
Generalized Mirror Descents in Congestion Games with
Splittable Flows

Po-An Chen
∗

National Chiao Tung University
1001 University Road

Hsinchu, Taiwan
poanchen@nctu.edu.tw

Chi-Jen Lu
Academia Sinica

128 Academia Road, Section 2
Nankang, Taipei 115, Taiwan

cjlu@iis.sinica.edu.tw

ABSTRACT
Different types of dynamics have been studied in repeated
game play, and one of them which has received much at-
tention recently consists of those based on “no-regret” al-
gorithms from the area of machine learning. It is known
that dynamics based on generic no-regret algorithms may
not converge to Nash equilibria in general, but to a larger
set of outcomes, namely coarse correlated equilibria. More-
over, convergence results based on generic no-regret algo-
rithms typically use a weaker notion of convergence: the
convergence of the average plays instead of the actual plays.
Some work has been done showing that when using a specific
no-regret algorithm, the well-known multiplicative updates
algorithm, convergence of actual plays to equilibria can be
shown and better quality of outcomes can be reached for
atomic congestion games and load balancing games. Are
there more cases of natural no-regret dynamics that perform
well in suitable classes of games in terms of convergence and
quality of outcomes? We answer this question positively
by showing that when each player individually employs the
mirror-descent algorithm, a well-known generic no-regret al-
gorithm, the actual plays converge quickly to equilibria in
nonatomic congestion games. This gives rise to a family of
algorithms, including the multiplicative updates algorithm
and the gradient descent algorithm as well as many oth-
ers. Furthermore, we show that our dynamics achieves good
bounds on the quality of outcomes measured by two different
social costs: the average individual cost and the maximum
individual cost.

Categories and Subject Descriptors
Theory of computation [Theory and algorithms for ap-
plication domains]: Algorithmic game theory and mech-
anism design—Convergence and learning in games

Keywords
Mirror-descent algorithm; No-regret dynamics; Convergence

∗Supported in part by NSC 102-2221-E-009-061-MY2.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Nash equilibrium is a widely-adopted solution concept in

game theory, which is used for predicting the outcomes of
systems consisting of self-interested players. We are inter-
ested in repeated games, and a Nash equilibrium describes
a steady state in which the system would stay once it is
reached. However, this raises the issue of how such a state
can be reached. In fact, for a general game, computing
a Nash equilibrium is believed to be hard (according to
the PPAD-hardness results), so an equilibrium may not be
reached in a reasonable amount of time in general, and the
outcomes we have observed may all be far out of any equilib-
rium, which would render the study on equilibria meaning-
less. To address this issue, a line of research is to consider
natural dynamics which players have incentive to follow, and
study how the system evolves according to such dynamics.
One natural dynamics is the best or better response dynam-
ics, in which a deviating player at each time makes a best or
better change in his/her strategy to improve his/her payoff
given the current choice of the other players. It is well-
known that such dynamics leads to pure Nash equilibria in
congestion games. However, a player may not have incentive
to play this way because making such deviations may not be
beneficial if other players also deviate at the same time.

One may argue that a plausible incentive for a player is
to maximize his/her average payoff through the time, and
dynamics based on “no-regret” algorithms from the area of
online learning [9] have thus been proposed in the study. For
a nonatomic routing game, it is known that if each player
plays any arbitrary no-regret algorithm, the “time-averaged”
flow (and flows at most time steps) converges to some type
of approximate Nash equilibrium [7]. For a “socially con-
cave” game, a similar time-averaged convergence result is
also known [11]1. However, convergence to a Nash or ap-
proximate Nash equilibrium is not always the case in gen-
eral, and playing arbitrary no-regret algorithms can result
in a larger set of outcomes than Nash equilibria, namely
coarse correlated equilibria. Nevertheless, if one only cares
about the outcome quality and the quality is measured by
the average individual cost, it is known that the total price
of anarchy achieved by such no-regret algorithms can still
match the price of anarchy at Nash equilibrium in special
games, such as atomic congestion games [8] or an even wider
class of smooth games [16]. On the other hand, there are

1Note that if we change convexity to concavity and costs to
utilities in our paper, games that we consider here are not
socially concave.

1233

broad classes of games and natural measures of outcome
quality for which large gaps are known between no-regret
outcomes and Nash equilibria. Furthermore, all the conver-
gence results mentioned above are about the convergence of
the time-averaged strategy instead of the actual strategy.2

That is, what converges to a Nash equilibrium is the aver-
age of all the strategies played so far, instead of the actual
strategy played at the moment. Such results are useful if
the goal is to solve the computational problem of comput-
ing an approximate Nash equilibrium, but they may not tell
us much about how the system actually evolves. In particu-
lar, even though the time-averaged strategy converges to an
equilibrium, the actual strategy may not converge and may
be far away from an equilibrium.

Although it is nice to be able to have general positive re-
sults on what generic no-regret algorithms can achieve, one
may wonder if going from generic no-regret algorithms to
specific ones could yield stronger results, in terms of con-
vergence or quality of outcomes. One of the best known
no-regret algorithms is the Multiplicative Updates (MU) al-
gorithm. Kleinberg et al. [15] studied this for atomic con-
gestion games in the full-information setting, in which play-
ers have full information about the cost functions so that
they can determine the cost of every other strategy they
could have used given other players strategies at the current
round. It was shown that if each player employs such an
MU algorithm, the actual joint strategy profile of players
converges to a pure Nash equilibrium with high probability
for most games. Note that here it is the actual joint strategy
profile, instead of the time-averaged one, which converges.
Furthermore, since the set of pure Nash equilibria can be a
very small subset of correlated equilibria, the price of total
anarchy achieved this way can be much smaller than that
by a generic no-regret algorithm.

