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ABSTRACT
We investigate cortical learning from the perspective of mech-
anism design. First, we show that discretizing standard
models of neurons and synaptic plasticity leads to rational
agents maximizing simple scoring rules. Second, our main
result is that the scoring rules are proper, implying that
neurons faithfully encode expected utilities in their synaptic
weights and encode high-scoring outcomes in their spikes.
Third, with this foundation in hand, we propose a biologi-
cally plausible mechanism whereby neurons backpropagate
incentives which allows them to optimize their usefulness to
the rest of cortex. Finally, experiments show that networks
that backpropagate incentives can learn simple tasks.

Categories and Subject Descriptors
[Theory of computation]: Multi-agent learning; [Theory
of computation]: Algorithmic mechanism design

Keywords
incentives for cooperation; multiagent learning; biologically-
inspired approaches; prediction markets; neural networks

1. INTRODUCTION
How does the brain encode information about the envi-

ronment into its structure [27]? Inspired by recent work in
prediction markets, we apply mechanism design to investi-
gate cortical learning and the neural code [1–3, 12, 15, 19].
To the best of our knowledge this is the first paper to do so.

We start in §2 by modeling neurons as rational agents:
that is, agents whose sole aim is to maximize the expected
value of an objective function. To do so, we draw on a recent
paper showing that discretizing standard models of neuronal
dynamics [14] and learning [26] yields a threshold neuron
with an online update rule that optimizes a simple objective
[5]. By maximizing their objective function, neurons seek to
optimally trade off rewards, depending on neuromodulatory
signals such as dopamine, with costs, depending on resources
expended on synaptic connections [6, 7].

However, it is not enough that neurons optimize locally.
They should collectively converge on useful outcomes. The
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problem of how a global (cortical) optimization procedure
can be implemented at a local (neuronal) level remains open.

To tackle the problem we turn to mechanism design: How
to incentivize populations of rational agents to produce de-
sirable outcomes? An inspiring successful application of
mechanism design is prediction markets, which aggregate
the behavior of self-interested traders into accurate predic-
tions of diverse real-world events [8, 21]. This has moti-
vated research on payment schemes that encourage agents
to trade in markets if the price distribution differs from their
beliefs [15]. Of particular interest are proper scoring rules:
payment schemes that incentivize rational agents to truth-
fully report their beliefs [19].

Our next step, §3, is therefore to analyze neuronal objec-
tive functions as payment schemes. This has implications in
two directions. First, since the neuronal objective function
decomposes as a sum over synapses, we model synapses as
rational agents trading in a neuronal market, §3.1. Second,
we model neurons as rational agents trading in a cortical
prediction market, §4.3.

Our main result, Theorem 5, establishes a striking con-
nection between prediction markets and cortical learning:
neuronal objective functions are proper scoring rules. The
remainder of the paper applies two corollaries of Theorem 5
to show that well-functioning neuronal markets form a foun-
dation for a well-functioning cortical market – thereby gluing
together the two perspectives.

Corollary 6 shows that synaptic weights encode the utility
expected after pre- and post- synaptic spikes. This partially
answers the question posed earlier: “How does the brain en-
code information about the environment into its structure?”

More importantly, the corollary provides a foundation for
cooperative learning. Consider the following basic schema
to incentivize rational agents to collaborate:

(i) each agent estimates its usefulness to other agents,
(ii) incorporates the estimate into its reward function and
(iii) thus maximizes its usefulness to the collective.

To implement the schema, neurons must estimate their use-
fulness. Corollary 6 implies that synaptic weight wij quan-
tifies how useful spikes from ni are to nj , when nj spikes.
More generally, the sum of outgoing synaptic connections
quantifies how useful a neuron’s outputs are to the rest of
the system. We therefore define the usefulness of a neuron
as, roughly, the sum of its downstream weights, §4.

In line with the schema we then show, Corollary 7, that
incorporating feedback into reward functions causes neurons
to (i) estimate their usefulness and (ii) maximize the esti-
mate. This provides a new interpretation of a spike-based
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backpropagation scheme [23] that is closely related to error-
backpropagation [24]. In short, well-functioning neuronal
markets, with synapses faithfully reporting expected utili-
ties, can be used to build well-functioning cortical markets.

Finally, experiments in §5 confirm our theoretical results.

Scope and related work.
A well-studied framework in neuroscience is based on the

idea that neurons infer the probabilities of external events,
which are encoded into probabilistic population codes, see
e.g. [9]. By contrast, we emphasize decisions over inferences.
We are concerned with how neurons act, rather than what
they infer. The two perspectives are related and it may turn
out, as in prediction markets where prices can encode prob-
abilities, that the population coding and mechanism design
approaches lead to the same destination.

