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ABSTRACT
In this paper, we develop a novel algorithm which finds a
subset of Pareto front of a Multi-Objective Distributed Con-
straint Optimization Problem. This algorithm utilizes the
Lp-norm method, pseudo-tree, and Dynamic Programming
technique. Furthermore, we show that this Lp-norm based
algorithm can only guarantee to find a Pareto optimal solu-
tion, when we employ L1-norm (Manhattan norm).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Theory
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1. INTRODUCTION
A Multi-Objective Distributed Constraint Optimization

Problem (MO-DCOP) [3] is the extension of a Distributed
Constraint Optimization Problem [6] which is a fundamen-
tal problem that can formalize various applications related
to multi-agent cooperation. In MO-DCOPs, since trade-offs
exist among objectives, there does not generally exist an
ideal assignment, which maximizes all objectives simultane-
ously. Thus, the solutions of an MO-DCOP is characterized
by using the concept of Pareto optimality. An assignment
is a Pareto optimal solution if there does not exist another
assignment that weakly improves all of the objectives. Solv-
ing an MO-DCOP is to find the Pareto front which is a set
of reward vectors obtained by all Pareto optimal solutions.

Finding all Pareto optimal solutions of an MO-DCOP be-
comes easily intractable for large-scale problem instances. In
MO-DCOPs, even if a constraint graph has the simplest tree
structure, the number of all Pareto optimal solutions is often
exponential in the number of agents. Since finding all Pareto
optimal solutions is not realistic, it is important to consider
the following two approaches. The first approach is to find a
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subset of Pareto front instead of finding all Pareto optimal
solutions. The second is to develop a fast but incomplete
algorithm. This paper focuses on the first approach.

An Aggregate Objective Function (AOF) [2] is a repre-
sentative classical scalarization method which scalarizes the
set of objective functions into a mono-objective function by
multiplying each objective with a user supplied weight, and
finds an optimal solution for it. It is well known that an opti-
mal solution obtained by AOF is a Pareto optimal solution
of the original problem. The Lp-norm method is another
classical method [2] which finds a Pareto optimal solution
using a distance from a reference point. This method is
tractable, since we just need to give the reference point.

In this paper, we develop a novel MO-DCOP algorithm
called Multi-Objective Lp-norm based Distributed Pseudo-
tree Optimization Procedure (MO-DPOPLp) that is based
on DPOP [6] and finds a subset of the Pareto front of an
MO-DCOP using the Lp-norm and AOF methods. Also, we
show that MO-DPOPL1 is the only MO-DPOPLp algorithm
that can guarantee to find a Pareto optimal solution.

2. MULTI-OBJECTIVE DCOP
A Multi-Objective Distributed Constraint Optimization Prob-

lem (MO-DCOP) [3] is the extension of a mono-objective
DCOP. An MO-DCOP is defined with a set of agents S, a set
of variables X, multi-objective constraints C = {C1, . . . , Cm},
i.e., a set of sets of binary constraint relations, and multi-
objective functions O = {O1, . . . , Om}, i.e., a set of sets of
objective functions (binary reward functions). For an objec-
tive l (1 ≤ l ≤ m), a binary reward function rli,j : Di×Dj →
R+, and a value assignment to all variables A, let us denote

Rl(A) =
∑

(i,j)∈Cl,{(xi,di),(xj ,dj)}⊆A

rli,j(di, dj), (1)

where di ∈ Di and dj ∈ Dj . Then, the sum of the values
of all reward functions for m objectives is defined by a re-
ward vector, denoted R(A) = (R1(A), . . . , Rm(A)). Finding
an assignment that maximizes all objective functions simul-
taneously is ideal. However, since trade-offs exist among
objectives, there does not generally exist such an ideal as-
signment. Thus, the optimal solution of an MO-DCOP is
characterized by using the concept of Pareto optimality.

Definition 1 (Dominance). For an MO-DCOP and
two reward vectors R(A) and R(A′) obtained by assignments
A and A′, we say that R(A) dominates R(A′), denoted by
R(A′) ≺ R(A), iff R(A′) is partially less than R(A), i.e., (i)
it holds Rl(A′) ≤ Rl(A) for all objectives l, and (ii) there

exists at least one objective l′, such that Rl′(A′) < Rl′(A).
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Definition 2 (Pareto optimal solution). For an
MO-DCOP, we call an assignment A is the Pareto optimal
solution, iff there does not exist another assignment A′, such
that R(A) ≺ R(A′). The set of reward vectors obtained by all
Pareto optimal solutions is said to be Pareto Front. Solving
an MO-DCOP is to find the Pareto front.