In another work [14], Kleinberg et al. studied the smaller
class of load balancing games, but in the more stringent
partial-information setting of the “bulletin board” model,
in which players only know the actual cost value of each
edge according to the actual strategies played at the current
round. They showed that if all the players play according
to a common distribution (mixed strategy) and update the
distribution using such an MU algorithm, the common dis-
tribution converges to some symmetric Nash equilibrium of
the nonatomic version of the game. As a result, the price of
total anarchy achieved this way is also considerably smaller
than that by a generic no-regret one. However, their anal-
ysis relies crucially on the assumption that all the players
at each round play according to the same distribution. This
assumption may not be reasonable in other settings or in
other games, which makes the applicability of their analysis
somewhat limited. On the other hand, the analysis in [15]
can do without the assumption and deal with general asym-
metry in players’ probability distributions, but it only works
in the full-information model.

These results, which form a good comparison and com-
plement to each other, along with the results on generic
no-regret plays motivate our quest for other classes of learn-
ing dynamics in possibly other classes of games and settings.
Are there more cases of natural no-regret dynamics that per-
form well in suitable classes of games in terms of convergence

2Although it was also shown in [7] that flows at most time
steps are close to equilibria, the guarantee is still not on the
convergence of the actual plays.

time and quality of outcomes?

Our Contributions. We answer this question positively.
We provide a family of such dynamics in the bulletin model
for the class of nonatomic congestion games with cost func-
tions of bounded slopes. More precisely, we show that in
such a game, if each player individually plays some type
of the mirror-descent algorithm [5], a well-known general
no-regret algorithm, then their joint strategy profile quickly
converges to a Wardrop equilibrium. We also show that our
dynamics achieves good bounds on the quality of outcomes
measured by two different social costs: the average individ-
ual cost and the maximum individual cost.

The mirror-descent algorithm in fact can be seen as a fam-
ily of algorithms. By instantiating it properly, one can re-
cover the MU algorithm, the gradient-descent algorithm, as
well as many others, and our result establishes the fast con-
vergence of all these algorithms at once. Let us stress that
as in [15, 14], our notion of convergence is the stronger one:
what converges is the actual joint strategy profile, instead
of the time-averaged one as in [7, 11]. Note that in the con-
gestion game, different players naturally have different sets
of strategies, so it is no longer reasonable to assume that
all the players use the same distribution to play as in [14].
Therefore, we allow players to use different distributions and
moreover, we allow players to update according to different
learning rates. Still, we manage to prove the convergence,
just as [15] but in the more difficult bulletin model and with
a concrete bound on convergence time.

Furthermore, we provide bounds on the price of total an-
archy achieved by our dynamics, in terms of the average in-
dividual cost and the maximum individual cost. Using the
average individual cost as the social cost, we show that the
ratio between the social cost achieved by our dynamics and
the optimal one approaches some constant, which depends
on the slopes of the cost functions. Using the maximum
individual cost as the social cost, we show that the ratio
between the social cost achieved by our dynamics and the
optimal one also approaches the same constant in symmetric
games. In each case, there is a tradeoff between the ratio
we can achieve and the time it takes: by letting the system
evolve for a longer time, it will get closer to an equilibrium,
and the resulting ratio will approach closer to that constant.

Our main technical contribution is the convergence of our
dynamics to an approximate equilibrium. To show this, we
consider a smooth convex potential function of the game
which has the joint strategy profile of players as its input.
The interesting observation is that although each player indi-
vidually applies the mirror descent algorithm to his/her own
strategy using costs related only to him/her, we show that
the updates performed by all the players collectively can be
seen as following some generalized mirror descent process
on the potential function. The generalized mirror descent
allows different step sizes in different dimensions, and we
need this generalization because we allow different learning
rates for different players. The standard mirror descent, on
the other hand, has the same step size across all the dimen-
sions, so that it moves at each time in exactly the opposite
direction of the gradient vector. It is known that doing the
standard mirror descent on a smooth convex function leads
to a fast convergence to its minimum [6]. However, our
generalized mirror descent no longer moves in the opposite
direction of the gradient vector as different step sizes have
different scaling effects in different dimensions, and therefore

1234

it is not clear if the process would still converge. Interest-
ingly, we show that a similar convergence result can also be
achieved, which may have independent interest of its own.
Finally, let us remark that the standard mirror descent al-
gorithm, instead of the generalized one, has also been used
for different problems in game theory: for finding market
equilibria in Fisher markets [6] and convex potential mar-
kets [10]. Our convergence result for the generalized mirror
descent algorithm is an extension of that for the standard
one.

We provide definitions and some preliminaries in Section 2.
Then, the convergence result is presented in Section 3, which
is followed by the outcome quality bounds in Section 4. We
summarize with conclusions and future work in Section 5.

2. PRELIMINARIES
In this paper, we consider the following congestion game

described by (N,E, (Si)i∈N , (ce)e∈E), where N is the set
of players, E is the set of edges (resources), Si ⊆ 2E is the
collection of allowed paths (subsets of resources) for player i,
and ce is the cost function of edge e, which is a nondecreasing
function of the amount of load on it. Let us assume that
N = {1, . . . , n}, |E| = m, and each player has a load of
1/n (so the total load is 1). The strategy of each player i
is to distribute her load over her allowed paths, which can
be represented by a |Si|-dimensional vector xi = (xi,s)s∈Si ,
where xi,s ∈ [0, 1] is the amount of the load player i puts on
the path s. Note that

∑
s∈Si xi,s = 1/n and let Ki be the

feasible set for all such vectors xi. Then the strategies of all
players can be jointly represented by a vector

x = (x1, ..., xn) = ((x1,s)s∈S1 , ..., (xn,s)s∈Sn) ∈ Rd,

where d =
∑
i∈N |Si|, and let K = K1× · · · ×Kn be the fea-

sible set for all such vectors x. We call xi the flow of player i
and x the flow of the system.3 Note that an edge e ∈ E can
be shared by different paths, and the aggregated load on e,
denoted by `e(x), is

∑
s:e∈s

∑
i∈N xi,s. Then the cost of a

path s is defined as cs(x) =
∑
e∈s ce(`e(x)), and the indi-

vidual cost of player i is defined as Ci(x) =
∑
s∈Si xi,scs(x).

