some propositional
language LN . A conditional obligation is represented by a tuple
(cond,O(φ), d, san) and a conditional prohibition is represented
by a tuple (cond, P (φ), d, san). A norm set N is a set of condi-
tional obligations and conditional prohibitions.

We assume that the possible behaviours of the agents are rep-
resented by a transition system. A transition system M is a tuple
(S,R, V, sI) where S is a set of states, sI ∈ S is the initial state,
R is the transition relation (intuitively, corresponding to possible
actions the agents can perform) and V is a labelling of states with
propositional variables. Conditional norms are evaluated on runs
of the transition system. A conditional norm n = (cond, Z(φ),
d, san), where Z is O or P , is detached in a state satisfying its
condition cond. Detached norms persist as long as they are not
obeyed or violated, even if the triggering condition of the corre-
sponding conditional norm does not hold any longer. A detached
obligation (cond,O(φ), d, san) is obeyed if no state satisfying d is
encountered before execution reaches a state satisfying φ, and vio-
lated if a state satisfying d is encountered before execution reaches
a state satisfying φ. Conversely, a detached prohibition (cond,
P (φ), d, san) is obeyed if no state satisfying φ is encountered be-
fore execution reaches a state satisfying d, and violated if a state
satisfying φ is encountered before execution reaches a state satis-
fying d. If a detached norm is violated in a state s, the sanction
corresponding to the norm is applied (becomes true) in s. We say
a detached norm is annulled in a state s′ immediately after a state
s in which the norm is obeyed or violated, unless the same norm
is detached again in s′. As our focus in this paper is on the mon-
itoring of norms, in the interests of readability we abstract from
sanctions and omit the san component from the representation of
norms below.

In what follows, we focus on monitoring for violations of condi-
tional norms: that is, determining if a particular run of the system
violates a conditional norm. Algorithm 1 illustrates how a condi-
tional obligation can be monitored on a finite path ρ. The function
VIOL returns true if the conditional norm (cond,O(φ), d) is vi-
olated in a state ρ[i] at position i on ρ and false otherwise. The
algorithm for monitoring for violations of conditional prohibitions
is similar and is illustrated in Algorithm 2.

A (perfect) monitor for a conditional norm is a device which
takes a finite path and a conditional norm and returns true if the path
violates the norm and false if it does not violate the norm, in other
words it implements something like the algorithms above. Note

Algorithm 1 Violation of a Conditional Obligation
bool det← false
function VIOL((cond,O(φ), d), ρ)

for i← 1 to ρ.length do
if ρ[i] |= cond then

det ← true
end if
if det then

if ρ[i] |= d ∧ ρ[i] 6|= φ then
return true

else if s |= φ then
det ← false

end if
end if

end for
return false

end function

Algorithm 2 Violation of a Conditional Prohibition
bool det← false
function VIOL((cond,O(φ), d), ρ)

for i← 1 to ρ.length do
if ρ[i] |= cond then

det ← true
end if
if det then

if ρ[i] |= φ ∧ ρ[i] 6|= d then
return true

else if s |= d then
det ← false

end if
end if

end for
return false

end function

that in order to be able to implement the algorithms, the monitor
needs to be able to perform the boolean queries cond, φ and d on
the states. This means that the states must be perfectly observable
as far as these queries are concerned.

Another way to give precise meaning to violations of conditional
norms is to express them as PLTL formulas. First we need to in-
troduce some background on PLTL. We follow the semantics of
PLTL on finite traces adopted in [12]. Given a transition system
M = (S,R, V, sI) with an initial state sI ∈ S, a path through
M is a sequence s0, s1, s3, . . . of states such that siRsi+1 for
i = 0, 1, . . . and the first state is s0 = sI . In this paper, we con-
sider finite paths. We denote paths by ρ, ρ′, . . . , and the state at
position i on ρ by ρ[i]. The syntax of PLTL formulas is defined
relative to a set of propositional variables Π as follows:

p ∈ Π | ¬φ | φ ∧ ψ | Yφ | φSψ

where Y means previous state unless we are in the first state of the
sequence, in which case it means the current state, and S stands for
since. The truth definition for formulas is given relative to M , a
path ρ and the state at position i on ρ:

M,ρ, i |= p iff p ∈ V (ρ[i])

M,ρ, i |= ¬φ iff M,ρ, i 6|= φ

M, ρ, i |= φ ∧ ψ iff M,ρ, i |= φ and M,ρ, i |= ψ

M, ρ, i |= Yφ iff either i > 0 and M,ρ, i− 1 |= φ, or i = 0 and
M,ρ, i |= φ.

M,ρ, i |= φSψ iff ∃j ≤ i such that M,ρ, j |= ψ and ∀k : j <
k ≤ i, M,ρ, k |= φ

118

Now we are ready to give a translation in PLTL of the violation
conditions of norms (essentially the same translation as given in
[3]):

DEFINITION 2 (VIOLATION FORMULA). A violation formula
for a conditional obligation (c,O(φ), d) is

d ∧ ¬φ ∧ ((Y (¬φ ∧ ¬d)S (c ∧ ¬φ ∧ ¬d)) ∨ c)

A violation formula for a conditional prohibition (c, P (φ), d) is

¬d ∧ φ ∧ ((Y (¬φ ∧ ¬d)S (c ∧ ¬φ ∧ ¬d)) ∨ c)
We will denote a violation formula for a conditional norm n by

v(n). A norm n is violated on a path ρ if, and only if, v(n) holds
in some state on ρ. An obligation (c,O(φ), d) is violated on ρ if
in some state the deadline description d is true, and it holds that
some time in the past the condition of the norm became true and
since then the obligation description φ has not been true (and is
not true in the current state). A prohibition (c, P (φ), d) is violated
on ρ if somewhere on ρ there exists a state where the prohibition
description φ is true, and some time in the past the condition of the
norm became true and since then the deadline description has not
become true.