Lp-Norm
Let v = (v1, . . . , vm) and w = (w1, . . . , wm) be two vectors.
An Lp-norm has the following form

disp(v, w) = (

m∑
i=1

|vi − wi|p)
1
p , (2)

where 1 ≤ p ≤ ∞. Manhattan (p = 1), Euclidean (p = 2)
and Chebyshev norms (p =∞) are special cases of Lp-norm.

3. LP -NORM BASED ALGORITHM
In this section, we develop a novel algorithm called Multi-

Objective Lp-norm based Distributed Pseudo-tree Optimiza-
tion Procedure (MO-DPOPLp) for MO-DCOPs. This algo-
rithm utilizes the Lp-norm to find a Pareto optimal solution,
a pseudo-tree, and is based on Dynamic Programming (DP)
technique. Furthermore, we show that L1-norm (Manhat-
tan norm) based algorithm can guarantee to find a Pareto
optimal solution of an MO-DCOP. However, Lp-norm based
algorithms with p ≥ 2, e.g., Euclidean and Chebyshev norm,
cannot guarantee to find a Pareto optimal solution.

This algorithm has two phases. In Phase 1, we utilize any
complete DCOP algorithm and find an optimal solution for
each objective function, respectively. Specifically, for m ob-
jective functions of an MO-DCOP, we give the m weights,
i.e., (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . ., (0, . . . , 0, 1), and make
the m weighted objective functions o1, . . . , om. Then, we
find an optimal solution for each oi (1 ≤ i ≤ m). That is,
we utilize AOF technique [2, 5] and solve m DCOP prob-
lems independently. In this paper, we denote the m optimal
values as R1

max, R
2
max, . . . , R

m
max and call the reward vector

R∗ = (R1
max, R

2
max, . . . , R

m
max) as the utopia point [4]. In

general, since trade-offs exist among objectives, there does
not exist such an ideal point. In this paper, we use the
DPOP algorithm [6] which is a representative pseudo-tree
based inference algorithm that adapts the bucket elimina-
tion principle [1] to a distributed setting.

In Phase 2, we use the Lp-norm and the utopia point R∗,
and find an assignment A so that the distance between a
reward vector R(A) and the utopia point is minimal. In
this algorithm, we assume that each agent knows the utopia
point. For a reward vector R(A) and the utopia point R∗,
we define the Lp-norm between R(A) and R∗ as follows:

dis(R∗, R(A)) =

m∑
l=1

(Rl
max −Rl(A)) (3)

Theorem 1. Manhattan norm based MO-DPOPL1 is the
only MO-DPOPLp algorithm that can guarantee to find a
Pareto optimal solution.

Proof Sketch. Every Lp-norm used here can be seen
as an aggregation function f that associates an m-vector
of values with a single value. The fact that MO-DPOPL1

guarantee to find a Pareto optimal solution comes from the
following idea: the L1-norm corresponds to the aggrega-
tion function f = Σ, which commutes with itself (given
two aggregation functions f and g, f commutes with g if

Figure 1: An example where MO-DPOPLp cannot
compute Pareto optimal solutions for 2 ≤ p ≤ ∞.

f(g(x1,1, . . . , x1,q), . . . , g(xp,1, . . . , xp,q)) = g(f(x1,1, . . . ,
xp,1), . . . , g(x1,q, . . . , xp,q))), also used to aggregate the “lo-
cal” rewards associated with each constraint (cf. Equa-
tion 1). Under such a condition, we can prove that MO-
DPOPL1 always computes Pareto optimal solutions. When
2 ≤ p ≤ ∞, this is not the case anymore that the under-
lying aggregation function f commutes with Σ. Consider-
ing the example given in Figure 1, it can be verified that
the reward tables UTIL2

3, JOIN1
2 and UTIL1

2 are same
for every 2 ≤ p ≤ ∞. Then, after V ALUE propagation,
MO-DPOPLp (2 ≤ p ≤ ∞) provides either the assignment
{(x1, a), (x2, b), (x3, a)} or {(x1, b), (x2, a), (x3, b)}, which
are not Pareto optimal solutions.
In summary, we show that MO-DPOP L1 is the only MO-
DPOPLp algorithm that can guarantee to find a Pareto opti-
mal solution. Intuitively, using MO-DPOPL1 (Phase 2), we
can find a Pareto optimal solution which maximizes the av-
erage of the reward values of all objectives, and for Phase 1,
we obtain extreme Pareto optimal solutions that optimizes
one criterion, while it is really bad for another criterion.

4. CONCLUSION
In this paper, we developed a novel algorithm for MO-

DCOPs which utilizes Dynamic Programming technique and
the Lp-norm method to find a subset of Pareto front. Fur-
thermore, we showed that MO-DPOPL1 is the only MO-
DPOPLp that can guarantee to find a Pareto optimal so-
lution. Our plans for future work include developing an
incomplete algorithm. We will also develop an extended
MO-DPOPL1 which finds several Pareto optimal solutions
by adding several reference points.
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