
Verifying Heterogeneous Multi-Agent Programs

Thu Trang Doan Yuan Yao Natasha Alechina Brian Logan
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

{ttd,yvy,nza,bsl}@cs.nott.ac.uk

ABSTRACT
We present a new approach to verifying heterogeneous multi-agent
programs — multi-agent systems in which the agents are imple-
mented in different (BDI-based) agent programming languages. Our
approach is based on meta-APL, a BDI-based agent programming
language that allows both an agent’s plans and its deliberation strat-
egy to be encoded as part of the agent program. The agent pro-
grams comprising a heterogeneous multi-agent program are first
translated into meta-APL, and the resulting system is then verified
using the Maude term rewriting system. We prove correctness of
translations of Jason and 3APL programs and deliberation strate-
gies into meta-APL. Preliminary experimental results indicate that
our approach can significantly out-perform previous approaches to
verification of heterogeneous multi-agent programs.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Programming Languages and Soft-
ware

Keywords
Agent programming languages; Agent programs; Verification

1. INTRODUCTION
Multi-agent systems (MAS) offer a promising approach to the

development of large, distributed, intelligent systems. In a multi-
agent system, the agents interact via message passing and/or by
performing actions in a shared environment. The agents in a MAS
are typically loosely coupled, and a key advantage of multi-agent
systems is that the individual agents comprising the system can
be developed independently by different developers using different
programming languages. We call a multi-agent system in which the
agents are implemented in different agent programming languages
a heterogeneous multi-agent program. In this paper, we focus on
heterogeneous multi-agent programs in which the individual agents
are written in a language in the Belief-Desire-Intention (BDI) fam-
ily of languages, as BDI is arguably the dominant agent program-
ming paradigm [13].

A key challenge in developing a multi-agent system is verifying
that it meets its design requirements. This is particularly impor-
tant as MAS are increasingly being used for safety critical appli-
cations. There has been considerable work on the verification of

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

individual agent programs and homogeneous multi-agent programs
(where the individual agents are all implemented in the same agent
programming language), e.g., [21, 1, 5, 2, 18]. However, with the
exception of the work on the Agent Infrastructure Layer (AIL) [4,
9, 10], there has been relatively little work on verification of hetero-
geneous multi-agent programs. AIL is a collection of Java classes
abstracting capabilities of BDI agent programming languages. The
interpreters of each language in a heterogeneous multi-agent pro-
gram are reimplemented using AIL and programs verified using the
AJPF model checker.

In this paper, we present a new approach to verifying hetero-
geneous multi-agent programs based on meta-APL. Meta-APL is a
BDI-based agent programming language that allows both an agent’s
plans and its deliberation strategy to be encoded as part of the agent
program. In our approach, the agent programs comprising a hetero-
geneous multi-agent program are first translated into meta-APL,
and the resulting system is then verified using Maude [6]. A com-
pact, declarative representation of deliberation strategies (rather than,
e.g., reimplementing the agent interpreter using special purpose li-
braries as in AIL) makes it easier to ensure that the operational
semantics of the target language has been faithfully encoded for
verification. While there has been work on expressing deliberation
strategies in an agent programming language, e.g., [12, 15, 7], to
the best of our knowledge, such an approach has not previously
been used in the verification of heterogenous multi-agent systems.

The main contributions of this paper are the definition meta-APL
and its operational semantics; provably correct translations of Jason
and 3APL programs into meta-APL; a verification framework for
meta-APL multi-agent programs based on Maude; and preliminary
experimental results which indicate that our approach requires sig-
nificantly less time to verify properties compared to [10].

2. Meta-APL
In this section, we briefly introduce meta-APL.1 A meta-APL

agent consists of an agent program and the agent state which is
queried and manipulated by the program. The agent’s state consists
of two main components: the mental state, which is a collection of
atom instances, and the plan state which consists of a collection of
plan instances and their properties. Atom instances are used to rep-
resent beliefs, goals, events etc. Plan instances play a role similar to
relevant, applicable plans in conventional BDI agent programming
languages.

2.1 Meta-APL Syntax
The syntax of Meta-APL is built from atoms, plans, clauses,

macros, object rules, and meta-rules, and a small number of primi-

1A preliminary version of meta-APL was presented in [22].

149

tive operations for querying and updating the mental state and plan
state of an agent.

Atoms Atoms are built of terms. Terms are defined using the
following disjoint sets of symbols: IDs which is a non-empty to-
tally ordered set of ids, Pred which is a non-empty set of predicate
symbols, Func which is a non-empty set of function symbols, and
Vars which is a non-empty set of variables.

The syntax of terms t and atoms a is given by:

t =def x | f(t1, . . . , tm)
a =def p(t1, . . . , tn)

where f ∈ Func, p ∈ Pred, x ∈ V ars ∪ IDs, n ≥ 0, and
m ≥ 0. To distinguish between different instances of syntactically
identical atoms (e.g., two instances of the same event), each atom
instance is associated with a unique id ∈ IDs .

The atom instances comprising the agent’s mental state can be
queried and updated using the following primitive operations:

• atom(i, a): an instance of the atom a has id i

• add-atom(i, a): create a new instance of the atom a and bind
its id to i

• delete-atom(i): delete the atom instance with id i

For brevity, queries may be expressed in terms of atoms rather than
instances where the id is not important, i.e., the query a is true if
the query atom(_, a) is true.

Plans A plan is a textual representation of a sequence of ac-
tions the agent can execute in order to change its environment or
its mental state. Plans are built of external actions, mental state
tests, reified mental state actions and subgoals composed with the
sequence operator ‘;’. A plan π is defined as:

π =def ε | (ea | mt | ma | sg) ;π

where ε denotes the empty plan, ea is an external action of the
form e(t1, . . . , tn), e ∈ ActionNames and t1, . . . tn, n ≥ 0 are
ground terms, mt is a mental state test of the form ? q where q
is a (primitive or defined) mental state query, ma is a (primitive
or defined) mental state action, and sg is a subgoal of the form
! g(u1, . . . , um) where g(u1, . . . , um) is an atom and u1, . . . um,
m ≥ 0 are (possibly non-ground) terms.