The game is called an atomic splittable congestion game in
[17] and others when the number of players is finite.

An alternative nonatomic definition of the game is that
each player consists of a huge (infinite) number of agents (or
see each player as a group of players of the same type). The
agents of player i split the load of player i so that each has a
small (infinitesimal) amount ∆ of load. Each agent of player
i now must choose one single path s from Si and put that
∆ amount of load all on s, and the cost for that is ∆cs(x).
Now

∑
s∈Si xi,scs(x) becomes the total cost of all agents of

player i, where xi,s is the total load on path s from all agents
of player i. It is not hard to check that the two definitions
of the game coincide when ∆ approaches 0. We will mainly
use expressions from the first definition yet essentially with
an infinite number of infinitesimal agents for each player of
a nonatomic congestion game, as it makes our presentation
simpler.

3Although we borrow the terms such as edge, path, and flow
from routing games, the congestion games are more general
as there are no underlying graphs and a path can be just
any arbitrary subset of edges.

Such a game admits the following potential function:4

Φ(x) =
∑
e

∫ `e(x)

0

ce(y)dy. (1)

To see that this is indeed a potential function, note that if
some player deviates an infinitesimal fraction of load from s
to s′ (where xi,s > 0) such that cs(x) > cs′(x

′) (where x is
almost the same as x′ except for the small fraction of moved
load), then ∂Φ(x)/∂xi,s > ∂Φ(x′)/∂xi,s′ , which means that
the rate of decrease in Φ is larger than the rate of increase
in Φ and thus the resulting Φ decreases. We will need the
following, which we prove in Appendix A.

Proposition 1. The function Φ defined in (1) is convex.

As in [14], we assume that the cost functions satisfy the
property that for any y ∈ [0, 1] and any e ∈ E, ce(0) = 0,
ce(1) ≤ 1, c′e(y) ≥ A > 0 and 0 ≤ c′′e (y) ≤ B, where A,B are
positive constants. By Lemma 3.8 of [14], for constants b0 =
A and b1 = B + 1, the cost functions satisfy the condition
that

b0y ≤ ce(y) ≤ b1y, for any y ∈ [0, 1]. (2)

Then we have the following, which we prove in Appendix B.

Proposition 2. For any ξ ∈ K, ∇2Φ(ξ) � αI with α =
dmb1.

We consider two types of social cost functions. The first
is the average individual cost function, defined as

CA(x) =
∑
e

`e(x)ce(`e(x)),

and the second is the maximum individual cost function,
defined as

CM (x) = max
s∈S

∑
e∈s

ce(`e(x)), where S =
⋃
i∈N

Si.

Using them, we measure the quality of outcome for a flow
x ∈ K in the following two ways. The first is the ratio
CA(x)/CA(x∗), where x∗ = arg minz∈K CA(z), and the sec-
ond is the ratio CM (x)/CM (x̂), where x̂ = arg minz∈K CM (z).

3. DYNAMICS AND CONVERGENCE
We consider the setting in which the players play the game

iteratively in the following way. At step t, each player i plays
the strategy xti by sending the amount xti,s of load on path s
for each s ∈ Si. After that, she gets to know the vector ĉti =
(cs(x

t))s∈Si of cost values, where cs(x
t) =

∑
e∈s ce(`e(x

t))
is the cost value on the path s at that step. With this,
she updates her next strategy xt+1

i in some way and then
proceeds to the next iteration. In the alternative definition
of the game, the corresponding setting is that at step t,
each agent of player i sends its load of ∆ all on some path
s ∈ Si, which is chosen according to some distribution. We
assume that all agents of player i start with the same initial
distribution and update their distributions at each step t
using the same algorithm according to the same information
ĉti. Then we can conclude that their distributions at step t

4Note that our convergence result will be proved more gen-
erally for any convex potential function satisfying certain
properties.

1235

are all the same,5 which basically can be described by the
flow xti of player i, due to the law of large number as the
number of agents is huge. Thus, the settings for the two
definitions of the game also match.

We have not specified how the players or agents of players
update their next strategies. Different update algorithms
may make the whole system evolve in rather different ways,
and we would like to understand if there are update algo-
rithms which players or agents of players have incentive to
adopt that can lead to desirable outcomes for the whole sys-
tem. One can argue that a plausible incentive for a player
is to minimize her regret. Two well-known no-regret algo-
rithms are the gradient descent algorithm and the multi-
plicative update algorithm, both of which can be seen as
special cases of a more general algorithm called mirror de-
scent algorithm (see e.g. [9] for more detail). Inspired by
this, we consider the following update rule for player i or
agents of player i:

xt+1
i = arg min

zi∈Ki

{
ηi〈ĉti, zi〉+ BRi(zi, x

t
i)
}

(3)

= arg min
zi∈Ki

BRi(zi, x
t
i − ηiĉti). (4)

Here, ηi > 0 is some learning rate, Ri : Ki → R is some reg-
ularization function, and BRi(·, ·) is the Bregman divergence
with respect to Ri defined as

BRi(ui, vi) = Ri(ui)−Ri(vi)− 〈∇Ri(vi), ui − vi〉

for ui, vi ∈ Ki. This gives rise to a family of update rules
for different choices of the function Ri. For example, it
is well-known that by choosing Ri(ui) = ‖ui‖22/2, one re-
covers the gradient descent algorithm, while by choosing
Ri(ui) =

∑
s(ui,s lnui,s − ui,s), one recovers the multiplica-

tive update algorithm. Using a similar argument as in [14],
one can show that this algorithm, with a properly chosen
Ri, is indeed a no-regret algorithm for each agent i, and this
provides an incentive for the agents to use the algorithm.
The requirement on these Ri’s which we need is that the
function Φ is “smooth” with respect to them in the following
sense.