Our goal is to show methods from mechanism design can
be fruitfully applied to fundamental questions in neuroscience.
We do not advocate specifically for the scoring rules below.
These were derived from standard, but simple, neurophysi-
ological models. It should be possible to extend our results
to more realistic models.

This paper is inspired by recent work showing that care-
fully designed markets can be used to aggregate hypotheses
generated by populations of learning algorithms [2,20,28].

2. A MINIMAL MODEL
At first glance, the models developed by neuroscientists

are quite different from the rational agents studied in game
theory. To build a bridge we utilize recent work discretizing
a standard model from the neuroscience literature [5].

2.1 Discretized neurons
Consider a system of N binary neurons {nj}Nj=1. Let O =

{0, 1}N denote the set of possible states. Each neuron is
connected to a subset of the system. Suppose neuron nj
has Kj � N synapses. We model the restriction of the
total system state to the subset received by neuron nj with
a mask projecting from {0, 1}N to {0, 1}Kj

ϕj : O → {0, 1}Kj : x = (x1, . . . , xN ) 7→ (xi){i|i→j}. (1)

Neuron nj is equipped with a Kj-vector of synaptic weights,
wj ∈ Hj = RKj . Given input x ∈ O, the neuron outputs a
0 or 1 according to

fwj (x) :=

{
1 if 〈wj , ϕj(x)〉 − ϑ > 0

0 else
(2)

for some fixed ϑ constant across all neurons.
To simplify the exposition, we drop ϕj from the notation

and let H := RN denote the space of synaptic weights –
where synapses that do not physically exist are implicitly
clamped to zero. Thus, we treat entire system states as
inputs to a neuron – when in fact the mask projects out
most inputs.

Definition 1. Suppose we have utility function µ : O →
R. Following [5], define reward function

R(x,wj , µj) = µj(x)︸ ︷︷ ︸
utility

· (〈wj ,x〉 − ϑ)︸ ︷︷ ︸
margin

· fwj (x)︸ ︷︷ ︸
selectivity

(3)

Examples of utility functions are provided in §2.2 and §4.1.

Remark 1 (notation for spikes). Note that fwj (x),
xj, 1wj , and 1j all denote the output of neuron nj; empha-
sizing the function producing the output, that the output is
also an input (one of many forming a vector) to other neu-
rons, or the indicator-function aspect of the output respec-
tively. We use 1ij := 1i · 1j to indicate the cospiking of
neurons ni and nj.

Ignoring costs for a moment, suppose neurons maximize

E(x,µ)∼P

[
R(x,w, µ)

]
, where P (x, µ) is the joint distribution

on spiking inputs and neuromodulators.
The reward function is continuously differentiable (in fact,

linear) as a function of w everywhere except at the kink
〈w,x〉 = ϑ where it is continuous but not differentiable.
We can therefore perform gradient ascent to obtain synaptic
updates

∆wij ∝ µj(x) · xi · fwj (x) = µj(x) · 1ij . (4)

In short, if nj receives input 1i and subsequently spikes 1j ,
then synapse i→ j is modified proportionally to µj(x). The
main theorem in [5] derives the above equations by discretiz-
ing standard models of neuronal dynamics and learning:

Theorem 1 (discretized neurons, [5]). The fast time
constant limit of Gerstner’s Spike Response Model [14] is
(2). Taking the fast time constant limit of STDP [26] yields
(4) with µj(x) = 1. Finally, STDP is gradient ascent on a
reward function whose limit is (3).

Spike-timing dependent plasticity is prone to overpotenti-
ation [26], leading to epileptic seizures. In the neuroscience
literature, weights are typically controlled with a depotenta-
tion bias. We take an alternative approach, by introducing
a regularizer A•(w), which quantifies the resource costs in-
curred by high synaptic weights [5, 6, 18].

The optimal weights are then computed according to

w∗j := argmax
w∈H

EP
[
S•(x;w)

]
(5)

:= argmax
w∈H

EP
[
R(x,w, µ)−A•(w)

]
(6)

where scoring rule S•(x,w) balances rewards R(x,w, µ)
against costs A•(w). We consider two standard regularizers
taken from machine learning [25] and a third, more biologi-
cally plausible, taken from [5]:

A2(wj) = 1
2η
‖wj‖22 `2

AH(wj) = 1
η

∑
iwij logwij `H

A1(wj) = 1
η
‖wj‖1, where 0 ≤ wij ≤ 1 for all i. `1

Clearly `H is not a norm – we find the notation convenient.
Computing gradient ascent yields online updates

∆wij ∝ µj(x) · 1ij −
1

η
·


wij `2

logwij + 1 `H

1 `1

(7)

Remark 2 (regularizers). Each regularizer has points
in its favor. The `1 regularizer provides a simple interpreta-
tion of the saturated synaptic weights observed in some neu-
rophysiological models [13]. The `2 regularizer allows nega-
tive synaptic weights, corresponding to inhibitory synapses.
Finally, `H results in weights that can be interpreted as a
probability distribution and is closely related to Hanson’s log-
arithmic market scoring rule [11].
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2.2 Utility functions
Three biologically inspired utility functions are:
Example U1. (Feedforward, frequency). Utility function

µ(x) = 1 encourages neurons to spike for inputs that are
frequent and contain many spikes.