Meta-APL distinguishes between generic plans, which are a static
part of the agent program, and plan instances — specific substitu-
tions of generic plans generated during the execution of the pro-
gram. The plan state of a meta-APL agent may contain multiple in-
stances of the same plan (e.g., if a plan is used to achieve different
subgoals). Each plan instance has a unique id, a current suffix (the
part of the instance still to be executed), one or more justifications,
a substitution and (at most) one active subgoal. A justification is an
atom instance id. Informally a justification is a ‘reason’ for execut-
ing (this instance of) the plan, e.g., an atom representing a belief or
goal. In general, a plan instance may have multiple justifications,
and a justification may be the reason for adopting multiple plan in-
stances. The substitution θ = {x1/t1, . . . , xk/tk} specifies the
current binding of variables in the plan instance to terms. A sub-
goal is created by the execution of a subgoal step ! g(u1, . . . , um),
and is an instance of the atom g(u1, . . . , um) which shares vari-
ables with the subgoal in the plan instance. Each plan instance also
has a set of execution state flags σ. σ is subset of a set of flags
Flags which includes at least intended, scheduled, stepped
and failed, and may contain additional user-defined flags, e.g.,
some deliberation strategies may require a suspended execution
state.

The plan instances comprising the plan state of an agent can be
queried and updated using the following primitive operations:

• plan(i, π): i is the id of an instance of the plan π

• plan-remainder(i, π): π is the textual representation of the
(unexecuted) suffix of the plan instance with id i

• justification(i, j): the plan instance with id i has the atom
instance with id j as a justification

• substitution(i, θ): the plan instance with id i has substitu-
tion θ

• subgoal(i, j): j is the id of the subgoal of the plan instance
with id i, i.e., plan-remainder(i, ! g;π) and atom(j, g) such
that j is the id of the instance of g created by executing ! g in
i

• state(i, σ): the plan instance with id i has execution state
flags σ

• set-remainder(i, π) set the (unexecuted) suffix of the plan
instance with id i to π

• set-substitution(i, θ): set the substitution of the plan in-
stance with id i to θ, where θ may be an implicit substitution
resulting from the unification of two terms t(x) = t(a)

• set-state(i, σ) set the execution state flags of the plan in-
stance with id i to σ

• delete-plan(i): delete the plan instance with id i, together
with its suffix, substitution and subgoal (if any)

• cycle(n): the current deliberation cycle is n

Clauses & Macros Additional mental state and plan state queries
can be defined using Prolog-style Horn clauses of the form:

q ← q1, . . . , qn

where q1, . . . , qn are mental or plan state queries or their negation.
Negation is interpreted as negation as failure, and we assume that
the set of clauses is always stratified, i.e., there are no cycles in
predicate definitions involving negations. Clauses are evaluated as
a sequence of queries, with backtracking on failure.

Additional mental state and plan state actions can be defined us-
ing macros. A macro is a sequence of mental state and/or plan state
queries/tests and actions. Macros are evaluated left to right, and
evaluation aborts if an action or query/test fails. For example, the
mental state action add-atom(a) which does not return an instance
id can be defined by the macro: add-atom(b) = add-atom(_, b).
Macros can also be used to define type specific mental state actions,
e.g., to add an instance of the atom b as a belief and signal a belief
addition event as in Jason [3], we can use the macro

add-belief(b) = add-atom(belief(b)), add-atom(+belief(b))

In what follows, we assume the following clause-definable plan
state queries and macro-definable plan state actions: intention(i):
the plan instance with id i is intended; executable-intention(i):
the intention with id i has no subgoal (hence no subintention);
scheduled(i): a step of the plan instance with id i will be executed
at the current deliberation cycle; failed(i): the plan instance with id
i has failed; add-intention(i): add the intended flag to the plan
instance with id i.

Object Rules To select appropriate plans given its mental state,
an agent uses object rules. Object rules correspond to plan selection

150

constructs in conventional BDI agent programming languages, e.g.,
plans in Jason [3], or PG rules in 3APL [8]. The syntax of an object
rule is given by:

reasons [: context]→ π

where reasons is a conjunction of non-negated primitive mental
state queries, context is boolean expression built of mental state
queries and π is a plan. The context may be null (in which case
the “:” may be omitted), but each plan instance must be justified
by at least one reason. The reason and the context are evaluated
against the agent’s mental state and both must return true for π to
be selected. Firing an object rule gives rise to a new instance of the
plan π that forms the right hand side of the rule which is justified
by the atom instances matching the reasons.

Meta-rules To update the agent’s state, specify which plan in-
stances to adopt as intentions and select which intentions to execute
in a given cycle an agent uses meta-rules. The syntax of a meta-rule
is given by:

meta-context→ m1; . . . ;mn

where meta-context is a boolean expressions built of mental state
and plan state queries and m1, . . . ,mn is a sequence of mental
state and/or plan state actions. When a meta-rule is fired, the ac-
tions that form its right hand side are immediately executed.

Meta-APL Programs A meta-APL program (D,R1, . . . ,Rk,
A) consists of a set of clause and macro definitions D, a sequence
of rule setsR1, . . . ,Rk, and a set of initial atom instancesA. Each
rule setRi is a set of object rules or a set of meta-rules that forms a
component of the agent’s deliberation cycle. For example, rule sets
can be used to update the agent’s mental and plan state, propose
plans or create and execute intentions.

2.2 Meta-APL Core Deliberation Cycle
The meta-APL core deliberation cycle consists of three main

phases. In the first phase, a user-defined sense() function updates
the agent’s mental state with atom instances resulting from percep-
tion of the agent’s environment, messages from other agents etc.
In the second phase, the rule sets comprising the agent’s program
are processed in sequence. The rules in each rule set are run to
quiescence to update the agent’s mental and plan state. Each rule
is fired once for each matching set of atom and/or plan instances.
Changes in the mental and plan state resulting from rule firing
directly update the internal (implementation-level) representations
maintained by the deliberation cycle, which may allow additional
rules to match in the same or subsequent rule sets. Processing a set
of object rules creates new plan instances. Processing a set of meta-
rules may involve updating the agent’s beliefs and goals, deleting
intentions for achieved goals, deleting unintended plan instances
from the previous deliberation cycle, updating the agent’s inten-
tions or selecting which intention(s) to execute at this cycle, etc.
Finally, in the third phase, the next step of all scheduled object-
level plans is executed. The deliberation cycle then repeats. Cycles
are numbered starting from 0 (initial cycle), and the cycle number
is incremented at each new cycle.

