Using Reward/Utility Based Impact Scores in Partitioning

(Extended Abstract)

William Curran
Oregon State University
Corvallis, Oregon
curranw@onid.orst.edu

Adrian Agogino
NASA AMES Research
Center
Moffet Field, California

Kagan Tumer
Oregon State University
Corvallis, Oregon
kagan.tumer@oregonstate.edu

adrian.k.agogino@nasa.gov

ABSTRACT

Reinforcement learning with reward shaping is a well-established

but often computationally expensive approach to multiagent
problems. Agent partitioning can assist in this computa-
tional complexity by treating each partition of agents as an
independent problem. We introduce a novel agent partition-
ing approach called Reward/Utility-Based Impact (RUBI).
RUBI finds an effective partitioning of agents while requir-
ing no prior domain knowledge, provides better performance
by discovering a non-trivial agent partitioning, and leads to
faster simulations. We test RUBI in the Air Traffic Flow
Management Problem, where there are simultaneously tens
of thousands of aircraft affecting the system and no intu-
itive similarity metric between agents. When partitioning
with RUBI in the ATFMP, there is a 37% increase in per-
formance, with a 510x speed up per simulation step over
non-partitioning approaches.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence|: Intelligent
Agents

Keywords
Multiagent Partitioning, Multiagent Learning

1. INTRODUCTION

Two key elements in a multiagent reinforcement learn-
ing system is minimizing computation time and maximizing
coordination. Reward shaping is a field in multiagent re-
inforcement learning that focuses on the design of rewards,
and has been shown to assist in multiagent coordination.
This reward shaping is typically at a large cost to compu-
tation time, and in large, highly coupled domains reward
shaping quickly becomes computationally intractable.

Partitioning agents into hierarchies [3] or teams [2] speeds
up computation time for extremely large domains (approx.
10000-40000 agents) while still using the reward shaping
technique without approximation error. In this paper we in-
troduce Reward/Utility-Based Impact (RUBI) scores. RUBI
partitions agents by determining the effect of one agent’s ac-

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright (©) 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1563

tion on another agent’s reward. Using this metric it devel-
ops similarity metrics between all agents in order to usefully
partition and therefore reduce the complexity of the learning
problem. In contrast to many other partitioning approaches,
this has the advantage of requiring no domain knowledge.
The contributions of this work are: Generality: RUBI
requires no prior knowledge of the domain, essentially treat-
ing the domain as a black box to obtain rewards from. Us-
ability: RUBI removes the need to derive similarity metrics,
removing the need for domain experts in situations where a
domain expert isn’t available. Performance: RUBI discov-
ers non-trivial agent partitioning by using a reward function
to partition agents. Speed: RUBI leads to a larger number
of partitions without losing performance, leading to more
independence and therefore faster simulations.

2. RUBI

In this work we introduce an autonomous partitioning al-
gorithm requiring no domain knowledge, the Reward/Utility
Based Impact algorithm. We develop an initial agent simi-
larity matrix that uses no knowledge about the domain, and
partitions agents together based on the impact of one agent
to another. This matrix can then be used as an input to a
hierarchical agglomerative clustering algorithm.

If one agent’s action heavily impacts another agent’s re-
ward, those agents are coupled enough to be partitioned
together. The RUBI algorithm computes a localized reward
for each agent with agent ¢ in the system, and then compares
that reward to the localized reward for each agent if agent
i is not in the system. This partitioning algorithm is based
around the central idea: |L;(z) — Li(z — z;)| > |Lix(2) —
Li(z — zj)| = SIM(i,j) > SIM(k,j), where L;(z — z;)
is the localized reward of agent ¢ if j is not in the system,
Ly (z— z;) is the localized reward of agent k if j is not in the
system, and L; and Ly are the localized rewards of ¢ and k
when all agents are in the system. This means that if the
localized reward of agent i changes more than the localized
reward of agent k when agent j is taken out of the system,
agent j has more effect on agent i than agent k.

Implementation: The RUBI algorithm first initializes
an N x N matrix C, where N is the number of agents within
the system. It then calculates actions based on the ACT()
function, which is typically random action selection. A sim-
ulation is then ran with all of the agents in the system and
the localized reward is calculated for every agent. We then
remove an agent from the system, recalculate the reward for
each agent (since this is a localized reward, this is typically
a fast operation), and update the impact table C.