THEOREM 1. A conditional norm n is violated on a path ρ
in model M if and only if there exists a state ρ[i] on ρ such that
M,ρ, i |= v(n).

PROOF. Obvious from the conditions of norm violation given
by Algorithms 1 and 2.

Clearly, conditional norms are not as expressive as arbitrary PLTL
formulas.

THEOREM 2. The language of violation formulas is strictly less
expressive than the full PLTL language.

PROOF. In order to prove this, we exhibit an operation on runs
which preserves violation formulas but does not preserve arbitrary
PLTL formulas. Consider a run ρ and an operation dup which
duplicates states on ρ. Clearly, if a formula of the form v(n) is true
on ρ, then it is true on dup(ρ). However, arbitrary PLTL formulas
are not preserved under this operation.

Given that conditional norms are less expressive than PLTL for-
mulas, one might ask why not use PLTL for expressing norms? In
addition to the simplicity of Algorithms 1 and 2 and intuitiveness of
the meaning of the norms, there is another consideration which is
important for the topic of this paper: conditional norms are easier to
approximate under restricted observability of states than arbitrary
PLTL formulas.1

3. EXAMPLE
In this section, we introduce a running example to illustrate the

notions introduced in the paper. Consider the transition system
shown in Figure 1 which represents possible behaviours of a car,
where the propositional variables have the following meanings:

• pi: the car is identified at position i.

• sx: the speed of the car is x mph.

1Monitoring for violations of conditional norms has slightly lower
complexity than monitoring PLTL formulas. Detecting violations
of a conditional norm using Algorithms 1 and 2 requires time linear
in ρ and constant space (since monitoring of a conditional norm
requires considering only the current state and a single boolean flag
det indicating whether an instance of the norm has been detached
in a previous state), while evaluating a past time PLTL formula ψ
on a finite path requires time linear in ρ and space linear in ψ [12].
However such differences are unlikely to be significant in practice.

p2, s60

p3p1 p2, s70

s3s1

p2, s80

s5

s2

s4

Figure 1: Example transition system Mt.

Consider the norm prescribing that a car should have a maximum
speed of 60 mph between positions 1 and 3 on a ringway road. As-
suming that the only possible values for the speed are 60, 70 and
80 mph, this conditional norm can be represented as a conditional
prohibition n1 = (p1, P (p2 ∧ (s70 ∨ s80)), p3) or as a conditional
obligation n2 = (p1, O(p2 ∧ s60), p3). Clearly, both norms are
violated on the paths s1, s3, s5 and s1, s4, s5. On s1, s3, s5, prohi-
bition n1 is detached in s1 and violated in s3. On the same path,
obligation n2 is detached in s1 and violated in s5.

4. IMPERFECT MONITORS
In previous sections, we considered monitoring norms under the

condition of perfect observability. We could always evaluate boolean
queries used in the norms in each state. However, in many situa-
tions, such perfect observability may not be possible. For example,
we may only have a speed camera that can distinguish between
speeds of 70 mph and less and speeds over 70 mph. To study mon-
itoring under partial observability, we generalise the notion of a
monitor to include a set of queries which the monitor can ask of a
state. ‘Standard’ monitors then become a special case of our moni-
tors, where the set of possible queries includes all possible queries
definable in the language of conditional norms.

We start with a language L which is given as a set of formulas;
we don’t assume anything about the formulas apart from that they
can be evaluated in the states of the system to true or false. Intu-
itively, the formulas in L define the set of possible observations or
queries with a yes or no answer. For example, a formula may say
that an object in front is a car, or that it is moving at a speed in
excess of 100 mph, or that it is a red Lamborghini, or that there is
no person in the driving seat, etc.

DEFINITION 3 (MONITOR). A monitor mΦ (where Φ ⊆ L is
a finite set of formulas) is a function which given a finite path ρ and
a norm n, returns true, false or undefined.

Intuitively, mΦ implements a monitoring algorithm for conditional
norms, and it uses only the boolean combinations of queries from
Φ to check whether the norm condition, deadline and obligation
or prohibition descriptions hold. For example, a particular monitor
may query whether the speed of objects is in excess of 70 mph,
but not whether it is below 60 mph. Clearly, it is impossible to

119

use mΦ to perfectly monitor for violations of norms if Φ does not
contain all the formulas required to express the norms. To char-
acterise the relation between (imperfect) monitors and norms, we
need some technical definitions, which characterise the expressive
power of Φ with respect to different norms and a transition system
(S,R, V, sI).

The monitor queries Φ = {φ1, . . . , φk} define a partition of the
set S of states of a transition system in the following way. Two
states are equivalent or indistinguishable (are in the same equiva-
lence class in the partition) with respect to the monitormΦ, denoted
by s ∼Φ s′, if they give the same answers to all the queries in Φ2.
Each equivalence class [s]Φ, s ∈ S in the partition defined by Φ
is definable by a conjunction ∼ φ1 ∧ . . .∧ ∼ φk where ∼ φi is
φi if s answers yes to (satisfies) φi, and is ¬φi if s answers no to
(does not satisfy) φi. We will call the∼ φ1∧ . . .∧ ∼ φk the ‘types
definable by the monitor mΦ’ or just ‘types of mΦ’, T (m). Note
that a monitor mΦ can partition a set S of states into at most 2|Φ|

types because it is possible that there are no states in S of a type
defined by mΦ.

