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ABSTRACT

In recent years much attention has been devoted to understanding
and predicting when and how occupants perform their daily rou-
tines and use electric appliances within buildings. The purpose here
is to better estimate energy consumption. Despite efforts to capture
individual behavior with precision, models often neglect how occu-
pants interact with one another. Concretely, they do not accurately

reproduce how occupants perform joint activities, such as having a
meal or watching TV together, or sole activities, such as self-caring.
Such inaccuracies, in turn, influence energy demand estimation, as
joint and sole activities involve sharing and non-sharing of elec-
trical appliances. Therefore, in this extended abstract, we propose
a cooperative multi-agent system, where interaction of occupants

is explicitly modeled by Interactive Markov chains. A preliminary
study using data from five households in Osaka, Japan suggests this
technique is better suited to capture interaction between occupants
than the traditional Markov chain approach.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multi-agent systems;
I.6.3 [Simulation and Modelling]: Applications

General Terms

Algorithms, Experimentation, Theory
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1. INTRODUCTION
The transition to the so-called ‘smart (energy) grid’ has long

been focus of research in the field of autonomous agents and multi-
agent systems (MAS). Among the most challenging questions of
the field is the increase of accuracy of energy demand models.
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2014), May 5-9, 2014, Paris, France.
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Energy demand models can serve as useful tools for electric utili-
ties and regulators to evaluate energy efficiency and smart grid pro-
grams. For instance, they can be used to predict energy consump-

tion and CO2 emissions of large residential areas or to quantify the
impact of energy-saving policies in buildings. Hence, these mod-
els strive for a high level of accuracy in their estimations. This
has led to increasingly sophisticated models in recent years. As
energy consumption patterns in buildings are largely dependent on

the behavior of its occupants, several studies have focused on how
to model the presence of people in buildings and the actions they
take to change their indoor environments [3].

Energy demand models often take a MAS approach to occupant
behavior modeling [4, 5]. Here, the household or building is con-
ceived as a multi-agent system where occupants are autonomous

agents that interact with their surroundings, i.e., with other occu-
pants and electrical appliances. So far, these systems have been
designed as independent multi-agent systems, i.e., the flow of ac-
tivities of an (occupant) agent is derived with no regard to the activ-
ities of other occupants.1 This follows from the traditional use of
discrete time non-homogeneous Markov chains (MC) to simulate

the daily routines of occupants from survey data.
The independence between the daily activities of agents intro-

duced by Markov chains does not well reflect actual behavior of
people in buildings. In real life, people regularly interact either
(1) to perform joint activities,2 such as having common meals, or
(2) to avoid performing certain activities simultaneously, such as

self-caring in the bathroom, which is a sole activity. Accuracy in
modeling such forms of interaction can significantly impact load
curves as energy consumption changes according to whether occu-
pants share electrical appliances in joint activities, or use different
appliances in unrelated activities.

Therefore, to increase the performance of energy demand mod-
els, the accurate estimation of agents’ sole or joint activities is
important. In this work, we claim that Interactive Markov chains
(IMC) [1] are better suited to model behavior of occupants in build-
ings than (standard) Markov chains. We argue that this technique
promotes multi-agent systems to demand estimation as cooperative

MAS rather than independent MAS [2].

1We follow Franklin’s taxonomy [2] of multi-agent systems as in-
dependent or cooperative systems.
2We interpret ‘joint activity’ as joint-in-purpose (having meal, hav-
ing bath, etc.), rather than joint-in-time or joint-in-location.
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2. INTERACTIVE MC AS COOPERATIVE

MULTI-AGENT SYSTEM
In classical Markov chain approaches, the process by which an

agent decides its activities is modeled independently from the ac-
tivities of other agents in the same building or household. Each
agent chooses its next activity based solely on current activity and
random uniform number. As a result, some of the original interac-
tion patterns present in the survey data may be lost. Fig. 1 provides

an example on how MCs can fail to preserve a pattern of joint ac-
tivities. In the original data, activities a and b are never performed
together. Nevertheless, the probability of each activity to occur is
50%. Accordingly, it is possible for a Markov chain to generate
occupants performing a and b simultaneously.