Algorithm 1 Reward/Utility Based Impact Algorithm

1: function RUBI(sim)

2 C < NzN

3 for ¢ < 1 to iterations do

4: actions < ACT()

5: sim.run(actions)

6 L(z) + sim.get Rewards()

7 for r <~ 1 to N do

8: sim.removeAgent(r)

9: L(z — zr) + sim.get Rewards()
10: for a < 1 to N do

11: Cr.a < Cra+|La(2) — La(z — 2r)|
12: end for

13: sim.addAgent(r)

14: end for

15: end for

16: end function

Reward/Utility-Based Impact: The impact data used
to compute the similarity matrix is obtained from a local-
ized reward or utility with respect to an agent. Learning in
congestion problems with local rewards typically leads to a
poor solution, as agents following local rewards do not opti-
mize the system-level reward. In RUBI, we do not want to
learn, but instead analyze the local impact one agent has on
another, therefore local rewards are an ideal choice.

RUBI is simply an accumulation of impact scores (line 11
of Algorithm 1). Given enough iterations, this accumula-
tion is informative enough to perform accurate partitioning.
In this research we are interested more in the relative im-
pact score from one agent to another, rather than what the
explicit impact score is.

Benefits of RUBI: One of the key strengths of RUBI
is its sheer simplicity and generality combined with com-
puting highly informative similarity scores, leading to well-
performing partitions. It needs no prior knowledge about
the domain to perform partitioning, and simply needs a lo-
calized reward from each agent to build the similarity ma-
trix. This makes RUBI highly generic and can be applied to
any multiagent domain.

Additionally, partitions built using RUBI are likely to be
greater in number without loss of performance. Domain-
based partitioning based on agent similarity encodes how
often two agents impact each other. RUBI on the other hand
looks more into how the actions of one agent impact another
agents reward. If over a few thousand trials the reward
impact of two agents is always 0, those agents actions never
impact each others reward. The same is true if the reward
impact is always the same non-zero value, the actions do not
affect the reward, therefore they are not partitioned. This is
a key feature of RUBI, and leads to finding more partitions
without loss of performance.

3. RUBI PERFORMANCE IN THE ATFMP

We test RUBI in the Air Traffic Flow Management Prob-
lem (ATFMP). The approach used here is the same as in
Curran et al. [2] and Agogino and Rios [1, 4], except utiliz-
ing RUBI.

The system-level reward in the ATFMP focuses on the cu-
mulative delay (§) and congestion (C) throughout the sys-
tem: G(z) = —(C(z) + d(z)). Agogino and Rios originally

1564

—— Greedy
—=—61 Parttions
-+~ 100 Partitions
—v— 150 Partitions
—#— 200 Partitions
—e— 300 Partitions

180,000

160,000

120,000

100,000

0 500 1,000 1,500

Steps

2,000

Figure 1: As the number of partitions decreases,
performance improves while time complexity in-
creases.

had the idea of adding a greedy scheduler to algorithmically
remove congestion from the system, while simultaneously us-
ing learning to minimize delay. We follow this approach, and
therefore our system-level reward is simply: G(z) = —d(z)

With so many agents, tens of thousands of actions simul-
taneously impact the system, causing the reward for a spe-
cific agent to become noisy with the actions of other agents.
A difference reward shaping function reduces much of this
noise, and is easily derived from the system-level reward:
Di(z) = 0(z — z; + ¢i) — §(2), where §(z — z; + ¢;) is the
cumulative delay of all agents with agent i replaced with
counterfactual ¢;. Without RUBI, this reward shaping tech-
nique makes the ATFMP computationally intractable.

Partitions developed using RUBI uses similarity metrics
that encapsulated the agent coupling. Partitioning with
RUBI and the difference reward outperformed the greedy
scheduler. Figure 1 shows a variety of partitions out per-
forming the greedy scheduler. The key benefit of RUBI-
based partitioning was that a reward independent partition
involved 61 partitions, but in domain-based partitioning the
smallest was 3. This leads to a 10% faster processing time,
at no cost to performance and using no domain knowledge.

Acknowledgments: This work was partially supported
by the National Science Foundation under Grant No. CNS-
0931591.

4. REFERENCES

[1] Adrian Agogino. Evaluating evolution and monte carlo
for controlling air traffic flow. In Proceedings of the 11th
Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking
Papers, 2009.

William J. Curran, Adrian Agogino, and Kagan Tumer.
Addressing hard constraints in the air traffic problem
through partitioning and difference rewards. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, 2013.

C. Holmes Parker and K. Tumer. Combining difference
rewards and hierarchies for scaling to large multiagent
system. In AAMAS-2012 Workshop on Adaptive and
Learning Agents. Valencia, Spain, June 2012.

J. Rios and J. Lohn. A comparison of optimization
approaches for nationwide traffic flow management. In
Proceedings of the AIAA Guidance, Navigation, and
Control Conference, Chicago, Illinois, August 2009.

B3l

(4]