We lift the partition of states of a transition system to a partition
of paths. Let Γ be the set of all possible finite paths of a transition
system. We say that two paths ρ, ρ′ ∈ Γ are equivalent with respect
to a monitor mΦ, denoted as ρ ∼Φ ρ′, if the paths are state-wise
equivalent with respect to Φ, i.e.,

ρ ∼Φ ρ′ iff ∀i : ρ[i] ∼Φ ρ′[i]

where ρ[i] is the i-th state on path ρ. A monitor mΦ thus defines a
partition of the set of paths Γ. We write [ρ]Φ, ρ ∈ Γ to denote the
equivalence class containing the path ρ, and Γ/∼Φ for the partition
of Γ (the set of equivalence classes).

Coming back to our running example in Figure 1, suppose we
have a monitor with the set of queries: Φ = {p1, p2, p3, s60 ∨ s70}
so that the monitor can identify the car’s position and whether its
speed is strictly above 70 mph. These queries specify four equiv-
alence classes on the states: {{s1}, {s5}, {s2, s3}, {s4}}. These
equivalence classes are respectively characterised by the monitor
types (p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬s60 ∧ ¬s70 ∧ ¬s80), (¬p1 ∧ ¬p2 ∧
p3 ∧ ¬s60 ∧ ¬s70 ∧ ¬s80), (¬p1 ∧ p2 ∧ ¬p3 ∧ s60 ∧ s70 ∧ ¬s80),
and (¬p1 ∧ p2 ∧ ¬p3 ∧ ¬s60 ∧ ¬s70 ∧ s80). Note that the equiv-
alence classes characterised by all other monitor types are empty
given a proper domain theory (which states that the car is always
in exactly one position, has at most one speed, etc.). This moni-
tor cannot distinguish, for example, the paths ρ1 = s1, s2, s5 and
ρ2 = s1, s3, s5: ρ1 ∼Φ ρ2.

Given a transition system M , a conditional norm n with PLTL
violation formula v(n), a monitor mΦ, and a path ρ ∈ Γ, we say
that mΦ observes ρ obeying n, denoted as obey(mΦ, ρ, n), if v(n)
is false in all states on all paths in [ρ]Φ, i.e.,

obey(mΦ, ρ, n) ⇔ ∀ρ′ ∈ [ρ]Φ ∀i : M,ρ′, i 6|= v(n)

Note that if we have obey(mΦ, ρ, n), then we also have ∀ρ′ ∈
[ρ]Φ : obey(mΦ, ρ

′, n). In other words, the equivalence class
[ρ]Φ consists of paths obeying conditional norm n. The set of
equivalence classes that contain paths obeying n is denoted by
O(mΦ, n) = {[ρ]Φ | obey(mΦ, ρ, n)}.

We say that the monitor mΦ observes the path ρ violating the
conditional norm n, denoted as viol(mΦ, ρ, n), if v(n) is true in
2Indistinguishability by queries in Φ is clearly a special case of an
epistemic indistinguishability relation. The monitor mΦ is guaran-
teed to ‘know whether ψ’ (i.e.,KmΦψ∨KmΦ¬ψ) if ψ is definable
using formulas in Φ, and is not guaranteed to know whether ψ oth-
erwise.

some state on all paths in [ρ]Φ, i.e.,

viol(mΦ, ρ, n) ⇔ ∀ρ′ ∈ [ρ]Φ ∃i : M,ρ′, i |= v(n)

The set of equivalence classes that contain paths violating n is
denoted by V (mΦ, n) = {[ρ]Φ | viol(mΦ, ρ, n)}.

Finally, we say that the monitor mΦ cannot observe whether ρ
violates or obeys the conditional norm n, denoted as viob(mΦ, ρ, n),
and define it as follows:

viob(mΦ, ρ, n) ⇔ ∃ρ′ ∈ [ρ]Φ ∀i : M,ρ′, i 6|= v(n) &
∃ρ′ ∈ [ρ]Φ ∃i : M,ρ′, i |= v(n)

The set of equivalence classes that contain paths some obey-
ing and some violating n is denoted by OV (mΦ, n) = Γ/∼Φ \
(V (mΦ, n) ∪O(mΦ, n)).

DEFINITION 4 (MONITOR BEHAVIOUR). Given a set of mon-
itor queries Φ, the monitor functionmΦ(ρ, n) is defined as follows:

mΦ(ρ, n) =

8<: true if viol(mΦ, ρ, n)
false if obey(mΦ, ρ, n)
undefined if viob(mΦ, ρ, n)

Note that a perfect monitor never returns undefined.
Coming back to the running example, the transition system Mt

shown in Figure 1 generates paths (s1(s2|s3|s4)s5)∗. For the obli-
gation n2 = (p1, O(p2 ∧ s60), p3) we have O(mΦ, n2) = ∅,
V (mΦ, n2) = {[ρ]Φ | ∃i Mt, ρ, i |= s80}, and OV (mΦ, n2) =
{[ρ]Φ | ∃i Mt, ρ, i |= s60 ∨ s70} contains all partitions including
paths some obeying and some violating n2. This means that mΦ is
not a perfect monitor for n2 on Mt.