3. OPERATIONAL SEMANTICS
In this section, we give the operational semantics of meta-APL

in terms of a transition system. We first present the configuration
of meta-APL agent programs (henceforth agent configuration) be-
fore presenting the transition rules. Each transition transforms one
configuration into another and corresponds to a single computa-
tion/execution step.

Meta-APL Configuration An agent configuration is a tuple
〈D,R1 . . .Rk, A,Π, J, S, p, n〉 where D is a set of clause and
macro definitions, each Ri, 1 ≤ i ≤ k is a either a set of object
rules or a set of meta-rules, A is a set of atom instances, Π is a set
of plan instances, J ⊆ (ID×ID) is a justification relation between
plan instance ids and justification ids, S ⊆ (ID×ID) is a sub-goal
relation between plan instance ids and subgoal ids, 0 ≤ p ≤ k + 2
is a phase indicator (where 0 is the sense phase, 1 ≤ p ≤ k corre-
spond to the rule sets, and k+1, k+2 correspond to the exec phase),
and n ∈ N is the current deliberation cycle. An atom instance
α ∈ A is a tuple (i, a, c) where: i is the id of the instance, a is the
atom of which i is an instance, and c is the cycle at which the in-
stance was created. A plan instance ρ ∈ Π is a tuple (i, π, π′, f, c)
where: i is the id of the instance, π is the plan of which i is an
instance, π′ is the remainder of i, f is the set of execution state
flags of i (a subset of {failed, stepped, scheduled, intended}
and any user-defined flags), and c is the cycle at which the in-
stance was created. Since the agent’s clause and macro definitions,
and object and meta-rules do not change during execution, we use
〈A,Π, J, S, p, n〉 to denote the configuration when no ambiguity
can arise.

The initial configuration of an agent is defined by its initial atom
instancesA0, and execution starts in the sense phase: 〈A0, ∅, ∅, ∅, 0, 0〉.

Mental & Plan State Queries The evaluation of a query with
respect to a configuration results in a substitution θ which is the
most general unifier (mgu) of the query and some element of the
configuration. Given t1 and t2, we write t1 = t2 | θ iff t1 and t2
unify with mgu θ.

Below we state how each primitive query type is evaluated against
a configuration C = 〈A,Π, J, S, p, n〉

• C ` atom(i, a) |θ iff ∃(i1, a1, c1)∈A: (i1, a1)=(i, a) |θ

• C ` cycle(c) iff c = n

• C `plan(i,π) |θ iff ∃(i1,π1,π1
′,f1,j1)∈Π:(i1, π1)=(i,π)|θ

• C ` plan-remainder(i, π) | θ iff ∃(i1, π1, π
′
1, f1, j1) ∈ Π

such that (i1, π
′
1) = (i, π) |θ

• C ` justification(i, j) |θ iff ∃(i1,j1)∈J :(i1,j1)=(i,j) |θ

• C ` substitution(i, µ) | θ iff ∃(i1, π1, π
′
1θ
′
1, f1, j1) ∈ Π

such that (i1, θ
′
1) = (i, µ) | θ

• C ` subgoal(i, j) |θ iff ∃(i1,j1)∈S: (i1,j1)=(i,j) |θ

• C`state(i,f) |θ iff ∃(i1,π1,π1
′,f1,j1)∈Π:(i1,f1)=(i,f) |θ

• C ` not(q) | θ iff there is no θ′ for the variables in q left
unsubstituted by θ such that C ` q | θθ′

• C ` q1, q2, . . . , qn | θ iff ∃θ1, . . . , θn such that θ = θ1 . . . θn
and C ` q1 | θ1, . . . , C ` qn | θ1 . . . θn

• C ` q | θ where q ← q1, . . . , qn iff C ` q1, q2, . . . , qn | θ

Mental & Plan State Actions For each mental and plan state
action act, we define a binary relation act−→ on configurations that
describes the resulting configuration when act is performed.

• 〈A,Π, J, S, p, n〉 add-atom(i,a)−→ 〈A∪{(i, a, n)},Π, J, S, p, n〉where
i is a new id

• 〈A,Π, J, S, p, n〉 delete-atom(i)−→ 〈A′,Π′, J ′, S′, p, n〉 where
A′ = A \ {(i′, _, _) ∈ A | (i, i′) ∈ (S ∪ J−1)∗}
Π′ = Π \ {(i′, _, _, _, _) ∈ Π | (i, i′) ∈ (S ∪ J−1)∗}

151

S′ = {(i′, j′) ∈ S | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}
J ′ = {(i′, j′) ∈ J | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}
(above,R∗ denotes the reflexive transitive closure of a binary
relation R).

• 〈A,Π, J, S, p, n〉 set-substitution(i,θ)−→ 〈A,Π′, J, S, p, n〉where Π′ =

Π \ {(i, π, π′θ′, f, c) ∈ Π} ∪ {(i, π, π′θ, f, c)}

• 〈A,Π, J, S, p, n〉 set-state(i,σ)−→ 〈A,Π′, J, S, p, n〉where Π′ = Π\
{(i, π, π′, f, c)} ∪ {(i, π, π′, σ, c)}

• 〈A,Π, J, S, p, n〉 delete-plan(i)−→ 〈A′,Π′, J ′, S′, p, n〉 where Π′ =

Π \ {(i′, _, _, _, _) ∈ Π | (i, i′) ∈ (S ∪ J−1)∗}
A′ = A \ {(i′, _, _, _) ∈ A | (i, i′) ∈ (S ∪ J−1)∗}
S′ = {(i′, j′) ∈ S | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}
J ′ = {(i′, j′) ∈ J | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}

Action sequences Given the definitions of actions above, we
can now specify the effects of sequences of actions and macros.
Both are defined by non-empty sequencesm1; . . . ;mk where each
element mi is a primitive or macro-defined mental or plan state
query or action.

〈A0,Π0, J0, S0, p, n〉
m1; ... ;mk−→ 〈Aj ,Πj , Jj , Sj , p, n〉

iff 〈Ai−1,Πi−1, Ji−1, Si−1, p, n〉
mi−→ 〈Ai,Πi, Ji, Si, p, n〉 for ev-

ery 1 ≤ i ≤ j, and either j = k or j < k and there is no mj+1

transition out of 〈Aj ,Πj , Jj , Sj , p, n〉.