Example U2. (Feedforward, invariance). A more interest-
ing utility function takes inputs over consecutive time steps
x = (x(t−1),x(t)) as input and sets µ(x) = fw(x(t−1)). This
encourages neurons to learn stable patterns containing many
spikes, i.e. those that cause it to spike twice consecutively.
The utility function can be extended across multiple time
steps, possibly with a temporal discount factor.

Example U3. (Neuromodulators). Neuromodulatory sys-
tems signaling global rewards can be modeled via P (ν|x)
where ν is a real-valued random variable: positive outcomes
are reinforced and conversely. The utility is then µ(x) :=
Eν∼P (ν|x)[ν|x], where the expectation is with respect to the
distribution on neuromodulators.

A fourth utility function is discussed in §4.1.

3. NEURONAL PREDICTION MARKETS
Scoring rules are schemes for paying agents based on their

reports. Proper scoring rules, which incentivize agents to re-
port truthfully, have proven useful in a wide range of settings
including weather forecasts [10], prediction markets [15, 19]
and crowdsourced learning mechanisms [2, 3].

Our main result, Theorem 5, is that the scoring rules S• in
(5) are proper for all three regularizers. The upshot is that
a neuron’s synaptic weights faithfully encode1 expectations
about rewards after pre- and post- synaptic spiking activity.
The form of the encoding depends on the regularizer.

3.1 Synapses as rational agents
This subsection argues that synapses are analogous to

traders, operating within a neuronal market, that attempt
to maximize their payout relative to their expenditures.

Prediction market traders buy and sell contingent securi-
ties. The simplest case is an Arrow-Debreu security, which
pays out $1 if an outcome belongs to a particular set, and $0
otherwise [4]. For example an Arrow-Debreu security could
pay $1 if and only if candidate X wins an election. The price
a trader will pay depends on her expectations about whether
X will win. It turns out that the prices of securities in well-
designed, liquid markets reliably aggregate traders’ diverse,
private information into public estimates of the probabilities
of outcomes [16].

nj neuron market
i→ j synapse trader
1i spike security
A•(wij) regularizer at i cost to i→ j
wij1i weight × spike 1is bought by i→ j
〈wj ,x〉 total current bundle of securities
〈wj ,x〉1j current × spike collective bid
µj(x)wij1ij reward of i→ j payout to i→ j

Since the neuronal scoring rule decomposes into sum S• =∑
i S

i
•, we can model not only neurons, but also synapses,

as rational score-maximizing agents. Synapse i→ j receives
payment

Si• := EP
[
(wij1i − ϑ) · µj(x)1j −A•(wij)

]
, (8)

1“Truthful reporting” is not appropriate when referring to
neurons. We use the phrase “faithful encoding” instead.

where 1j depends on vector wj and couples the synapses.
Synapse i → j invests amount A•(wij) to set its weight

to wij . In return, it receives quantity wij of security 1i.
Like paper money, the securities 1i have no intrinsic worth.

Instead, they are bundled into total current 〈wj ,x〉. If the
bundle exceeds threshold ϑ then nj spikes. That is, nj uses
the bundle to bid on an extrinsic event: the utility µj(x).

After bidding, neuron nj receives payout µj(x)〈wj ,x〉1j ,
of which it distributes an amount µj(x)wij1ij to each synapse
proportional to its contribution wij1i to the bundle. Synapses
only receive payouts when they spike. Payouts can be posi-
tive or negative.

Summarizing, synapses optimize the payout, µj(x)wij1ij
resulting from their contribution wij1i to the collective bid,
against their cost A•(wij). The neuron’s bid 〈wj ,x〉1j is
thus a collective prediction of high utility by its synapses.

3.2 Proper scoring rules
The remainder of this section uses properness to precisely

quantify how synaptic weights relate to utility expectations.