DEFINITION 5 (PERFECT/IMPERFECT MONITORS). Let Γ be
the set of all possible paths of a transition system, n be a condi-
tional norm, andmΦ be a monitor defining a partition of Γ. We say
that mΦ is a perfect monitor for n if and only if OV (mΦ, n) = ∅,
andmΦ is an imperfect monitor for n if and only ifOV (mΦ, n) 6=
∅.

In other words, a perfect monitor for a conditional norm is able
to identify all paths as either obeying or violating the norm while
an imperfect monitor is unable to identify some paths as obeying
or violating the norm. It is important to emphasise that the distinc-
tion between perfect and imperfect monitors is a relative distinction
which depends on the set of paths and the norm under considera-
tion. A monitor can be imperfect for a set of paths and a norm
while it can be perfect for a subset of the paths (or a different set of
paths) and the norm. It is however clear that if Φ contains all the
queries which are needed to define formulas c, φ and d in a norm
n = (c, Z(φ), d), then mΦ is a perfect monitor for n:

PROPOSITION 1. Let n = (c, Z(φ), d) be a norm, and Φ a set
of queries such that there exist a boolean combination of queries in
Φ which can be used to equivalently express c, φ and d. Then mΦ

is a perfect monitor for n.

PROOF. If c, φ and d can be equivalently rewritten in terms of
queries in Φ, then s ∼Φ s′ implies that: s |= c iff s′ |= c, s |= φ
iff s′ |= φ, and s |= d iff s′ |= d.

Suppose a path ρ violates n: there is an index i such that ρ, i |=
v(n). This means that there is a pattern on ρ which witnesses the
violation, for example for an obligation it would be:

120

¬ d
¬!

 d
¬!

c ¬ d

¬!

j

¬ d
¬!

k1 km i

and for a prohibition

¬ d
¬!

¬ d
!

c ¬ d

¬!

j

¬ d
¬!

k1 km i

For every ρ′ such that ρ ∼Φ ρ′, the same pattern will exist on ρ′,
since ρ[j] ∼Φ ρ′[j], ρ[i] ∼Φ ρ′[i] and for every k in between,
ρ[k] ∼Φ ρ′[k]. Hence, ρ′, i |= v(n). So, OV (mΦ, n) is empty:
each equivalence class either contains only the paths violating the
norm, or the paths which do not.

The distinction between perfect and imperfect monitors can be
refined by introducing the notion monitor sensitivity. Until now we
have assumed a set of state formulae Φ = {φ1, . . . , φn}, which
uniquely specifies a monitor. This assumed set of state formulae
determines the sensitivity of the monitor with respect to a set of
paths and a norm as it defines the monitor’s ability to identify paths
as obeying or violating the given norm. When the monitor mΦ is
perfect for a set of paths Γ and a norm n (i.e., Γ/∼Φ \(V (mΦ, n)∪
O(mΦ, n)) = ∅), we say that mΦ is fully sensitive for Γ and n.
However, when the monitor is imperfect, there exist partitions that
contain paths some of which obey and some others violate n.

Extending Φ with additional state formulae may make a monitor
more sensitive in the sense that the set of viob paths shrinks while
restricting Φ may make the monitor less sensitive in the sense that
the set of viob paths may grow.

PROPOSITION 2. Let Φ1 and Φ2 be two sets of state formulae,
Γ be a set of paths, n be a conditional norm, andmΦ1 andmΦ2 be
two monitors defining two partitions of Γ. Then, we have

Φ1 ⊆ Φ2 ⇔
[
OV (mΦ2 , n) ⊆

[
OV (mΦ1 , n)

PROOF. Straightforward.

Adding extra queries certainly allows us to implement better
monitors for norms. However, sometimes providing extra queries
may be too costly or impossible. A complementary approach is,
given a set of queries N and a fixed set of queries Φ, come up
with a set of approximations of N for which mΦ is a perfect moni-
tor. Intuitively, this corresponds to asking, if we cannot enforce the
norms N , which norms can we enforce? This is the topic of the
next section.

5. APPROXIMATING NORMS
As we have seen in the previous section,mΦ is a perfect monitor

for a norm n with condition c, obligation or prohibition φ, and
deadline d if c, φ and d can be defined in terms of formulas in Φ.
This, however, is not always the case. Sometimes the designer of
a normative system has a given set of possible queries and has to
modify the norms so that a (perfect) monitor can be implemented
for the new norms, while minimising the difference in terms of
missed violations between the old and the new norms.

Given a set of queries Φ and a set of ‘ideal’ norms N , the norm
approximation task is to produce a set of norms N ′ for which mΦ

is a perfect monitor and which is the best approximation for N . By
‘best’ we mean that the set of violations of the approximated norm
is included in the set of violations of the original norm, and the
difference between the two sets is minimal.

Let us denote the language in which the conditions, deadlines,
obligations and prohibitions of N are formulated LN . We assume
that we are given a propositional theory T in the language of Φ and
LN which contains some axioms relating Φ and LN . For example,
T may contain a statement that s80 → ¬(s60 ∨ s70) where s80 ∈
LN and s60∨s70 ∈ Φ which says that the speed of 80 mph is not a
speed of 60 or 70 mph. T may also be empty, in which case we only
have classical propositional logic to reason about the relationship
of queries definable using Φ and LN . For example, if p ∈ LN and
p ∨ q ∈ Φ (but p 6∈ Φ) we still know that p→ p ∨ q.