Definition 1. We say that Φ is λ-smooth with respect
to (R1, . . . , Rn) if for any two inputs x = (x1, . . . , xn) and
x′ = (x′1, . . . , x

′
n) in K,

Φ(x′) ≤ Φ(x) + 〈∇Φ(x), x′ − x〉+ λ

n∑
i=1

BRi(x′i, xi). (5)

Our main result in this section is the following, which
shows that if each player (or agent of a player) uses such
an update algorithm, the system quickly converges, in the
sense that the value of the potential function Φ(xt) quickly
approaches the minimum Φ(q), where q = arg minz∈K Φ(z).
Implications of Φ(xt) being close to Φ(q) will be given in
Section 4, including xt being an approximate equilibrium
and achieving social efficiency.

Theorem 3. Consider any nonatomic congestion game
of n players, with a potential function Φ which is λ-smooth
with respect to some (R1, . . . , Rn). Let q = (q1, . . . , qn) =
arg minz∈K Φ(z). Now suppose that each player i starts from
some initial strategy x0

i , with BRi(qi, x
0
i) ≤ γ, and updates

5The distributions of agents from different players are still
different in general.

her strategy according to the rule in (3), with ηi ∈ [η, 1/λ]
for some η. Then for any ε ∈ (0, 1) there exists some Tε ≤
nγ/(ηε) such that for any t ≥ Tε, Φ(xt) ≤ Φ(q) + ε.

From this, we have the following, which we will prove in
Section 3.2.

Corollary 4. Consider any nonatomic congestion game
of n players with parameters given in Section 2, and let
λ = mb1d. Now if each player i plays the gradient de-
scent algorithm by starting from any x0

i ∈ Ki and using
any ηi ∈ [η, 1/λ], then Tε ≤ 2/(nηε). Furthermore, if each
player i plays the multiplicative update algorithm by starting
from a uniform x0

i (same load on each allowed path) and
using any ηi ∈ [η, 1/λ], then Tε ≤ (n ln(dn))/(ηε).

Remark 1. According to Corollary 4, playing the gradi-
ent descent algorithm guarantees a faster convergence time.
In particular, if each player i uses ηi = 1/λ, then adopting
the gradient descent algorithm leads to a convergence time
Tε ≤ 2mb1d/(nε), while adopting the multiplicative update
algorithm leads to Tε ≤ (mb1dn ln(dn))/ε.

To prove Theorem 3, the key observation is that the up-
dates by all players collectively can be seen as doing a gener-
alized version of the mirror descent, with different step sizes
in different dimensions, on the potential function Φ defined
in (1). To see this, note that for any i ∈ N and s ∈ Si, the
s’th entry of ĉti is

cs(x
t) =

∑
e∈s

ce(`e(x
t)) =

∂Φ(xt)

∂xi,s
,

which means that the d-dimensional vector (ĉti)i∈N is in fact
equal to ∇Φ(xt), the gradient of Φ at xt. That is, if we write
∇Φ(xt) = (∇1Φ(xt), . . . ,∇nΦ(xt), with ∇iΦ(xt) being the
portion of∇Φ(xt) corresponding to player i, then the update
rule of (3) and (4) becomes the following:

xt+1
i = arg min

zi∈Ki

{
ηi〈∇iΦ(xt), zi〉+ BRi(zi, x

t
i)
}

(6)

= arg min
zi∈Ki

BRi(zi, x
t
i − ηi∇iΦ(xt)). (7)

Observe that when all the ηi’s are identical, the collective
update of all players moves the whole system exactly in the
direction of −∇Φ(xt), and this becomes the standard mir-
ror descent algorithm which has the same step size across
all dimensions. It is known that doing such a mirror descent
on a smooth convex function leads to a fast convergence
to its minimum [6]. On the other hand, we consider the
more general case in which different players can have differ-
ent learning rates, and this corresponds to a more general
mirror descent algorithm which allows different step sizes in
different dimensions. Because the different step sizes have
different scaling effects in different dimensions, the collec-
tive update now no longer moves the whole system in the
direction of −∇Φ(xt), and it is not clear if a similar con-
vergence result can be obtained. Interestingly, the following
theorem shows that doing such a generalized mirror descent
algorithm on a general smooth convex function still gives us
a fast convergence to its minimum.

Theorem 5. Suppose K = K1 × · · · × Kn, with each Ki
being a convex set. Let Φ : K → R be any convex function
which is λ-smooth with respect to some (R1, . . . , Rn) and let

1236

q = (q1, . . . , qn) = arg minz∈K Φ(z). Suppose we start from
some x0 = (x0

1, . . . , x
0
n), with each BRi(qi, x

0
i) ≤ γ, and then

use the update rule in (6), with each ηi ∈ [η, 1/λ] for some
η. Then for any ε ∈ (0, 1), there exists some Tε ≤ nγ/(ηε)
such that for any t ≥ Tε, Φ(xt) ≤ Φ(q) + ε.