Definition 2. Let PO be a set of probability distributions
on states O and define a property as a function Γ : PO →
H. Scoring rule S : O ×H → R is proper [19] for property
Γ : PO → H if for all P ∈ PO

Γ(P ) ∈ argmax
w∈range(Γ)

EP
[
S(x;w)

]
. (9)

Properness is the common-sensical requirement that the
true value, w = Γ(P ), is a score maximizer, w ∈ argmaxEP [S].
In short: “you get what you think you are paying for”.

Proper scoring rules can be constructed as follows [3].
Given functions ρ : O → H and F : H → R, define

SF : O ×H → R : (x;w) 7→ −DF (ρ(x),w)− F (ρ(x))

where DF (x,y) := F (x) − F (y) − 〈∇F (y),x − y〉 is the
Bregman divergence. It is shown in [3] that:

Proposition 2 (linear proper scoring rules).
If F is convex then SF is a proper scoring rule for linear
property Γ : P 7→ EP [ρ(x)].

3.3 Proper scoring for discretized neurons
This section adapts Proposition 2 to discretized neurons.

As a warmup, we show that dropping the selectivity term
from (3) yields proper scoring rules.

Lemma 3. Let T•(x;wj) := µj(x)·
(
〈wj ,x〉−ϑ

)
−A•(wj)

be scoring rules. These are proper for ΓT• : PO → H = RN ,

ΓT• : P 7→ G•
(
EP
[
µj(x) · x

])
for


G2(v) = η · v
GH(v) = eη·v−1

G1(v) = 1η·v>1,

where 1η·•>1 an N-vector of indicator functions returning 1
when η · • > 1 and 0 otherwise.

Proof. We drop ϑ since it is independent of wj . Define
hypothesis space H = RN and map

ρµ : O → H : x 7→ µ(x) · x.

We consider the three cases in turn.
Observe that convex function F2(x) = 1

2η
‖x‖22 yields scor-

ing rule S2(x,wj) = 〈µ(x) ·x,wj〉− 1
2η
‖wj‖22, which implies

T2 is proper by Proposition 2.
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For TH , restrictH to the subset of RN where
∑
i exp( 1

η
wij)) =

1 and define ψ : H → H = RN taking wij 7→
exp( 1

η
wij)∑

i exp( 1
η
wij))

=

exp( 1
η
wij). Convex function FH(x) = η log(

∑n
i=1 exp( 1

η
xi))

yields

SH(x,wj) = FH(wj) + 〈ψ(wj), µj(x) · x−wj〉

=
〈
ψ(wj), µj(x) · x

〉
− 1

η

〈
ψ(wj), logψ(wj)

〉
,

since FH(wj) = 0. By Proposition 2 it follows that TH is
proper for linear property EP [η · v]. The result follows for
ΓTH since e•−1 is monotonic. We use the nonlinear “exp” rep-
resentation since it directly corresponds to synaptic weights
which will be useful in Theorem 5.

Proposition 2 does not apply to T1, so we derive proper-
ness by other means. Computing gradients obtains

∆wj ∝ EP
[
µj(x) · x

]
− 1

η

which has a stationary point when all synaptic weights are
equal to the scalar η. The stationary point is unstable – a lo-
cal minima rather than maxima. Synapses with EP [η ·µj(x)·
1i] > 1 are forced to boundary condition wij = 1; others
are forced to 0 (for simplicity we assume no expectation is
precisely 1).

The range of ΓT1 is the set of N -vectors of 0s and 1s. Any
w ∈ range(ΓT1 ) differing from ΓT1 (P ) has non-zero gradient
and hence a lower score, implying ΓT1 is proper.

The selectivity term in (3) introduces a complication into
the scoring rule: potentiating a synaptic weight may cause a
neuron to stumble over a sharp change in its utility function
that is hidden by the selectivity term. Although the reward
function is continuous in w its derivative is not: there is a
kink. We bound the jump after crossing a kink via

Assumption 1 (no nasty surprises). If
∆ij = EP

[
µj(x)1i1wj

]
− ∂iA•(wj) > 0 then there exists

ε > 0 such that

EP
[
µj(x)1ε·∆ij

]
> −∆ij ,

where 1∆ij := 1wj+ε·∆ij − 1wj .

Assumption 1 implies that sufficiently small synaptic up-
dates, Eq. (7), always increase a neuron’s score:

Lemma 4 (smooth ascent). Under Assumption 1, if
∆ij > 0 then there exists ε > 0 such that

EP
[
S•(x,wj + ε ·∆ij)

]
> EP

[
S•(x,wj)

]
and similarly for ∆ij < 0.

Proof. Straightforward computation.

Informally, if high utility follows ni and nj cospiking, then
Assumption 1 says that the utility of new inputs, causing nj
to spike when synapse i increases by ∆ij , is not too negative.
If the assumption fails then the neuron will continuously
potentiate and depotentiate synapse i as the gradient jumps
from positive to negative. This is analogous to the behavior
of a perceptron when confronted with classes that are not
linearly separable.