In what follows, we assume that all transition systems M are
models of T (that is, axioms of T are true in all states of M).

The set of paths violating n is defined relative to some transition
system M .

DEFINITION 6 (VIOLATIONS). Given a systemM = (S,R, V, sI)
and a norm n, a set of violations of n on M Viol(M,n) is

{ρ | ∃i M, ρ, i |= v(n)}

A norm n can be approximated (for detecting violations) by
weakening n to a norm n′ such that all paths violating n′ also vio-
late n. This means that each violation detected for n′ is a violation
of n, but if we monitor for violations of n′, we may miss some vio-
lations of n; that is, we get some false negatives for violations of n,
but never false positives. This kind of approximation makes sense
in a context where agents are penalised for violating norms, and if
we do not have a perfect monitor for n, we want to weaken n so we
have a perfect monitor for its approximation. This way, agents will
never be ‘punished unfairly’.

DEFINITION 7 (APPROXIMATION). A conditional norm n′ is
a approximation of n with respect to Φ and a background theory T
(a (Φ, T)-approximation of n) iff n′ is formulated in terms of the
queries in Φ and the set of violations of n′ is a subset of the set of
violations of n in all possible models M of T :

∀M(Viol(M,n′) ⊆ Viol(M,n))

DEFINITION 8 (OPTIMAL APPROXIMATION). A norm n′ is
the optimal approximation of n with respect to Φ and a background
theory T (an optimal (Φ, T)-approximation of n) iff it is a (Φ, T)-
approximation of n and for all other (Φ, T)-approximations n′′ of
n,

∀M(Viol(M,n′′) ⊆ Viol(M,n′))

The reason we define approximation (and optimality) with re-
spect to all possible models and not with respect to a single model
is because the latter notion is not robust. An optimal approximation
with respect to a specific M may be exploiting some ‘accidental’
features of M which may become true if the environment model is
slightly adjusted or the agents are given one extra possible transi-
tion which changes the set of paths. For example, it is possible that
in M on every path where some norm n is detached, the state be-
fore the condition c of the norm becomes true satisfies some p ∈ Φ
which has no connection with c in theory T . We can obtain an opti-
mal approximation for n on M by replacing c with p. Clearly, this
approximation may break down if it becomes possible to reach a c
state without going through a p state.

Next we state how to define an optimal approximation with re-
spect to Φ and T of a set of normsN which is stated in the language
LN . We assume LN and Φ are finite.

We can construct all possible state descriptions given T , which
is a finite (although in the worst case exponential in |Φ| + |LN |)
set. Formally, a state description α is a formula which is consistent

121

with respect to T and is a conjunction of all possible formulas in Φ
and LN or their negations. Let us denote the set of all possible state
descriptions by S(Φ, LN , T). For each formula φ in the combined
language LN ∪ Φ, we can define a function val(φ) which maps Φ
to the state descriptions in S(Φ, LN , T) where φ is true:

val(φ) = {α ∈ S(Φ, LN , T) | α |= φ}

DEFINITION 9 ((BEST) INNER APPROXIMATION). For two
propositional formulas φ and φ′ in the language of LN ∪Φ, we will
say that φ′ is an inner approximation of φ with respect to Φ and T
((Φ, T)- inner approximation of φ) iff φ is written using boolean
combinations of queries in Φ and val(φ′) ⊆ val(φ).
φ′ is the best inner approximation of φ with respect to Φ and T

(best (Φ, T)-inner approximation of φ) iff φ′ is a (Φ, T)-inner ap-
proximation of φ and for every other (Φ, T)-inner approximation
of φ, φ′′, val(φ′′) ⊆ val(φ′).

DEFINITION 10 ((BEST) OUTER APPROXIMATION). For two
propositional formulas φ and φ′ in the language of LN ∪Φ, we will
say that φ′ is an outer approximation of φ with respect to Φ and T
((Φ, T)- outer approximation of φ) iff φ is written using boolean
combinations of queries in Φ and

val(φ) ⊆ val(φ′)

φ′ is the best outer approximation of φ with respect to Φ and T
(best (Φ, T)-outer approximation of φ) iff φ′ is a (Φ, T)-outer ap-
proximation of φ and for every other (Φ, T)-outer approximation
of φ, φ′′,

val(φ′) ⊆ val(φ′′)

Next we show how to construct best inner and outer (Φ, T)-
approximations of propositional formulas.

Observe that any formula φ′ which is definable in terms of queries
from Φ can be equivalently written as

W
θi, where each θi ∈ T (mφ),

that is, is of the form

(∼ φ1 ∧ . . .∧ ∼ φk)

where ∼ φj is either φj or its negation. For each of the 2|Φ| possi-
ble θi, we compute the subset val(θi) of S(Φ, LN , T) where θi is
true. We define

φ−(Φ,T) =
_

{θi∈T (mΦ)|val(θi)⊆val(φ)}

θi

φ+
(Φ,T) =

_
{θi∈T (mΦ)|val(θi)∩val(φ)6=∅}

θi

In what follows, we will omit the subscript (Φ, T) in φ−(Φ,T) and
φ+

(Φ,T) for readability.
Clearly, T |= φ− → φ and T |= φ→ φ+.
Coming back to the running example in Figure 1, observe that the

languageLN contains {p1, p2, p3, s60, s70, s80}, and Φ = {p1, p2,
p3, s60 ∨ s70}. The domain theory T will contain statements about
the speed of the car and position of the car being unique, and that
the car always has some position, etc. The set S(Φ, LN , T) of all
possible state descriptions contains, for example, a description of
s4: α4 = ¬p1∧p2∧¬p3∧¬s60∧¬s70∧s80, similarly for s2 and
s3. Note that the set of monitor types or state descriptions in terms
of Φ is smaller. It only contains two rather than three possibilities
for the car being in position p2:

θ1 = ¬p1 ∧ p2 ∧ ¬p3 ∧ (s60 ∨ s70)

θ2 = ¬p1 ∧ p2 ∧ ¬p3 ∧ ¬(s60 ∨ s70)

For the formula φ = (p2 ∧ s60), φ− = ⊥ and φ+ = θ2.
Before we prove that φ− and φ+ are the best inner and outer

approximations of φ, we need a lemma which will also be useful in
later proofs.

LEMMA 1. If a state description α ∈ S(Φ, LN , T) satisfies a
formula φ′ written using boolean combinations of formulas from
Φ, and does not satisfy φ−, then φ′ is not a (Φ, T)-inner approxi-
mation of φ.

If a state description α ∈ S(Φ, LN , T) satisfies φ+ and does
not satisfy a formula φ′ written using boolean combinations of for-
mulas from Φ, then φ′ is not a (Φ, T)-outer approximation of φ.

PROOF. Straightforward.

PROPOSITION 3. φ−(Φ,T) and φ+
(Φ,T) are the best inner and outer

(Φ, T)-approximations of φ.

PROOF. Clearly, val(φ−) ⊆ val(φ) and val(φ) ⊆ val(φ+).
To show that φ− is the best inner approximation of φ, assume that
there is another (Φ, T)-inner approximation φ′ of φ and a state
description α ∈ val(φ) such that α ∈ val(φ′) and α 6∈ val(φ−).
By Lemma 1, φ′ is not an inner approximation of φ.

The proof that φ+ is the best outer approximation of φ is simi-
lar.

Next we state the method to produce the optimal (Φ, T)-approxi-
mations for violations given the original set of norms, and a theo-
rem which states that any other approximation will miss at least as
many violations as the one computed by the method.

Given an obligation (c,O(φ), d), we need to produce an obliga-
tion (c′, O(φ′), d′) where c′, φ′, d′ are definable in terms of queries
from Φ. We do this as follows:

• c′ = c− (c′ is the best inner approximation of c, fewer states
satisfy c′ than c)

• φ′ = φ+ (φ′ is the best outer approximation of φ, more states
satisfy the obligation description φ′)

• d′ = d− (d′ is the best inner approximation of d, fewer states
satisfy d′)

These conditions are intended to guarantee that the approximation
of an obligation is violated only if the original obligation is vio-
lated:

LEMMA 2. For any conditional obligation n = (c,O(φ), d),
its approximation n′ = (c−, O(φ+), d−), model M , path ρ in M ,
if ∃i M, ρ, i |= v(n′), then ∃i M, ρ, i |= v(n).

PROOF. Assume M,ρ, i |= v(n′), that is, M,ρ, i |= d− ∧
¬φ+ ∧ ((Y (¬φ+ ∧ ¬d−)S (c− ∧ ¬φ+ ∧ ¬d−)) ∨ c−).

This means that there is a pattern on ρ:

¬ d
-

¬!+
d

-

¬!+
c- ¬ d

-

¬!+

j

¬ d
-

¬!+

k1 km i

where possibly j = i (in which case m = 0).
Clearly, for any M,ρ, i where M is a model of T , if M,ρ, i |=

d−, then M,ρ, i |= d (the definition of inner approximation with
respect to T). Similarly, for every M,ρ, i, if M,ρ, i |= c−, then
M,ρ, i |= c. Finally, by the definition of the outer approximation,
M,ρ, i |= ¬φ+, then M,ρ, i |= ¬φ.

122

So, if M,ρ, j |= c− ∧ ¬φ+, then also M,ρ, j |= c ∧ ¬φ, and
if M,ρ, i |= d− ∧ ¬φ+, then also M,ρ, i |= d ∧ ¬φ. However
M,ρ, k |= ¬φ+ ∧ ¬d− does not imply M,ρ, k |= ¬φ ∧ ¬d (be-
cause ¬d− is easier to satisfy). Basically, a violation of n may
occur in a different state on ρ (before i), however if there is a vio-
lation of n′ (some index k satisfies ¬φ+) then there is a violation
of n, so n′ is an approximation.

For a prohibition (c, P (φ), d), where c, φ, we need to produce a
prohibition (c′, P (φ′), d′) where c′, φ′, d′ are definable in terms of
queries from Φ. We define the approximation as (c−, P (φ−), d+).
This definition is intended to guarantee that the approximation of a
prohibition is violated only if the original prohibition is violated:

LEMMA 3. For any conditional prohibition n = (c, P (φ), d),
its approximation n′ = (c−, P (φ−), d+), model M , path ρ in M ,
if ∃i M, ρ, i |= v(n′), then ∃i M, ρ, i |= v(n).

PROOF. The proof is similar to the proof of Lemma 2.

Now we can prove correctness of our construction of the set of
optimal norm approximations.