We will prove Theorem 5 in Section 3.1. Now note that
Theorem 3 follows immediately from Theorem 5 since our
potential function Φ is convex by Proposition 1. On the
other hand, Theorem 5 works for a general convex function
(not restricted to the specific potential function given in (1)),
which may have independent interest of its own.

3.1 Proof of Theorem 5
Our proof follows closely that in [6] for the special case in

which all the ηi’s are identical. To simplify our notation, let
us denote the gradient vector ∇Φ(xt) by gt = (gt1, . . . , g

t
n),

with gti = ∇iΦ(xt).
Using the assumption that for each i, ηi ≤ 1/λ and thus

λ ≤ 1/ηi, the λ-smoothness condition implies that

Φ(xt+1) ≤ Φ(xt)+〈gt, xt+1−xt〉+
n∑
i=1

1

ηi
BRi(xt+1, xt), (8)

because each BRi(xt+1, xt) is nonnegative. Then we need
the following two lemmas, which we will prove later.

Lemma 6. For any integer t ≥ 0, Φ(xt+1) ≤ Φ(xt).

Lemma 7. For any integer T ≥ 1,

T−1∑
t=0

(
Φ(xt+1)− Φ(q)

)
≤

n∑
i=1

1

ηi
BRi(qi, x

0
i).

Combining these two lemmas together, we obtain

T
(

Φ(xT)− Φ(q)
)
≤

T−1∑
t=0

(
Φ(xt+1)− Φ(q)

)
≤

n∑
i=1

1

ηi
BRi(qi, x

0
i)

≤ nγ

η
.

Dividing both sides by T gives us

Φ(xT)− Φ(q) ≤ nγ

ηT
≤ ε,

when T ≥ nγ/(ηε), and we have the theorem. It remains to
prove the two lemmas, which we do next.

Proof of Lemma 6. We know from (8) that

Φ(xt+1) ≤ Φ(xt)+

n∑
i=1

(
〈gti , xt+1

i − xti〉+
1

ηi
BRi(xt+1

i , xti)

)
.

To bound the sum above, note that according to the defini-
tion of xt+1

i in (6), we have

〈gti , xt+1
i − xti〉+

1

ηi
BRi(xt+1

i , xti)

≤ 〈gti , xti − xti〉+
1

ηi
BRi(xti, x

t
i)

= 0.

Applying this to the above bound on Φ(xt+1), Lemma 6
follows.

Proof of Lemma 7. We know from (8) that for any t ≥
0, Φ(xt+1) is at most

Φ(xt) + 〈gt, xt+1 − xt〉+

n∑
i=1

1

ηi
BRi(xt+1, xt),

where the second term above can be expressed as

〈gt, xt+1 − xt〉 = 〈gt, q − xt〉+ 〈gt, xt+1 − q〉

= 〈gt, q − xt〉+

n∑
i=1

〈gti , xt+1
i − qi〉.

Since Φ(xt) + 〈gt, q − xt〉 ≤ Φ(q) for a convex Φ, we thus
know that Φ(xt+1) is at most

Φ(q) +

n∑
i=1

(
〈gti , xt+1

i − qi〉+
1

ηi
BRi(xt+1, xt)

)
. (9)

To bound the sum above, we rely on the following.

Proposition 8. For each i, 〈gti , xt+1
i − qi〉 is at most

1

ηi

(
BRi(qi, x

t
i)− BRi(qi, x

t+1
i)− BRi(xt+1

i , xti)
)
.

Proof. According to the definition of xt+1
i in (6), it is

also the minimizer of the function

L(z) = ηi〈gti , z − qi〉+ BRi(z, xti)

over z ∈ Ki, since 〈gti ,−qi〉 is a constant independent of
z. Then from a well-known fact in convex optimization, we
know that

〈∇L(xt+1
i), qi − xt+1

i 〉 ≥ 0.

Since ∇L(xt+1
i) = ηig

t
i +∇Ri(xt+1

i)−∇Ri(xti), we have

ηi〈gti , xt+1
i −qi〉 ≤

〈
∇Ri(xt+1

i)−∇Ri(xti), qi − xt+1
i

〉
. (10)

Then according to the definition of BRi(·), we have

BRi(qi, x
t
i)

= Ri(qi)−Ri(xti)− 〈∇Ri(xti), qi − xti〉,
BRi(qi, x

t+1
i)

= Ri(qi)−Ri(xt+1
i)− 〈∇Ri(xt+1

i), qi − xt+1
i 〉, and

BRi(xt+1
i , xti)

= Ri(x
t+1
i)−Ri(xti)− 〈∇Ri(xti), xt+1

i − xti〉.

By subtracting the second and the third equalities from the
first, we obtain

BRi(qi, x
t
i)− BRi(qi, x

t+1
i)− BRi(xt+1

i , xti)

=
〈
∇Ri(xt+1

i)−∇Ri(xti), qi − xt+1
i

〉
.

Substituting this into (10) proves the proposition.

Combining the bound from this proposition with the up-
per bound on Φ(xt+1) in (9), we obtain

Φ(xt+1) ≤ Φ(q) +

n∑
i=1

1

ηi

(
BRi(qi, x

t
i)− BRi(qi, x

t+1
i)

)
.

1237

This implies that

T−1∑
t=0

(
Φ(xt+1)− Φ(q)

)
≤

n∑
i=1

1

ηi

T−1∑
t=0

(
BRi(q, xti)− BRi(q, xt+1

i)
)

≤
n∑
i=1

1

ηi
BRi(qi, x

0
i),

which proves Lemma 7.