Nasty surprises can be avoided in at least two ways. First,
by designing the utility function so that it behaves well with

respect to the distribution the neuron encounters. Second,
by allowing neuron nj to modify its regularization parameter
ηj . Going further, one could introduce additional degrees of
freedom by associating an ηij with each synapse (note the
regularizers are sums over synapses) that is tweaked when
a neuron detects that one of its synapses jumps back and
forth. We do not pursue these ideas here.

Before proving our main result, we introduce some no-
tation. Given w, let 1w := f−1

w (1) ⊂ O and let PO de-
note the powerset of O. Enlarge the hypothesis space to
H′ := PO ×H with embedding ψ : H → H′ : w 7→ (1w,w).
Let w∗ = argmaxw∈H EP [S•].

Theorem 5 (neuronal scoring rules are proper).
Under Assumption 1, scoring rules S• are proper for prop-
erty Γ• : PO → H′ = PO ×H,

Γ• : P 7→
(
1w∗ , G•

(
EP
[
µ(x) · x · 1w∗

]))
, (10)

where G•(v) ∈ {η·v, eη·v−1,1η·v>1} depending on the choice
of regularizer.

Proof. Property P 7→ 1w∗ is proper by construction; we
therefore focus on the synaptic term G•(·) in Eq. (10).

Computing gradients for S2 and SH yields stationary points

w∗ = EP
[
η · µ(x) · x · 1w∗

]
and

w∗ ∝ exp
(
EP
[
η · µ(x) · x · 1w∗

]
− 1
)

respectively which are stable maxima under Assumption 1
by Lemma 4. As argued before, a weight vector w that
does not have zero-gradient cannot be a maxima, and the
argument follows from Lemma 3.

Similar reasoning applies to S1.

Remark 3 (indirect elicitation). Eliciting properties
from distributions was studied in [19], which drew a distinc-
tion between elicitable and directly elicitable properties. For
example, the variance can only be elicited by a scoring rule if
the mean is elicited as well. Similarly, G•(EP [µ(x) ·1i1w∗ ])
cannot be elicited directly, but only in conjunction with 1w∗ .

Neurons only modify their synapses to incorporate re-
wards when spiking, Eq. (4). This encourages specialization,
but also implies that individual neurons may never discover
that spiking for certain inputs results in very high utility.
More formally, the kink makes S• non-convex, so gradient
ascent is not guaranteed to find the global optimum.

Nevertheless, the relationship between synaptic weights
and expected utilities in Theorem 5 still holds:

Corollary 6 (synaptic code). Let w̃ be the (in gen-
eral local) maximum of S• obtained by gradient ascent with
Eq. (7). If Assumption 1 holds then w̃ satisfies

w̃ = G•
(
EP
[
µ(x) · x · 1w̃

])
. (11)

Note that Eq. (11) is not in closed form since w̃ appears
on both the left- and right-hand sides.

Proof. Since local maxima are stationary points, the
proof follows the same argument as Theorem 5.

A discretized neuron nj thus faithfully encodes two prop-
erties of its input distribution. First, its spikes encode a
set of inputs for which spiking is locally optimal. Second,
its synaptic weights encode the expected utility per synapse
when ni and nj co-spike.
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Remark 4 (neural code). Corollary 6 provides an in-
teresting interpretation of the meaning of spikes. A neuron
spikes if the dot product 〈wj ,x〉 is above threshold ϑ. That
is, neuron nj’s spike means that the current system state x is
significant (above threshold) when evaluated against the util-
ity expectations wj that were previously encoded into nj’s
structure.

Similarly to how stock price movements encode informa-
tion about which sectors of an economy are expected to yield
high profits in the near future; spikes and synaptic weights
encode expectations about future rewards.

4. CORTICAL PREDICTION MARKETS
This section investigates how neurons can estimate their

usefulness to downstream neurons, and so allocate their re-
sources such that the benefit to other neurons is maximized.
In short, we introduce a utility function that incentivizes
neurons to optimize their usefulness to other neurons.

4.1 Backpropagation: errors or incentives?
To provide context, we recall related work on incorpo-

rating spikes into a reward signal. Neuromodulators pro-
vide a primary reward system. However, neurons whose ac-
tions do not directly result in pleasure or pain may require
more indirect incentives. In machine learning, multilayer
networks are often trained by backpropagating errors [24].
However, backpropagation (BP) is biologically implausible –
it requires pathways for backpropagating errors which have
not been observed in cortex [23].