3.1 Transition Rules
The execution of a meta-APL agent program modifies its initial

configuration by means of transitions that are derivable from the
transition rules given below.

Sense In the sense phase, the agent’s mental state is updated
by the user-defined sense() function

A′ = sense(env,A)

〈A,Π, J, S, 0, n〉 −→ 〈A′,Π′, J, S, 1, n〉

The definition of sense() depends on the nature of the agent’s
interaction with its environment and its deliberation cycle, but typ-
ically results in the addition and/or removal of atom instances.

Apply In the apply phase the rules in each rule set Ra, 1 ≤
a ≤ k are run to quiescence to update the agent’s mental and plan
state.

If Ra contains object rules, a plan instance is created for each
applicable object rule. An object rule (r : c → π) ∈ Ra is appli-
cable if its condition evaluates to true in the current configuration
under substitution θ, and if there is no plan instance in the plan base
with exactly the same plan body and justifications

∃(r : c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 ` (r : c) | θ ∧
@(i, πθ, _, _, _) ∈ Π : {(i, j) | j ∈ ids(rθ)} ⊆ J,
Π′ = Π ∪ {(inew, πθ, πθ, { }, n)} where inew is a new id,
J ′ = J ∪ {(inew, j) | j ∈ ids(rθ)}

〈A,Π, J, S, a, n〉 −→ 〈A,Π′, J ′, S, a, n〉

The new plan instance πθ is added to the plan base, and its justifi-
cations recorded. The function ids(q) collects the ids of the atom
instances used to answer the query r = q1, q2, . . . , qn. When no
more object rules can be applied, the phase is advanced to a+ 1

∀(r : c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 ` (r : c) | θ
=⇒ ∃(i, πθ, _, _) ∈ Π : {(i, j) | j ∈ ids(rθ)} ⊆ J
〈A,Π, J, S, a, n〉 −→ 〈A,Π, J, S, a+ 1, n〉

IfRa contains meta-rules, the actions in the body of each appli-
cable meta-rule in Ra are executed. A meta-rule (c → π) ∈ Ra

is applicable if its condition evaluates to true in the current config-
uration.

∃(c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 ` c | θ
〈A,Π, J, S, a, n〉 πθ−→ 〈A′,Π′, J ′, S′, a, n〉
〈A,Π, J, S, a, n〉 −→ 〈A′,Π′, J ′, S′, a, n〉

When no more meta-rules can be applied, the phase is advanced to
a+ 1

∀(c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 6` c
〈A,Π, J, S, a, n〉 −→ 〈A,Π, J, S, a+ 1, n〉

Exec The exec phase consists of two sub-phases. In the first
p = k+ 1 sub-phase, the stepped flags of plan instances executed
at the previous cycle are deleted, and the phase is advanced to k+2

Π′ = Π \ {(i, π, π′, f ∪ {stepped},m) ∈ Π} ∪
{(i, π, π′, f,m) ∈ Π | (i, π, π′, f ∪̇ {stepped},m) ∈ Π}
〈A,Π, J, S, k + 1, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

where ∪̇ denotes the disjoint union operator over sets.
In the second p = k+ 2 sub-phase, one step of each scheduled

plan instance is executed. If the step completes successfully, the
scheduled flag is replaced by stepped; if the action fails, scheduled
is replaced with failed.

External actions are performed in the agent’s environment. We
assume that each external action can signal whether the action suc-
ceeded or failed. The first transition handles the case in which the
action succeeds

∃(i, _, ea;π, f,m) ∈ Π : scheduled ∈ f ∧ ea succeeds
Π′=Π\{(i,_,ea;π,f,m)}∪{(i,_,π,f \{scheduled}∪{stepped},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

The second transition handles the case where the action fails

∃(i, _, ea;π, f,m) ∈ Π : scheduled ∈ f ∧ ea fails
Π′=Π\{(i,_,ea;π,f,m)}∪{(i,_,π,f \{scheduled}∪{failed},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

Mental state tests are evaluated against the configuration. If the
test is successful, the resulting substitution is applied to the plan
instance

∃(i, _, ? b;π, f,m) ∈ Π:scheduled∈f∧〈A,Π, J, S, k + 2, n〉`b |θ
Π′=Π\{(i,_,?b;π,f,m)}∪{(i,_,πθ,f \{scheduled}∪{stepped},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

If the test fails, the scheduled flag is replaced by failed

∃(i, _, ? b;π, f,m) ∈ Π:scheduled∈f∧〈A,Π, J, S, k + 2, n〉0b |θ
Π′=Π\{(i,_,?b;π,f,m)}∪{(i,_,?b;π,f \{scheduled}∪{failed},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

A mental state actionma, wherema is add-atom or delete-atom,
updates the agent’s configuration

∃(i, _,ma;π, f,m) ∈ Π : scheduled ∈ f
〈A,Π, J, S〉 ma−→ 〈A′,Π′, J ′, S′〉
Π′′=Π′\{(i,_,ma;π,f,m)}∪{(i,_,π,f \{scheduled}∪{stepped},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A′,Π′′, J ′, S′, k + 2, n〉

The evaluation of a subgoal results in the creation of a new in-
stance of the goal atom (with the substitution of the plan instance
applied to any variables in the goal), together with a subgoal rela-
tion associating the atom and plan instances

∃(i, _, ! g;πθ, f,m) ∈ Π : scheduled ∈ f
A′ = A ∪ {(inew, gθ, n)} where inew is a new id
Π′=Π\{(i, _,!g;πθ,f,m)}∪{(i,_,πθ,f \{scheduled}∪{stepped},m)}
S′ = S ∪ {(i, inew)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A′,Π′, J, S′, k + 2, n〉

152

When all scheduled plan instances have been processed, the
sense phase of the next deliberation cycle begins

∀(i, _, a;π, f, j) ∈ Π : scheduled /∈ f
〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π, J, S, 0, n+ 1〉

4. CORRECT TRANSLATION
In this section we show how Jason and 3APL programs (and

their associated deliberation strategies) can be translated into meta-
APL to give equivalent behavior under weak bisimulation equiva-
lence.