THEOREM 3. GivenN and Φ, the following setN ′ is the set of
optimal approximations of the norms in N :

N ′ = {(c−, O(φ+), d−) | (c,O(φ), d) ∈ N} ∪
{(c−, P (φ−), d+) | (c, P (φ), d) ∈ N}

PROOF. By Proposition 1, norms in N ′ can be perfectly moni-
tored bymΦ since they are defined in terms of Φ. We need to show
for every n ∈ N , that its approximation n′ is an approximation of
n for violations, formally on every M ,

Viol(M,n′) ⊆ Viol(M,n)

and that it is optimal, i.e., for every other approximation n′′,

∀M(Viol(M,n′′) ⊆ Viol(M,n′))

To prove that n′ is an approximation of n for violations, suppose
that for some M , ρ ∈ Viol(M,n′), that is, for some i, M,ρ, i |=
v(n′). From Lemmas 2 and 3 it follows that for every M , ρ if for
some i, M,ρ, i |= v(n′) then for some j, M,ρ, j |= v(n). This
means that ρ ∈ Viol(M,n). So, for every M , Viol(M,n′) ⊆
Viol(M,n).

To prove that n′ is an optimal approximation of n for violations,
suppose by contradiction that for some other norm n′′ definable in
terms of Φ which is an approximation of n, there is some modelM
of T and a path ρ such that:

1. for some i, M,ρ, i |= v(n) (there is a violation of n)

2. for some i′, M,ρ, i′ |= v(n′′) (it is also a violation of n′′)

3. for all i, M,ρ, i 6|= v(n′) (it is not a violation of n′, so mon-
itoring for n′ this violation of n will be missed)

Let us consider the case when n is a prohibition, n = (c, P (φ), d).
Since n is violated on some ρ, there exists a pattern of states on ρ

¬ d
¬!

¬ d
!

c ¬ d

¬!

j

¬ d
¬!

k1 km i

Since n′′ is violated on ρ, there exists a similar pattern of states
on ρ for c′′ and φ′′. Let us call the state where c′′ is true s1, and
the state where φ is true s2. Note that it is possible that s1 = s2.

Observe also that either s1 6|= c′, or s2 6|= φ′, or some state between
s1 and s2 on ρ satisfies d′ but not d′′. It can be shown in all these
cases that then we can construct a model M ′ and a path ρ′ in M ′

such that ρ′ contains a violation of n′′ but not of n, so n′′ is not an
approximation of n.

Consider the case when s1 6|= c′ and s1 6= s2. By Lemma 1,
c′′ is not an inner approximation of c, hence there exists a state
description α such that α ∈ val(c′′) and α 6∈ val(c). Consider a
state s′ which conforms to this description, and consider a model
M ′ which consists of a single step path from s′ to s2. This path
will be a violation of n′′ since s′ satisfies c′′ and s2 satisfies φ′′,
but it will not be a violation of n since n is not detached in s′. Let
us consider the case when s1 = s2. Suppose by contradiction that
it is impossible to construct a state s′ satisfying c′′ and and φ′′ (a
violation of n′′) but not satisfying c or φ (hence not a violation of
n). This would only be the case if T |= (c′′ ∧ φ′′) ≡ (c ∧ φ) and
T |= (c ≡ φ). The latter entails T |= (c′ ≡ φ′). Since we know
that s1 = s2 does not violate n′, c′ is not equivalent to c′′ and φ′′.
Since c′ and c′′ are in the language of Φ, there is a θ′ such that
val(θ′) ⊆ val(c′′) such that val(θ′) 6⊆ val(c), so there exists a
state which satisfies c′′ but does not satisfy c and φ. Other cases for
a conditional prohibition (when s2 6|= φ′ or one of the intermediate
states satisfies d′) are similar.

The case for obligations is analogous.

The stated method of finding an optimal norm approximation is
computationally expensive (exponential in the size of the original
set of norms). However we can show that it is still optimal since
the problem of norm approximation itself is computationally hard.

Since we know from Theorem 3 that components of conditional
norms have to be weakened in a particular way to obtain an optimal
approximation, the norm approximation problem can be re-stated
as follows:

DEFINITION 11. Norm approximation problem:

Input: A theory T (which may be empty), a set of queries Φ and a
norm (c, Z(φ), d) where Z ∈ {O,P}

Output: For each formula ψ ∈ {c, φ, d}, find ψ1 and ψ2 such
that:

• T |= ψ1 → ψ

• for all ψ′ in the language of Φ such that T |= ψ′ → ψ, it
holds that T |= (ψ′ → ψ1)

• T |= ψ → ψ2

• for all ψ′ in the language of Φ such that T |= ψ → ψ′, it
holds that T |= ψ2 → ψ′.

To establish the complexity of the norm approximation problem,
we compare it to the following interpolation problem:

DEFINITION 12. Interpolation problem:

Input: A classical propositional tautology φ→ ψ

Output: A formula χ (an interpolant, [8]) in the common lan-
guage of φ and ψ such that φ → χ and χ → ψ are tau-
tologies.

The lower bound for the size of the interpolant is exponential
in the size of φ → ψ, if there is a set in NP ∩ coNP that can-
not be computed by subexponential size circuits [15, 13]. The lat-
ter hypothesis is a standard assumption in cryptography. So for
all practical purposes, some tautologies only have exponential size
interpolants, and hence the interpolation problem above also has
EXPTIME lower bound.

123

THEOREM 4 (COMPLEXITY OF NORM APPROXIMATION). The
norm approximation problem is at least as hard as the interpolation
problem.