As an alternative, [23] proposed attention-gated reinforce-
ment learning (AGREL), which uses feedback spikes as at-
tention signals to modulate learning. AGREL abstracts two
features of feedback (NMDA) connections in cortex: (i) they
prolong, but do not initiate, spiking activity and (ii) they
have a multiplicative effect on synaptic updates.

ni
w
ff
ij // nj

wjk

55 nk

w
fb
kj

uu

AGREL updates feedforward weights according to

∆wij ∝ wfb
kjxk · xixj · (1− xj) · f(δ), (12)

where f(δ) is a global reward signal. Here, neurons have
real-valued outputs and (1 − xj) is a regularizer that pre-
vents nj from overactivating. The main result of [23] is that
average weight changes E

[
∆wij

]
under (12) coincide with

BP. AGREL thus provides a biologically plausible substi-
tute for BP.

Inspired by AGREL, we introduce a 4th utility function:
Example U4. (Feedback). Identify disjoint upstream and

downstream populations, xff and xfb respectively, and de-
fine Hff and Hfb by clamping weights not in the respective
populations to zero using Eq (1). Define the feedback utility

as µfbj (x) := 〈wfb
j ,x〉 for wfb

j ∈ H
fb.

A neuron with feedback utility maximizes

EP
[
〈wfb

j ,x〉
(
〈wff

j ,x〉 − ϑ
)
1j −A•(wj)

]
(13)

and so aligns its feedforward 〈wff
j ,x〉 and feedback 〈wfb

j ,x〉
current whenever the neuron itself spikes.

Computing gradient ascent on scoring rule Sfb• (w;x) =
〈wfb,x〉 · (〈wff ,x〉 − ϑ) · 1j −A•(w) obtains

∆wff
ij ∝ 〈w

fb
j ,x〉 · 1ij − ∂iA•(w), (14)

which differs from AGREL (12) by using ∂iA• as regularizer
instead of (1 − xj) and extending feedback from a single

neuron, wfb
kjxk, to many neurons, 〈wfb

j ,x〉. We also drop

the global reward signal f(δ) since we are interested in the
pure backpropagation case; it can easily be reinstated.

Note that the utility function µfb is itself plastic. Neu-
ron nj not only modifies feedforward weights to maximize
its score, it also modifies feedback weights to increase the
maximum achievable score:

∆wfb
kj ∝ (〈wff

j ,x〉 − ϑ) · 1jk − ∂kA•(w). (15)

4.2 Estimating usefulness with feedback
As suggested in the introduction, one way to encourage

collaboration is for each neuron to estimate its usefulness to
the rest of the system and optimize that estimate. By Corol-
lary 6, a faithful measure of the usefulness of nj ’s output to
the rest of cortex is the sum of active downstream synaptic
weights:

Definition 3. The usefulness Vj(x) of a spike by nj is
the sum of the synaptic weights of downstream neurons that
co-spike with nj:

Vj(x) :=
∑

{k | j→k}

wjk1jk = 〈wj•,x〉1j . (16)

Intuitively, Vj(x) is the total utility that spiking downstream
neurons expect after nj spikes.

Neurons cannot compute their usefulness directly, since
the utilities of downstream neurons are private. They must
therefore make do with publicly available data: spikes by
other neurons. We therefore propose that neurons use feed-
back, which they can actually compute, as a proxy for use-
fulness, which would be ideal.

As a consequence of Corollary 6, we quantify how closely
feedback-utility approximates usefulness (16):

Corollary 7 (estimating usefulness with feedback).
Neuron nj equipped with utility function µfb(x) approxi-
mately maximizes its usefulness V(nj) to the rest of cortex,
where the failure of the approximation is

∑
k

1jk


usefulness︷ ︸︸ ︷

G•
(
E
[
µk(x)1jk

])
︸ ︷︷ ︸

wjk

−

approximation︷ ︸︸ ︷
G•
(
E
[
〈wff

j ,x〉1jk
])

︸ ︷︷ ︸
w
fb
kj

 .
Thus, the quality of 〈wfb

j ,x〉 as an estimate of Vj(x) depends

on how closely nj ’s feedforward inputs 〈wff
j ,x〉 approximate

the sum of the downstream utilities µk(x).

Proof. The usefulness and utility of nj are

Vj(x) = 〈wj•,x〉1j and µfbj (x) = 〈wfb
•j ,x〉 respectively.

The utility µfbj is multiplied by 1j when it is used in scoring
rules, so the difference comes down to the weights. Corol-
lary 6 implies the optimal feedforward weights are

wjk = G•
(
EP
[
µk(x) · 1jk

])
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so that the usefulness of nj is

Vj(x) =
∑

{k | j→k}

1jk ·G•
(
EP
[
µk(x)1jk

])
.