First we introduce the notion of weak bisimulation and justify
using it to compare agent programs. The notion was introduced in
[19] and applied to agent programs in [14]. The formal definition of
weak bisimulation is given below. A transition system consists of
a set of states/configurations S and a set of transitions a−→ between
states as specified by the operational semantics of the language,
where the label a of the transition is either an external action or
any other transition/internal action τ . The set of possible transition
labels for a program with a set of external actions Act is denoted
by Actτ (it corresponds to Act ∪ {τ}). We use an abbreviation

s
l

=⇒ s′ to say that there is a path from s to s′ labelled with a
sequence of labels l, and skip all τs from the label (so that if the
path from s to s′ contains only τ transitions, we say that s ε

=⇒ s′

(the label of the path is the empty string ε). The function observe
returns observable or meaningful properties of the agent’s state, for
example beliefs.

DEFINITION 1 (WEAK BISIMULATION). Let (S, { a−→| a ∈
Actτ}) and (T, { a−→| a ∈ Actτ}) be two transition systems. A
relation∼=⊆ S×T is a weak bisimulation if for any s ∼= t, it is the
case that:

1. observe(s) = observe(t),

2. if s τ−→ s′, then there exists t′ ∈ T such that t ε
=⇒ t′ and

s′ ∼= t′; if s a−→ s′ where a ∈ Act , then there exists t′ ∈ T
such that t a

=⇒ t′ and s′ ∼= t′, and

3. if t τ−→ t′, then there exists s′ ∈ S such that s ε
=⇒ s′ and

s′ ∼= t′; if t a−→ t′ where a ∈ Act , then there exists s′ ∈ S
such that s a

=⇒ s′ and s′ ∼= t′.

The reason for using weak rather than strong bisimulation (which
matches all properties of states and all transitions) is that the latter
notion is not informative when comparing programs written in dif-
ferent languages. Clearly, the same behaviour in two different lan-
guages may have to be implemented using a different number and
type of internal operations, and the sets of state variables used by
the two programs will probably be different. We want to match only
the external actions produced by the two programs, and ‘meaning-
ful’ properties of states, such as beliefs. The translations given
below generate agent programs that are equivalent in this sense.

4.1 Jason
We assume the syntax and operational semantics defined in [3,

Ch.10]. Given a Jason program (bs, ps), where bs are the agent’s
initial beliefs and ps are the agent’s plans, we translate it into a
meta-APL program (A,D,R1,R2,R3). D defines macros for
adding beliefs and goals and a query for plan triggering events:
add-belief(b) = add-atom(belief(b)); add-atom(+belief(b))
delete-belief(b) = delete-atom(belief(b)); add-atom(-belief(b))

trigger-event(i)← atom(i, e), plan-trigger(e), not justification(_, i)

R1 contains meta-rules to remove non-intended plan instances
from the previous cycle, to remove completed intentions, and to
select an event to process at this cycle:
plan(i, _), not intention(i)→ delete-plan(i)

intention(i), plan-remainder(i, ε), justification(i, j),

not subgoal(_, j)→ delete-atom(j)

intention(i), plan-remainder(i, ε), justification(i, j),

subgoal(k, j), substitution(i, si), substitution(k, sk)

→ set-substitution(k, si ∪ sk), delete-atom(j)

cycle(c), not selected-event(_, c), trigger-event(i)
→ add-atom(selected-event(i, c))

R3 contains meta-rules to nondeterministically select a plan in-
stance for the selected event, to select an intention to execute at
this cycle, and to generate a test goal addition event if the intention
selected at this cycle starts with a test goal that evaluates to false:
cycle(c), selected-event(i, c), not (justification(j′, i), intention(j′)),

justification(j, i)→ add-intention(j)

not scheduled(_), executable-intention(i)→ schedule(i)

scheduled(i), plan-remainder(i, ?q ;π), not q

→ set-remainder(i, !(+test(q)) ;π)

Together D,R1 andR3 define the Jason deliberation cycle, and
are common to all Jason programs.
A and R2 are specified by a translation function tr. tr trans-

forms each belief b ∈ bs into two atom instances tr(b) = (ib,
belief(b), 0), (i′b, +belief(b), 0) representing the belief b and the
corresponding belief addition event. tr transforms each Jason plan
tei : ci ← hi ∈ ps into an atom instance plan-trigger(tr(tei))
(where tr(tei) is given below) in A and a corresponding meta-
APL rule inR2, with the translations of tei, ci and hi forming the
reason, context and plan respectively. The translation of tei de-
pends on its type and is given by: tr(+b) = +belief(b), tr(-b) =
-belief(b), tr(+!g) = +goal(g) and tr(+?g) = +test(g). Each el-
ement of the plan context ci = c1i& . . .&cki is transformed into a
corresponding mental state query: tr([not]cji) = [not]belief(cji)
(with “&” replaced by “,”). The definition of the plan body trans-
lation tr(hi) is similarly straightforward. External actions and sub-
goals are unchanged. Test goals are translated into correspond-
ing mental state tests, and the addition and deletion of beliefs are
translated into corresponding type specific mental state actions de-
fined using macros: tr(ea) = ea, tr(!g) = !+goal(g), tr(?b) =
?belief(b), tr(+b) = add-belief(b), tr(-b) = delete-belief(b) and
tr(h1

i ; . . . ;h
n
i) = tr(h1

i); . . . ; tr(hni).
Before stating the weak bisimulation result for the Jason trans-

lation into meta-APL, we need to define which properties of the
states of Jason and meta-APL programs are observable (the func-
tion observe). For a Jason configuration s, we stipulate that if the
phase of s is ProcMsg, observe(s) returns (Bs,Es, Is), where
Bs are (suitable representations of) the agent’s beliefs,Es the rele-
vant events in the event base, and Is are the uncompleted intentions
in the intention base. Otherwise observe(s) = > where > is an
empty observation. For a meta-APL configuration t we stipulate
that observation of t is possible if the value of the stage counter is 0
(the agent is in 0 phase). Then observe(t) = (Bs,Es, Is) where
Bs are instances of beliefs, Es of relevant events in the atom base,
and Is of uncompleted intentions in the intention base. Otherwise
observe(t) returns >.

THEOREM 1. Every Jason program (bs, ps) is weakly bisimilar
to its meta-APL translation tr(bs, ps) = (A,D,R1,R2,R3).

The proof (and the proof of Theorem 3 below for 3APL) uses a

153

general result which states that if there is a strong bisimulation be-
tween cycles in two transition systems (where cycles intuitively
correspond to agent deliberation cycles, starting and ending with
the sense phase), then there is a weak bisimulation between the two
transition systems. We state the main definitions needed for this
result, and the theorem itself, below.