3.2 Proof of Corollary 4
Let us first consider the case that each player plays the

gradient descent algorithm. Note that this corresponds to
choosing Ri(ui) = ‖ui‖22/2 for each i, and one can show that
BRi(ui, vi) = ‖ui − vi‖22/2, for ui, vi ∈ Ki. Then, we have

BRi(qi, x
0
i) = ‖qi − x0

i ‖22/2 ≤ ‖qi − x0
i ‖21/2

which is at most(
‖qi‖1 + ‖x0

i ‖1
)2
/2 ≤ 2/n2.

Therefore, we can choose γ = 2/n2 to have BRi(qi, x
0
i) ≤

γ. Furthermore, using the Taylor expansion together with
Proposition 2, we know that for any x, x′ ∈ K,

Φ(x′) ≤ Φ(x) + 〈∇Φ(x), x′ − x〉+ α‖x′ − x‖22/2,

with α = mb1d. Since

‖x′ − x‖22/2 =
∑
i

‖x′i − xi‖22/2 =
∑
i

BRi(x′i, xi),

we can choose λ = α to guarantee that Φ is λ smooth.
Next, let us consider the case that each player plays the

multiplicative update algorithm. Note that this corresponds
to choosing Ri(ui) =

∑
s(ui,s lnui,s − ui,s) for each i, and

one can show that BRi(ui, vi) =
∑
s ui,s ln(ui,s/vi,s), for

ui, vi ∈ Ki. Then, we have

BRi(qi, x
0
i) ≤

∑
s

qi,s ln(|Si|n) ≤ ln(dn).

Therefore, we can choose γ = ln(dn) to have BRi(qi, x
0
i) ≤ γ.

Furthermore, we know that

‖x′i − xi‖22/2 ≤ ‖x′i − xi‖21/2 ≤ BRi(x′i, xi),

by Pinsker’s inequality. Therefore, we can again choose λ =
α to guarantee that Φ is λ smooth.

Substituting these bounds of γ and λ into Theorem 3,
Corollary 4 then follows.

4. EQUILIBRIUM, SOCIAL EFFICIENCY,
AND MAKESPAN

According to Theorem 3, the flow xt at step t ≥ Tε enjoys
the nice property that Φ(xt) ≤ Φ(q) + ε. In this section, we
show the implication of this property.

4.1 Approximate Equilibrium
We say that a flow x ∈ K is an δ-equilibrium if for any

player i ∈ N and any paths s, s′ ∈ Si with xi,s > 0, cs(x) ≤
cs′(x) + δ. Note that with δ = 0, we recover the standard
definition of equilibrium for nonatomic games. The following
shows that after the convergence time, the system playing
our algorithm will stay in an δ-equilibrium for a small δ.

Theorem 9. Any x ∈ K such that Φ(x) ≤ Φ(q) + ε must
be a δ-equilibrium for some δ ≤

√
8b1mε.

Proof. Consider any x ∈ K such that Φ(x) ≤ Φ(q) + ε
and any i ∈ N . Let s0 be the path in Si which minimizes
cs(x) among s ∈ Si, and let s1 be the path which maximizes
cs(x) among s ∈ Si with xi,s > 0. Let δ = cs1(x) − cs0(x)
and our goal is to show that δ is small. The idea is that
if δ were large, we could move a significant amount of load
from s1 to s0 and decrease the Φ value substantially, which
is impossible as Φ(x) is close to the minimum value Φ(q).
Formally, let us move some ∆ amount of load from s1 to s0,
and let z denote the new flow. Note that the cost increase on
s0 and the cost decrease on s1 are both at most mb1∆, since
c′e(y) ≤ b1 for any y according to the condition (2). Thus,
with ∆ = δ/(4b1m), we can have cs1(z) ≥ cs1(x)− δ/4 and
cs0(z) ≤ cs0(x) + δ/4, so that

cs1(z)− cs0(z) ≥ cs1(x)− cs0(x)− δ/2 = δ/2. (11)

On the other hand, moving the load decreases the Φ value
by the amount

Φ(x)− Φ(z)

=
∑

e∈s1\s0

∫ `e(x)

`e(x)−∆

ce(y)dy −
∑

e∈s0\s1

∫ `e(x)+∆

`e(x)

ce(y)dy

≥
∑

e∈s1\s0

∆ce(`e(x)−∆)−
∑

e∈s0\s1

∆ce(`e(x) + ∆)

= ∆
∑
e∈s1

ce(`e(z))−∆
∑
e∈s0

ce(`e(z))

= ∆ (cs1(z)− cs0(z))

≥ ∆δ/2,

where the first inequality holds as the function ce is non-
decreasing and the last inequality holds by (11). Since z is
still a feasible flow in K, its Φ value cannot be smaller than
that of q and we must have Φ(x)−Φ(z) ≤ Φ(x)−Φ(q) ≤ ε,
which implies that ∆δ/2 ≤ ε. With ∆ = δ/(4b1m), we have
δ ≤

√
8b1mε. Since this holds for any i ∈ N , we have the

theorem.

4.2 Average Individual Cost
We show that after the convergence time, the average in-

dividual cost achieved by our algorithm is only within a
constant factor from the optimum one.

Theorem 10. Any x ∈ K such that Φ(x) ≤ Φ(q)+ε must

have CA(x)
CA(x∗) ≤

b1
b0

(
1 + 2mε

b0

)
.

Proof. For any z ∈ K, we can rewrite CA(z) as

CA(z) =
∑
e

`e(z)ce(`e(z))

=
∑
e

∫ `e(z)

0

(yce(y))′ dy

=
∑
e

∫ `e(z)

0

(
ce(y) + yc′e(y)

)
dy.