Again by Corollary 6, the properness of the scoring function
implies the optimal weights for k → j satisfy

wfb
kj = G•

(
EP
[
〈wff ,x〉1jk

])
and we are done.

Experiments in §5 demonstrate that wfb
kj is a good proxy

for wjk in some interesting cases.
A detailed analysis of the relationship between approxi-

mations wjk ≈ wfb
kj , distribution P (x), and utility functions

µk(x) is beyond the scope of this paper.

4.3 Neurons as rational agents
Section §3.1 suggested neurons are analogous to markets

in which synapses trade. This section presents a second anal-
ogy, where cortex forms a market in which neurons trade.

Recall that neurons are rational agents that optimize their
expected reward balanced against a cost term, Theorem 1:

w∗j := argmax
wj∈H

EP
[(
〈wj ,x〉 − ϑ

)
· µj(x)1j −A•(wj)

]
.

nj neuron trader

〈wff
•j ,x〉1j ff current × spike purchases by nj

〈wj•,x〉1j usefulness Vj(x) of nj use made of nj
〈wfb
•j ,x〉1j fb current × spike recorded usage

= payment to nj

The key idea is that each neuron should optimize its use-
fulness to the rest of the brain. Building on Corollary 6,
usefulness is defined as Vj(x) =

∑
j→kwjk1jk. That is, the

quantity of 1j used by downstream neurons in their inter-
nal markets. Unfortunately, nj does not have access to this
number. Similarly to how musicians are paid for actual sales
rather than downloads of their music, neurons need to record
when their outputs are used. They therefore use feedback to
compute 〈wfb

•j ,x〉1j , which acts as a proxy2 for 〈wfb
•j ,x〉1j .

Intuitively, nj simultaneously sets its feedback connec-
tions on the downstream traders that most frequently pur-
chase its spikes, and sets its feedforward connections on the
upstream traders that sell the most useful spikes.

The result is a mesh of intertwining neuronal chains –
optimized for usefulness at every link by the invisible hand of
the cortical market – that connects sensory inputs to motor
actions.

5. EXPERIMENTS
We investigate the empirical performance of discretized

neurons. The experiments are designed to show that: (i)
the ideas above can be implemented with minimal modifica-
tions; (ii) synaptic weights encode environmental statistics
and rewards; (iii) feedback improves performance; and (iv)
feedback reliably estimates a neuron’s usefulness.

We have therefore constructed networks, inspired by [22],
that learn tasks designed so that the embedding of expected
utilities into synaptic weights is easy to visualize.

2Recorded usage could over- or under- estimate true usage.
Section §5 shows that it is a good guide in practice.

S

INH DV

M

S

INHV

M

FOVEATORTRACKER

2s delay

Figure 2: Foveator and Tracker architectures. Arrows are
initialized randomly. Red arrows are plastic; black are fixed.

Our goal is not to compete with the state of the art.
Rather, our aim is to introduce mechanism design techniques
into the analysis and construction of networks. A pressing
open question is whether more sophisticated networks, such
as those developed by the deep learning community, can be
understood or improved via mechanism design.

Network architectures.
The tracker network, Fig. 2 left, has a sensory grid S

of 20 × 20 neurons, intermediate layers V and D with 100
neurons each, motor layer M , and 100 randomly connected
inhibitory neurons INH. Signals from S to D are delayed
so that V and D receive different temporal snapshots of
S. Synapses are plastic except those to or from inhibitory
neurons. M is divided into 8 areas of 10 neurons each. Ac-
tuators engage when they receive more than 10 spikes. The
network is initialized randomly.

The tracker network tracks targets traveling along an edge
of the visual field. Motor areas are rewarded (µj = +1) or
punished (µj = −1) according to whether or not the action
correctly anticipates where the target is headed and from
which direction (4 × 2 possibilities). Note the motor layer
receives neuromodulatory signals whereas the intermediary
layers do not and learn from feedback.

The foveator network, Fig. 2 right, drops D and has
fewer inhibitory neurons.

The foveation task is to move the fovea (center of the
retina) onto an object appearing on the edge of the visual
field. Each motor area controls an actuator that moves the
fovea in a compass direction (N, NW, W, etc). After a move-
ment, the corresponding area is rewarded (µj = 1) if the
object is closer to the center and punished (−1) otherwise.

We tweak the discretized neuron in §2 to make the dy-
namics closer to continuous time models of cortical neurons.

First, we introduce a voltage term V , which provides neu-
rons with a steadily decaying “memory” of previously re-
ceived spikes. Neurons spike when V > ϑ, after which
V ← 0. When the neuron does not spike, V is updated
according to

V ← V + 〈w,x〉 − δ.