Let (S, { a−→| a ∈ Actτ} be a transition system and s0 the initial
state in this transition system. Consider a tree unravelling of the
system starting in s0. Let us denote the states in the tree unravelling
by RC(s0) and let SC(s0) ⊆ RC(s0) be the set of configurations
which correspond to the beginning of a deliberation cycle (sensing,
processing messages etc.).

DEFINITION 2 (DELIBERATION CYCLE). A deliberation cy-
cle of RC(s0) is a finite sequence of transitions s1

a1−→ . . .
an−1−−−→

sn (n > 1) where:

• si ∈ RC(s0) for all 1 ≤ i ≤ n,

• ai ∈ Actτ for all 1 ≤ i < n,

• s1, sn ∈ SC(s0), and

• si /∈ SC(s0) for all 1 < i < n.

For a cycle c = s1
a1−→ . . .

an−1−−−→ sn, we define first(c) = s1
and last(c) = sn. If s = si for some i ∈ {1, . . . , n}, we write
label(c|s) to denote the label of the prefix of c from first(c) until
s, i.e., label(c|s) = label(s1

a1−→ . . .
ai−1−−−→ si).

Let DC(s0) denote the set of all deliberation cycles of RC(s0).
We define transitions between consecutive deliberation cycles in
RC(s0) as follows. Given c, c′ ∈ DC(s0), c l−→ c′ iff last(c) =
first(c′) and l = label(c). For any c ∈ RC(s0), observe(c) =
observe(first(c)). Slightly abusing notation, we write s ∈ c if s
occurs in c. We also lift the notation c ∼ d from pairs of cycles to
pairs of sets of cycles by setting C ∼ D iff for ∀ c ∈ C, ∃ d ∈ D
such that c ∼ d, and ∀ d ∈ D, ∃ c ∈ C such that c ∼ d.

THEOREM 2. Let s0 and t0 be two initial configurations. If
there exists a strong bisimulation ∼⊆ DC(s0) × DC(t0) where,
for any c ∼ d, the following conditions hold:

1. ∀ s ∈ c where s 6= last(c), ∃ t ∈ d such that t 6= last(d),
label(c|s) = label(d|t), observe(s) = observe(t) and
{c′ ∈ DC(s0) | first(c) = first(c′), s ∈ c′} ∼ {d′ ∈
DC(t0) | first(d) = first(d′), t ∈ d′},

2. ∀ t ∈ d where t 6= last(d), ∃ s ∈ c such that s 6= last(c),
label(d|t) = label(c|s), observe(t) = observe(s) and
{c′ ∈ DC(s0) | first(c) = first(c′), s ∈ c′} ∼ {d′ ∈
DC(t0) | first(d) = first(d′), t ∈ d′} ,

then, RC(s0) and RC(t0) are weakly bisimilar.
This technical result is useful since it allows us to prove weak

bisimulation equivalence between two transition systems if we can
prove that there is a strong bisimulation between the cycles. The
main idea of constructing such a strong bisimulation between de-
liberation cycles of a Jason program and its meta-APL translation,
is to determine the selections that have been made within the delib-
eration cycles of both agents. In particular, each Jason deliberation
cycle has at most three selections: a selected event for which there
is at least one relevant plan; an applicable plan among these rele-
vant plans to add to the set of intentions; and an intention from the
set of intentions to execute. Similarly, each deliberation cycle of its
meta-APL translation also has at most three selections: a selected
event by the fourth meta rule in R1; a new plan instance (corre-
sponding to an applicable plan in Jason) to become an intention by

the first meta rule in R3; and an intention to be executed by the
second meta rule in R3. The strong bisimulation is constructed by
matching deliberation cycles of a Jason agent and its meta-APL
translation based on the selections made in each deliberation cy-
cle. In the proof, we show that such a construction yields a strong
bisimulation which also satisfies the two conditions stated in The-
orem 2. This gives us the proof that there is a weak bisimulation
between the two transition systems.

4.2 3APL
A similar translation can be defined for 3APL. We assume the

syntax and operational semantics given in [8]. We translate a 3APL
program (cs, bs, gs, pg, pr), where cs are the capabilities (i.e., be-
lief update actions), bs are the initial beliefs, gs are the initial goals,
pg are the planning goal rules and pr are the plan revision rules,
into a meta-APL program (A,D,R1,R2,R3,R4) whereR1 and
R4 implement the 3APL deliberation strategy, and A, D, R2 and
R3 are specified by a translation function tr. The translation of A
and D are similar to Jason except that capabilities are translated
into macros in D defined in terms of mental state actions. In the
interests of brevity we focus on the translation of the planning goal
and plan revision rules that constitute a 3APL agent’s program, and
the meta-APL rules that implement the 3APL deliberation strategy.
R1 and R4 are common to all 3APL programs. R1 contains

meta-rules to remove goals which are believed, non-intended plan
instances from the previous cycle and completed intentions.
goal(g), belief(g)→ delete-atom(goal(g))

revise-plan(i, p)→ delete-atom(revise-plan(i, p))

plan(i, _), not(intention(i))→ delete-plan(i)

intention(i), plan-remainder(i, ε)→ delete-plan(i)

R4 contains meta-rules to select a plan instance to revise, a plan
instance for each goal or belief, and an intention to execute at this
cycle.
cycle(c), not selected-PR(_, c), revise-plan(i, pb)

→ add-atom(selected-PR(i, c)), set-remainder(i, pb)

cycle(c), not selected-PG(_, c), justification(i, r),

not (justification(j, r), intention(j))

→ add-atom(selected-PG(i, c)), add-intention(i)

not scheduled(_), intention(i), not failed(i)→ schedule(i)

R2 and R3 contain the translation of the 3APL program. The
translation function tr transforms each 3APL planning goal rule
κ ← β | π ∈ pg into a corresponding meta-APL rule in R2, with
the translations of κ, β and π forming the reason, context and plan
respectively. The translation of κ is given by tr(κ) = goal(κ).
Each element of the belief condition β is transformed into a corre-
sponding mental state query. When translating the plan body tr(π),
external actions are unchanged tr(ea) = ea, test goals are trans-
lated into corresponding mental state tests, tr(b?) = ?b and mental
actions are translated into corresponding mental state macros in D.
Abstract plans are translated as corresponding ‘external’ actions
which always fail (causing the plan to block). tr translates each
plan revision rule πh ← β | πb ∈ pr as a meta-rule inR3

plan(i, πh), intention(i), tr(β)→ add-atom(revise-plan(i, πb))

where tr(β) is a set of mental state queries corresponding to β,
and the atom revise-plan(i, πb) indicates that plan instance i can be
revised with πb.