Under the condition (2), we have yc′e(y) ≤ yb1 = b1
b0
b0y ≤

1238

b1
b0
ce(y) and thus

CA(z) ≤
∑
e

∫ `e(z)

0

(
1 +

b1
b0

)
ce(y)dy

=
b0 + b1
b0

Φ(z). (12)

On the other hand, we also have yc′e(y) ≥ yb0 = b0
b1
b1y ≥

b0
b1
ce(y) and thus

CA(z) ≥
∑
e

∫ `e(z)

0

(
1 +

b0
b1

)
ce(y)dy

=
b0 + b1
b1

Φ(z). (13)

Replacing z in (12) by x with Φ(x) ≤ Φ(q)+ε, and replacing
z in (13) by x∗, we obtain

CA(x)

CA(x∗)
≤ b1
b0

Φ(x)

Φ(x∗)
≤ b1
b0

Φ(q) + ε

Φ(q)
,

as Φ(x∗) ≥ Φ(q), which gives us

CA(x)

CA(x∗)
≤ b1
b0

(
1 +

ε

Φ(q)

)
. (14)

Finally, using the condition (2), we have for any z ∈ K that

Φ(z) ≥
∑
e

∫ `e(z)

0

b0ydy =
b0
2

∑
e

(`e(z))
2

≥ b0
2m

(∑
e

`e(z)

)2

≥ b0
2m

, (15)

where the second inequality is by Cauchy-Schwarz and the
last inequality holds as the total load of players is 1. Substi-
tuting the bound of (15) into (14) with z = q, we have the
theorem.

Remark 2. We can make CA(x)
CA(x∗) ≤

b1
b0

(1 + σ) for any σ

we want, by choosing ε = b0σ/(2m). Then by Remark 1, one
can compute the corresponding convergence time Tε, which
is proportional to 1/σ.

4.3 Maximum Individual Cost in Symmetric
Games

In a symmetric game, Si = S for every i ∈ N . Taking ad-
vantage of this property, we show that after the convergence
time the maximum individual cost achieved by our algorithm
is again within a constant factor from the optimum one.

Theorem 11. Any x ∈ K such that Φ(x) ≤ Φ(q)+ε must

have CM (x)
CM (x̂)

≤ b1
b0

(
1 + 2mε

b0
+ δm

b1

)
, where δ ≤

√
8b1mε.

Proof. Consider any x ∈ K with Φ(x) ≤ Φ(q) + ε. Let
s0 = arg mins∈S cs(x) and s1 = arg maxs∈S cs(x). To apply
Theorem 9, let us choose a player i with xi,s1 > 0; such a
player must exist because otherwise there would be no load
on s1 and cs1(x) = 0 could not be the highest path cost.
Since Si = S in a symmetric game, s0 is also the path of
player i with the lowest path cost. Therefore, we can apply
Theorem 9 and have δ = cs1(x) − cs0(x) ≤

√
8b1mε. Note

that CM (x) = cs1(x) by definition. Thus, we have

CM (x)

CM (x̂)
≤ cs1(x)

CA(x̂)
=
cs0(x) + δ

CA(x̂)
≤ CA(x) + δ

CA(x∗)
,

where the first inequality is by the definitions of CM and
CA, and the second inequality follows from the fact that
cs0(x) ≤ CA(x) and x∗ minimizes CA. Furthermore,

CA(x) + δ

CA(x∗)
=

CA(x)

CA(x∗)
+

δ

CA(x∗)
≤ b1
b0

(
1 +

2εm

b0

)
+

δ

CA(x∗)

by Theorem 10. Finally, using a similar analysis as in the
proof of Theorem 10, one can show that

CA(x∗) ≥
∑
e

∫ `e(x∗)

0

(b0y + b0y)dy = b0
∑
e

(`e(x
∗))2 ≥ b0

m
.

Combining all the bounds together, we have the theorem.

Remark 3. We can make CM (x)
CM (x̂)

≤ b1
b0

(1 + σ) for any σ

we want, by choosing ε = b0σ
2/(32m). Then according to

Remark 1, one can compute the corresponding convergence
time Tε, which is now proportional to 1/σ2.

5. CONCLUSIONS AND FUTURE WORK
We show that the mirror-descent dynamics converges to

an approximate equilibrium in nonatomic congestion games.
We do this by observing that the dynamics corresponds to
a mirror-descent process on a convex potential function of
such a game and then proving that the process converges to
the minimum of the function. Moreover, we provide bounds
on the outcome quality achieved by our dynamics in terms
of two social costs: the average individual cost and the max-
imum individual cost.

A possible immediate extension is to consider the bandit
setting [2, 12, 1], an even more stringent partial information
model, in which a player in each round only gets to observe
one single value: the cost of her strategy she just played.
We are looking for good estimates for the gradient vectors
to adapt mirror descent to work also in the bandit setting.
However, it is not clear if any bandit mirror-descent dy-
namics would be able to converge, let alone the convergence
time, since one can only have an estimator of the true gra-
dient vector, and the estimators used by previous works all
differ from the gradient significantly with high probability,
although its expectation equals the gradient.

Finally, there may be other no-regret or even other learn-
ing algorithms which could guarantee nice convergence prop-
erties or simply good quality of outcomes. For example, con-
vergence may not lead to any meaningful notions of equi-
libria, but may result in good efficiency in terms of some
objectives [4]; natural learning processes have the poten-
tial to significantly outperform equilibrium-based analysis
in some games [13]. There are more learning algorithms and
dynamics to be explored in repeated games, while classes
of games are even more numerous. Beyond learning, there
is still a variety of different dynamics in repeated games.
For instance, Auletta et al. [3] presented general bounds
on the mixing time of “logit” dynamics for classes of strate-
gic games, in which individual participants act selfishly and
keep responding according to some partial noisy knowledge.
In particular, they proved nearly tight bounds for potential
games and games with dominant strategies. Different classes
of games could have different choices of learning algorithms
for better fine-tuned results.