PROOF. We give a polynomial reduction from the interpolation
problem to the norm approximation problem. Take a tautology
φ → ψ. Make two norms, (>, O(φ),⊥) and (>, P (ψ),⊥), and
set Φ to be the set of propositional variables in the common lan-
guage of φ and ψ. Then we can prove that the interpolant is φ2

defined in Definition 11, hence a solution to norm approximation
problem gives us a solution to the interpolation problem.

By the definition of norm approximation problem, |= φ → φ2.
There is (by the Craig interpolation theorem [8]) an interpolant ρ
in the same language as φ2 such that φ→ ρ and ρ→ ψ. Since φ2

is the strongest formula for which φ → φ2 holds, φ2 → ρ. Hence
φ2 → ψ.

6. DISCUSSION
There is a growing body of literature on logical analysis of norms

in multi-agent systems, for example [1, 9]. Most approaches to nor-
mative multi-agent organisation assume perfect monitoring mech-
anisms, i.e., that monitors are able to detect all violations or com-
pliances of a given norm (see e.g., [10, 14]). An exception to these
perfect monitor approaches is the recent work by Bulling et al. [7].

Our approach is similar to [7] in that we also define a monitor in
terms of (in)distinguishable execution traces. However, in contrast
to [7], we define a monitor based on indistinguishable states and
then lift it to an indistinguishability relation on execution traces.
Moreover, while [7] investigates the problem of combining moni-
tors to construct ideal monitors, we investigate how norms can be
modified such that a given imperfect monitor can function as a per-
fect monitor for a norm approximation. Another important dis-
tinction is our use of conditional norms with deadlines evaluated
on finite execution traces rather than using arbitrary LTL formulae
as norms evaluated on infinite traces, as proposed in [7]. Although
the latter approach allows more expressive norms and monitors, our
approach has more potential applications. Typical applications are
systems that require runtime monitoring, for example, monitoring
web services, policy monitoring, debugging, fault monitoring, and
runtime repair and recovery of system executions (see [4, 5, 11]).

Our approach is also related to runtime verification of computer
programs, where the current execution of a system is monitored
and evaluated with respect to some desirable properties [6]. Run-
time verification is often used to detect the violation of correct-
ness properties expressed in some temporal language such as LTL.
Like runtime verification our approach is based on finite execu-
tion traces, but unlike these approaches we focus on approximation
of properties that can be observed and evaluated by an imperfect
monitor. Our approach is also tailored to normative multi-agent
organisations, where conditional norms with deadlines are used to
coordinate the (inter)action of individual agents.

7. REFERENCES
[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Robust

normative systems and a logic of norm compliance. Logic
Journal of the IGPL, 18(1):4–30, 2010.

[2] N. Alechina, M. Dastani, and B. Logan. Programming
norm-aware agents. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), pages 1057–1064. IFAAMAS, 2012.

[3] N. Alechina, M. Dastani, and B. Logan. Reasoning about
normative update. In Proceedings of the Twenty Third

International Joint Conference on Artificial Intelligence
(IJCAI 2013), pages 20–26. AAAI Press, 2013.

[4] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-time monitoring of instances and classes of web service
compositions. 19th International Conference on Web
Services (ICWS’06), pages 63–71, 2006.

[5] L. Baresi, S. Guinea, and L. Pasquale. Towards a unified
framework for the monitoring and recovery of BPEL
processes. In T. Bultan and T. Xie, editors, Workshop on
Testing, Analysis, and Verification of Web Services and
Applications (TAV-WEB), pages 15–19. ACM, 2008.

[6] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for LTL and TLTL. ACM Transactions on
Software Engineering and Methodology, 20(4):1–68, 2011.

[7] N. Bulling, M. Dastani, and M. Knobbout. Monitoring norm
violations in multi-agent systems. In Twelfth International
conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’13), pages 491–498, 2013.

[8] W. Craig. Three uses of the Herbrand-Gentzen theorem in
relating model theory and proof theory. J. Symb. Log.,
22(3):269–285, 1957.

[9] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. Tinnemeier.
Normative multi-agent programs and their logics. In Proc.
Workshop on Knowledge Representation for Agents and
Multi-Agent Systems, LNCS 5605, pages 16–31, 2009.

[10] M. Dastani, J.-J. C. Meyer, and D. Grossi. A logic for
normative multi-agent programs. Journal of Logic and
Computation, 23(2):335–354, 2013.

[11] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy and
catalog of runtime software-fault monitoring tools. IEEE
Transactions on Software Engineering, 30(12):859–872,
2004.

[12] K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. In J.-P. Katoen and P. Stevens, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 8th
International Conference, TACAS 2002, volume 2280 of
LNCS, pages 342–356. Springer, 2002.

[13] J. Krajícek. Interpolation theorems, lower bounds for proof
systems, and independence results for bounded arithmetic. J.
Symb. Log., 62(2):457–486, 1997.

[14] S. Modgil, N. Faci, F. R. Meneguzzi, N. Oren, S. Miles, and
M. Luck. A framework for monitoring agent-based
normative systems. In Eighth International Joint Conference
on Autonomous Agents and Multiagent Systems
(AAMAS’09), pages 153–160, 2009.

[15] D. Mundici. A lower bound for the complexity of Craig’s
interpolants in sentential logic. Arch. Math. Logic, 23:27–36,
1983.

[16] N. Tinnemeier, M. Dastani, J.-J. Meyer, and L. van der Torre.
Programming normative artifacts with declarative obligations
and prohibitions. In Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology
(IAT’09), pages 69–78, 2009.

124