Before stating the equivalence result, we need to define the observe
function used in stating weak bisimulation equivalence. For a 3APL
configuration s, we stipulate that s is observable if it is in Message
phase. Then observe(s) = (σ, γ, I) where σ are beliefs in the be-
lief base, γ are goals in the goal base and I are intentions in the

154

intention base. Otherwise observe(s) = >. For a meta-APL con-
figuration t which is in 0 phase, observe(t) = (Bs,Gs, Is) where
Bs are beliefs in the atom base, Gs are goals in the atom base,
and Is are uncompleted intentions in the intention base. Otherwise
observe(t) = >.

THEOREM 3. Every 3APL program (bs, gs, pg, pr) is weakly
bisimilar to its meta-APL translation tr(bs, gs, pg, pr) = (A,D,
R1,R2,R3,R4).

The proof uses Theorem 2 and a construction of strong bisimulation
between cycles in the transition system of a 3APL program and
cycles in the transition system of its meta-APL translation. Similar
to the translation of Jason, such a strong bisimulation is constructed
by matching deliberation cycles of the 3APL agent and its meta-
APL translation. Here, each deliberation cycle of 3APL has at most
three selections: an applicable PG rule to apply; an applicable PR
rule to apply; and an intention to execute. Correspondingly, each
deliberation cycle of the meta-APL translation makes at most three
selections: a new plan instance (generated by the translation of a
PG rule in R2) to become an intention by the second meta-rule of
R4; an intention to be revised by the translation of a PR rule in R3

and the first meta-rule ofR4; and an intention to be executed by the
third meta rule of R4. We show that this construction gives rise to
a strong bisimulation which satisfies two conditions of Theorem 2.

5. VERIFICATION
Translation of the individual agent programs comprising a het-

erogeneous multi-agent program results in a set of meta-APL pro-
grams that interact through a common environment. As shown in
the previous section, the meta-APL translations have equivalent be-
havior under weak bisimulation equivalence to the original hetero-
geneous multi-agent program.

In this section, we briefly outline how we verify properties of this
set of meta-APL programs using Maude [6] and its associated LTL
model checker. Maude has previously been used both to prototype
agent languages and for verification, e.g., [24, 11, 23]. It can model
check systems whose states involve arbitrary algebraic data types—
the only assumption is that the set of states reachable from a given
initial state is finite. Compared to propositional model checkers,
this greatly simplifies modeling of the agents’ (first-order) rules and
deliberation strategies.

The Maude encoding of meta-APL consists of two parts: a set of
Maude modules defining types, equations and rules that encode the
meta-APL operational semantics, and a set of additional modules
generated by the tr function that encode the concrete meta-APL
program of each agent. The encoding of the meta-APL operational
semantics requires approximately 60 equations and 15 rules (about
300 lines of Maude code).

5.1 Example
As an example of our approach, we present verification results

for a variant of the ‘Mars scenario’ [5]. In the Mars scenario,
two robots cooperate to remove garbage from the surface of Mars.
Robot r1 searches for two pieces of garbage randomly positioned
in a grid environment. When it finds a piece of garbage, it brings
the piece to robot r2 which incinerates the garbage. Jason pro-
grams for r1 and r2 are given in [5]. We replaced the program for
r2 with an equivalent 3APL program. Both programs and their de-
liberation cycles were translated as described in Section 4, and we
used Maude to verify the six properties given in [5]. As expected,
all properties hold of the combined heterogeneous multi-agent pro-
gram.

Bordini et al. [5, 2] also give the time required to model check

the property

((Int r1 continue(check) ∧ (Bel r1 checking(slots)))

using both the SPIN and Java Pathfinder (JPF) model checkers. The
SPIN approach relies on an encoding of Jason programs and delib-
eration strategy in the SPIN modeling language PROMELA. With
JPF, the model checker is used to model check the Java code im-
plementing the Jason interpreter as it executes the agent programs.
For SPIN, verification required 65.8 seconds, and with JPF verifi-
cation required over 18 hours. When the garbage is placed at fixed
positions on the grid (i.e., the system has a single initial state), ver-
ification requires 5.25 seconds for SPIN and 76.3 seconds for JPF.

The approaches presented by Bordini and colleagues are specific
to the Jason agent programming language. Dennis et al [10] ver-
ified a variant of the Mars scenario using their generic approach
to MAS verification which allows the verification of heterogeneous
multi-agent programs. They report a time of 9 hours to model check
the property above for a system in which the Jason programs for
r1 and r2 were translated into the agent programming language
GWENDOLEN.

Using our framework, verification with Maude requires 362 sec-
onds (for multiple initial states) and 1.8 seconds when the garbage
is at fixed positions in the grid. Although our approach is slower
than the SPIN encoding of the (homogeneous) Jason implementa-
tion of the Mars scenario for multiple initial states, it is significantly
faster than the AIL approach of Dennis et al to verifying heteroge-
neous multi-agent programs.

6. RELATED WORK
There is a considerable amount of work on verifying BDI agent

programs and multi-agent systems, e.g., [21, 1, 5, 2, 18]. However,
with the exception of the work on the Agent Infrastructure Layer
(AIL) [4, 9, 10], there has been relatively little work on verifica-
tion of heterogeneous multi-agent programs. AIL is a collection
of Java classes abstracting capabilities of BDI agent programming
languages. The interpreters of each language in a heterogeneous
multi-agent program are reimplemented using AIL, and programs
verified using the AJPF model checker. (In [11] a prototype im-
plementation in Maude of the AIL and a translation of AgentS-
peak(L) into the Maude AIL is described. However, no proof of
correctness of the translation is given, and subsequent work on AIL
focussed on AJPF.) To verify heterogeneous BDI programs using
AIL, an encoding of the target APL’s operational semantics must
therefore be defined in Java. In [10] the authors state that there
are currently no formal proofs that the AIL translations of the BDI
languages they consider (GOAL, SAAPL, etc.) are correct. Indeed
Dennis et al. note such correctness results would be a “significant
task”. A key advantage of our approach is that we can prove a cor-
respondence between the operational semantics of the target BDI
language and the operational semantics of its translation into meta-
APL, and hence guarantee that the meta-APL translation has identi-
cal behavior to the heterogeneous MAS being verified. In contrast,
with AIL, both the target of translation and the model-checker op-
erate on a lower level of abstraction, which makes it more difficult
to prove correctness of the translation and may also explain differ-
ences in model-checking performance.