Day 1 of occupant 1 . . . a . . .

Day 1 of occupant 2 . . . a . . .

Day 2 of occupant 1 . . . b . . .

Day 2 of occupant 2 . . . b . . .

MC day of occupant 1 . . . a . . .

MC day of occupant 2 . . . b . . .

Survey

Figure 1: Example of Markov chain not preserving original

interaction patterns of joint activities.

To preserve patterns of interaction such as joint and sole activi-
ties, we propose the use of Interactive Markov chains. This tech-
nique was formally proposed by Conlisk in 1976 [1], as a gener-

alization of (standard) Markov chains. Interactive Markov chains
extend Markov chains with intentional social interaction between
individuals by having the transitions of each individual depend on
the population’s distribution over several states.

To preserve the individuality of the interacting agents we pro-
pose an adaptation of Interactive Markov chains where transition

probability matrices are parameterized with the activity of a single
‘leader’ agent instead of a vector of population frequencies per ac-
tivity. We call our model Interactive Markov chain with a Leader
process (IMC-LP) and define it as follows.

Definition 2.1 (IMC-LP). An Interactive Markov chain with a leader

process is a set of discrete time stochastic processes {X1
n, . . . , X

M
n }

where each process can be represented as a tuple < S, τ > where:

• S = {1, 2, . . . , N} is a finite and countable set of activities

• τ : N×S×S×S → [0, 1]: is a stochastic transition relation

that assigns each combination of time n ∈ N and activities

i, j, k ∈ S a probability τij(n, k) that the system will evolve

from activity i to j from time n to n + 1 with the ‘leader’

agent in activity k at time n+ 1:

τij(n, k) = P (Xn+1 = j|Xn = i, Yn+1 = k)

for processes Xn, Yn ∈ {X1
n, . . . , X

M
n }, n ∈ N

The probability τij(n, k) is calculated from survey data as fol-
lows where ηij(n) stands for the number of transitions between
activities i and j from n to n+ 1, with ‘leader’ in activity k:

τij(n, k) =
ηij(n, k)

|S|
∑

j=1

ηij(n, k)

To decide its next activity, an IMC-LP agent indexes a probabil-

ity matrix. The selection of this matrix depends on the current

time frame and activity of the ‘leader’ agent. The ‘leader’ agent

is selected randomly among all occupants. The matrix is indexed
according to the current activity of the agent and a random number:

τ (n, k) :=







τ11(n, k) . . . τ1N (n, k)
...

. . .
...

τN1(n, k) . . . τNN (n, k)







Using an IMC approach, agents are able to coordinate their ac-
tivities explicitly. As they observe and react to the behavior of
‘leaders’, agents can cooperate with each other, either to achieve

common goals or to avoid conflict, as in joint and sole activities.
This is not possible with Markov chains, where agents pursue their
own agendas independently of others. Hence, with the Interactive
Markov chain approach energy demand models can be conceived
as cooperative multi-agent systems, rather than independent multi-
agent systems.

3. COMPARISON OF MC AND IMC
We have been conducting some preliminary studies with survey

data from five households in Osaka, Japan. The members from
two 4-person households and three 3-person households agreed to
document their daily routines in diaries during 14 days.

We compared the accuracy of standard Markov chains with our
proposed IMC-LP model. The results indicate that IMC-LP model

is significantly more accurate than the MC model in estimating the
time a household member performs an activity as a joint or sole ac-
tivity. An important observation is that since the IMC-LP model co-
ordinates the activity of an occupant with only one ‘leading’ agent,
the IMC-LP model has better results for the 3-person household
than for the 4-person household.

The results further indicate that the increased accuracy of oc-
cupant behavior modeling translates to an increased accuracy in
energy demand estimation.
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