1239

[1] J. Abernethy, E. Hazan, and A. Rakhlin. Competing
in the dark: An efficient algorithm for bandit linear
optimization. In Proc. 21st Annual Conference on
Learning Theory, 2008.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1), 2003.

[3] V. Auletta, D. Ferraioli, F. Pasquale, and P. Penna.
Convergence to equilibrium of logit dynamics for
strategy games. In Proc. 23rd ACM symposium on
Parallelism in algorithms and architectures, 2011.

[4] M.-F. Balcan, A. Blum, and Y. Mansour.
Circumventing the price of anarchy: Leading
dynamics to good behavior. SIAM Journal on
Computing, 42(1), 2013.

[5] Amir Beck and Marc Teboulle. Mirror descent and
nonlinear projected subgradient methods for convex
optimization. Operations Research Letters,
31(3):167–175, 2003.

[6] B. Birnbaum, N. Devanur, and L. Xiao. Distributed
algorithms via gradient descent for fisher markets. In
Proc. 12th ACM Conference on Electronic Commerce,
pages 127–136, 2011.

[7] A. Blum, E. Even-Dar, and K. Ligett. Routing
without regret: On convergence to Nash equilibria of
regret-minimizing algorithms in routing games. In
Proc. 25th ACM Symposium on Principles of
Distributed Computing, 2006.

[8] A. Blum, M. T. Hajiaghayi, K. Ligett, and A. Roth.
Regret minimization and the price of total anarchy. In
Proc. 40th Annual ACM Symposium on Theory of
Computing, 2008.

[9] N. Cesa-Bianchi and G. Lugosi, editors. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[10] Y K. Cheung, R. Cole, and N. Devanur. Tatonnement
beyond gross substitutes?: gradient descent to the
rescue. In Proc. 45th ACM Symposium on theory of
computing, pages 191–200, 2013.

[11] E. Even-dar, Y. Mansour, and U. Nadav. On the
convergence of regret minimization dynamics in
concave games. In Proc. 41st Annual ACM
Symposium on Theory of Computing, 2009.

[12] A. Flaxman, A. T. Kalai, and H. B. McMahan. Online
convex optimization in the bandit setting: gradient
descent without a gradient. In Proc. 16th ACM-SIAM
Symposium on Discrete Algorithms, 2005.

[13] R. Kleinberg, K. Ligett, G. Piliouras, and E. Tardos.
Beyond the nash equilibrium barrier. In Proc. 2nd
Symposium on Innovations in Computer Science, 2011.

[14] R. Kleinberg, G. Piliouras, and E. Tardos. Load
balancing without regret in the bulletin board model.
In Proc. 28th ACM Symposium on Principles of
Distributed Computing, 2009.

[15] R. Kleinberg, G. Piliouras, and E. Tardos.
Multiplicative updates outperform generic no-regret
learning in congestion games. In Proc. 40th ACM
Symposium on Theory of Computing, 2009.

[16] T. Roughgarden. Intrinsic robustness of the price of
anarchy. In Proc. 41st Annual ACM Symposium on
Theory of Computing, 2009.

[17] T. Roughgarden and F. Schoppmann. Local
smoothness and the price of anarchy in atomic
splittable congestion games. In Proc. 22nd
ACM-SIAM Symposium on Discrete Algorithms, 2011.

APPENDIX
A. PROOF OF PROPOSITION 1

Recall that

Φ(x) =
∑
e∈E

∫ `e(x)

0

ydy,

where `e(x) =
∑
i∈N

∑
s:e∈s xi,s. Let

ψe(v) =

∫ v

0

ce(y)dy

so that Φ(x) =
∑
e∈E ψe(`e(x)). Observe that `e is a linear

function of x ∈ K, while ψe is a convex function of v ∈ R as
ce is assumed to be nondecreasing. Then for any δ ∈ [0, 1]
and any x, x′ ∈ K,

(1− δ)Φ(x) + δΦ(x′)

=
∑
e∈E

(
(1− δ)ψe(`e(x)) + δψe(`e(x

′))
)

≥
∑
e∈E

ψe((1− δ)`e(x) + δ`e(x
′))

=
∑
e∈E

ψe(`e((1− δ)x+ δx′))

= Φ((1− δ)x+ δx′).

This proves that Φ is convex.

B. PROOF OF PROPOSITION 2
Let ξ ∈ K. Consider any i, j ∈ N , s ∈ Si, and r ∈ Sj .

First, we have

∂Φ(ξ)

∂xi,s
=
∑
e∈E

ce(`e(ξ))
∂`e(ξ)

∂xi,s
=
∑
e∈s

ce(`e(ξ)).

Next, note that if i 6= j, we have

∂2Φ(ξ)

∂xi,s∂xj,r
= 0,

and if i = j, we have

∂2Φ(ξ)

∂xi,s∂xi,r
=
∑
e∈s

∂ce(`e(ξ))

∂xi,r
=
∑
e∈s∩r

c′e(`e(ξ)).

This means that each entry of the Hessian matrix ∇2Φ(ξ) is
at most mb1. Then for any z ∈ Rd, we have

z>(∇2Φ(ξ))z ≤ mb1
∑

(i,s),(j,r)

|zi,s||zj,r|

= mb1

(∑
i,s

|zi,s|

)2

≤ mb1
(√

d‖z‖2
)2

,

by Cauchy-Schwarz inequality. This implies that ∇2Φ(ξ) �
αI with α = mb1d.

6. REFERENCES

1240