Due to limited space, we can only acknowledge some of the re-
search which influenced the design of meta-APL, including work
on BDI agent programming languages which provide support for
programming their own deliberation cycle, e.g., [12, 15, 7, 8], ar-
chitectures and frameworks for programming BDI deliberation cy-
cles, e.g., [20, 10], and work on translating between BDI agent
programming languages, e.g., [16, 14].

155

7. CONCLUSIONS
We defined meta-APL, a BDI-based agent programming lan-

guage that allows both an agent’s plans and its deliberation strategy
to be encoded as part of the agent program. We gave the operational
semantics of meta-APL and showed that it is possible to give prov-
ably correct translations of Jason and 3APL programs into meta-
APL. We briefly outlined a verification framework for meta-APL
multi-agent programs based on Maude. The translations of Jason
and 3APL to meta-APL and from meta-APL to Maude are rela-
tively simple (much simpler than an encoding of a BDI language
for a model checker). Moreover, preliminary experimental results
indicate that our approach requires significantly less time to verify
properties compared to [10].

In future work, we plan to extend our approach to other BDI
agent programming languages. Based on our experience with Ja-
son and 3APL, we are confident that languages such as GOAL [17]
can translated in a straightforward way. While each additional lan-
guage will require a proof of the correctness of the translation into
meta-APL, our existing Maude verification framework can be used
without modification to model check the resulting translation.

8. REFERENCES
[1] R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.

Model checking AgentSpeak. In Proceedings of the 2nd
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2003), pages 409–416. ACM,
2003.

[2] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifying Multi-agent Programs by Model Checking.
Autonomous Agents and Multi-Agent Systems,
12(2):239–256, 2006.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason. Wiley, 2008.

[4] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher.
Automated verification of multi-agent programs. In 23rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), pages 69–78. IEEE, 2008.

[5] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Verifiable multi-agent programs. In Programming
Multi-Agent Systems, volume 3067 of LNCS, pages 72–89.
Springer, 2004.

[6] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In J. Meseguer, editor, Electronic Notes in
Theoretical Computer Science, volume 4. Elsevier Science
Publishers, 2000.

[7] M. Dastani, F. de Boer, F. Dignum, and J. Meyer.
Programming agent deliberation: an approach illustrated
using the 3APL language. In Proceedings of the 2nd
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2003), pages 97–104. ACM,
2003.

[8] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Programming multi-agent systems in 3APL. In Multi-Agent
Programming: Languages, Platforms and Applications,
pages 39–67. Springer, 2005.

[9] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A
flexible framework for verifying agent programs. In
Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008),
pages 1303–1306. IFAAMAS, 2008.

[10] L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini.
Model checking agent programming languages. Automated
Software Engineering, 19(1):5–63, 2012.

[11] B. Farwer and L. Dennis. Translating into an intermediate
agent layer: A prototype in Maude. In Proceedings of
Concurrency, Specification, and Programming CS&P2007,
pages 168–179, 2007.

[12] M. P. Georgeff and A. L. Lansky. Reactive reasoning and
planning. In Proceedings of the Sixth National Conference
on Artificial Intelligence, AAAI-87, pages 677–682, 1987.

[13] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and
M. Wooldridge. The Belief-Desire-Intention model of
agency. In Intelligent Agents V, Agent Theories,
Architectures, and Languages, 5th International Workshop,
(ATAL’98), volume 1555 of LNCS, pages 1–10. Springer,
1999.

[14] K. Hindriks. Agent programming languages: programming
with mental models. PhD thesis, University of Utrecht, 2001.

[15] K. Hindriks, F. De Boer, W. Van der Hoek, and J. Meyer.
Agent Programming in 3APL. Autonomous Agents and
Multi-Agent Systems, 2(4):357–401, 1999.

[16] K. Hindriks, Y. Lespérance, and H. Levesque. An embedding
of ConGolog in 3APL. In Proceedings of the 14th European
Conference on Artificial Intelligence (ECAI’2000), pages
558–562, 2000. ECAI, IOS Press.

[17] K. V. Hindriks. Programming rational agents in GOAL. In
A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H.
Bordini, editors, Multi-Agent Programming: Languages,
Tools and Applications, pages 119–157. Springer US, 2009.

[18] S.-S. T. Q. Jongmans, K. V. Hindriks, and M. B. van
Riemsdijk. Model checking agent programs by using the
program interpreter. In Proceedings of the 11th International
Workshop Computational Logic in Multi-Agent Systems
(CLIMA XI), volume 6245 of LNCS, pages 219–237.
Springer, 2010.

[19] R. Milner. Communication and concurrency. Prentice-Hall,
Inc., 1989.

[20] P. Novák and J. Dix. Modular BDI architecture. In
Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006),
pages 1009–1015. ACM, 2006.

[21] S. Shapiro, Y. Lespérance, and H. Levesque. The cognitive
agents specification language and verification environment
for multiagent systems. In Proceedings of the 1st
International Joint conference on Autonomous Agents and
Multiagent Systems, pages 19–26. ACM, 2002.

[22] T. T. Doan, N. Alechina, and B. Logan. The agent
programming language meta-APL. In Proceedings of the
Ninth International Workshop on Programming Multi-Agent
Systems (ProMAS 2011), pages 72–87, 2011.

[23] M. B. van Riemsdijk, L. Astefanoaei, and F. S. de Boer.
Using the Maude term rewriting language for agent
development with formal foundations. In M. Dastani, K. V.
Hindriks, and J.-J. Ch. Meyer, editors, Specification and
Verification of Multi-agent Systems, pages 255–287.
Springer, 2010.

[24] M. B. van Riemsdijk, F. S. de Boer, M. Dastani, and J.-J. C.
Meyer. Prototyping 3APL in the maude term rewriting
language. In Proceedings of the 5th International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), pages 1279–1281. ACM, 2006.

156