Neurons maintain an exponentially decaying trace reflecting
recent output spikes:

tracej ← 0.95 ·
(
tracej + 0.4 · 1j

)
Neurons in subsystems V and D update their feedforward
synapses according to

∆wij ∝ 〈wfb,x〉 · 1i · tracej
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(a) Synapses on paths through subsystem V
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(b) Synapses on paths through subsystem D

Figure 1: Average synaptic weights in Tracker network.

and similarly for feedback. Thus, tracej is substituted for
1j to temporally smooth out learning. Neurons in subsys-
tem M update their synapses according to ∆wij ∝ µj(x) ·∑t
t′=t−m 1ij where the sum is over tics since the last neu-

romodulatory signal, similar to the trace implemented in V
and D.

Finally, we tweak the regularization. Instead of continu-
ally regularizing by A1(w), we regularize at discrete inter-
vals, analogous to a hypothesized role of sleep [5]. Regu-
larization consists of setting the K strongest synapses to 1,
and pruning the rest (i.e. setting their weights to 0). The
number K is fixed within each layer, but varies across layers.

Visualizing synaptic strengths.
By Corollary 7, the quality of a neuron’s usefulness-estimate

can be computed and visualized by comparing average feed-
forward and feedback weights.

Weights are visualized in Fig 1 and 3 as follows. For each
area in M , we average over all feedforward paths S → V →
M and feedback paths S → V ← M respectively, and simi-
larly for D. To save space, 3 out of 8 areas in M are plotted.
Plots are averaged over 20 runs. Blue denotes low values;
red denotes high.

Results.
(i) The tasks are easy and the networks rapidly (within

a few thousand tics) achieve 98% and 95% accuracy. The
tracker outperforms the foveator, possibly because the foveator
modifies its environment by actively moving the center of the
retina, whereas the tracker does not.

The delay line is essential to tracker performance: if the
delay is set to zero then the network performs little better
than chance, and the structure of the environment is not
learned at all.

Tracker % correct # correct
only M plastic 95 243
all plastic 98 672
Foveator
only M plastic 93 80
all plastic 95 207

(ii) The middle rows of Fig 1 and 3 show how rewards and

environmental statistics are incorporated into the networks’
feedforward structure.

For the tracker network, the V -area synapses learn tra-
jectories; whereas the D-area learns the starting points of
trajectories. The combination of instantaneous lines in V
(which learn directions) and delay lines in D (which learn
starting points) thus allows the network to implicitly com-
pute derivatives and thereby determine directions of travel.

For the foveator, it is easy to read off the correspondence
between the NE, N, and NW movements of the actuators
and the locations of objects driving the movements.

(iii) Shutting off feedback plasticity (top rows of Fig 1 and
3) slightly worsens performance, from 98% to 95% for the
tracker and from 95% to 93% for the foveator. However, it
dramatically worsens the “reaction times” of the networks,
quantified as the number of times the actuators correctly
engage per 1000 tics.

Indeed, looking at synaptic weights without feedback plas-
ticity, top rows of the figures, we find that the structure of
the rewards and environment is barely visible.

(iv) Finally, when feedback plasticity is turned on, average
synaptic weights over feedforward paths T → V/D → M
(middle rows) and feedback paths T → V/D ←M (bottom
rows) are almost identical, demonstrating that neurons in V
and D accurately estimate their usefulness to downstream
M neurons using feedback.

6. CONCLUSION
This paper applied tools from mechanism design to inves-

tigate a simple model of cortical neurons. The main result
is that, under a technical assumption, neurons faithfully en-
code expected utilities into their synaptic weights. If the
result can be extended to more realistic models, then it will
provide a powerful new approach to understanding the rela-
tionship between cortical structure and function.

There is reason to be optimistic: continuous time models
require exponential discount factors analogous to interest
rates – which are well-understood in mechanism design.

An important corollary is a novel interpretation of the
role of spiking feedback in cortex: neurons can use feedback
spikes to estimate their usefulness to the rest of cortex, and
then learn to maximize that estimate. Going further, it may
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Figure 3: Average weights in Foveator network.

be that retroaxonal signals, backpropagated through axons,
may play an important role in helping neurons estimate their
usefulness [17].

We have used the simplest possible scoring rules, derived
from standard models, to provide proof of principle. It will
be interesting to explore more realistic models taken from
the neuroscience literature, and also more powerful models
such as those developed for deep neural networks.

Finally, although the flow of ideas in this paper is one-
sided – from mechanism design to neuronal models – future
work should be more symmetric. The cortex aggregates in-
formation far more effectively than the auctions and online
markets studied in game theory. This suggests there are
powerful design principles waiting to be uncovered.
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