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ABSTRACT

Distances and scores are widely used to measure similar-
ity between collections of information, such as preference
profiles, belief sets, judgment sets, argument labelings, etc.
Defining a function that quantifies the similarity between
information sets of logically interrelated information is non-
trivial, as witnessed by the shortage of such quantifiers in
the literature. We propose a similarity measure for judg-
ment sets that is “sensitive” to logic dependencies among
the judgments.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.4 [Knowledge representation formalisms

and methods]
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1. INTRODUCTION
The aggregation of sets of logically related information

has been studied in several disciplines that have intersect-
ing areas of interest with multiagent systems. One of these
is judgment aggregation [6], which studies the aggregation
of, predominantly binary, judgments on a given set of issues
called an agenda. One way to construct information ag-
gregation operators is by using functions that quantify the
similarity among the aggregated information sets [2, 4, 7].
While the idea of using a similarity quantifier is simple and
intuitive, the construction of an adequate quantifier is not.
When the information on some issues is not entailed by, or

does not entail the informations on other issues, a similarity
quantifier can be obtained by simply counting the number
of issues on which the two collections disagree. This simple
quantifier, frequently used in information aggregation, and
in judgment aggregation as well [1, 2, 7], is the Hamming
distance [3]. When logic relations among aggregated issues
do exist, as is the standard assumption in judgment aggre-
gation, it has been argued that the Hamming distance is not
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the best similarity quantifier [2, 5]. Regardless, very little
alternatives to the Hamming distance exit, particularly not
quantifiers that are sensitive to the the underlying semantics
of the aggregated information. One exception is the metric
proposed in [2]. We show that more “semantic sensitive”
similarity quantifiers can be constructed.

2. PRELIMINARIES
Judgment aggregation problems are typically represented

using a logic, or a set L of well-formed propositional logic
formulas, including J (tautology) and K (contradiction). An
issue is a pair of formulas tϕ, ϕu Ă L where ϕ is neither
a tautology nor a contradiction. For simplicity, we often
abuse notation and write only the positive formula when
we discuss issues. Two issues ϕi, ϕj are logically unrelated
iff they do not have atomic sub-formulas in common, and
logically related otherwise. An agenda A is a finite set of
issues, A “ tϕ1, ϕ1, . . . , ϕm, ϕmu. A preagenda rAs for A
is the set rAs “ tϕ1, . . . , ϕmu. A judgment on ϕ P rAs is one
of ϕ or  ϕ. A judgment set J is a subset of A. J is complete
iff for each ϕ P rAs either ϕ P J or  ϕ P J and consistent iff
it is a consistent set of formulas, i.e., J * K.

Let the set of all consistent judgment sets for A be DpAq
and let DpAq Ă DpAq be the set of all judgment sets that are
also complete. A profile P Ă D

npAq is a list
P “ xJ1, . . . , Jny, of judgment sets for agents i P r1, ns.

An (irresolute) judgment aggregation rule is a correspon-

dence F : Dn Ñ 2DpAqzH. A distance d between two judg-
ments sets is a function d : DpAq ˆ DpAq Ñ R, defined for
every agenda A Ă L. A distance-based judgment aggrega-
tion rule F d,Σ is defined as

F
d,ΣpP q “ arg min

JPDpAq

ÿ

JiPP

dpJi, Jq (1)

There are three distances used in judgment aggregation.
The Hamming distance dH between two complete judgment
sets J1 and J2 is defined as dHpJ1, J2q “ |J2zJ1|. The Dras-
tic distance between two complete judgment sets J1 and J2

is 0 iff |J2zJ1| “ 0 and 1 otherwise. The Duddy-Piggins dis-
tance dG introduced in [2], is defined as the number of edges
in the shortest path in the graph GpAq “ xDpAq, Ey where
E Ď DpAq ˆ DpAq is defined as pJ1, J2q P E iff there exists
no J3 P DpAq such that J1 X J2 Ă J3. The set J3 is said to
be in-between J1 and J2.
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3. SENSITIVITY TO LOGIC RELATIONS
The dG distance, unlike the Hamming and Drastic dis-

tances, does capture the existence of semantic relations among
the agenda issues: if in two judgment sets J1 and J2 the judg-
ments on some issues cannot be changed without changing
the judgements on other issues, then dGpJ1, J2q ă dHpJ1, J2q.
It can be shown that the dG distance “recognises” when
issues are logically equivalent. Namely, when an agenda
contains logically equivalent issues, e.g., rAs “ tp, q, p Ñ
q, p _ qu, a disagreement on all logically equivalent issues
is only counted as a disagreement on one issue. Thus, for
example, a disagreement on both p Ñ q, p _ q is counted
as one disagreement by dG.
The dGpJ1, J2q is the number of minimal“hops”from judg-

ment set to judgment set one needs to “traverse” to get from
J1 to J2. We take this idea of counting only minimal steps
further. We count not the minimal “hops” as a path from J1

to J2, but as the minimal number of judgments that need to
be modified in J1 to make J1 the same as J2. To this end,
we introduce the concept of prime implicants in judgment
aggregation and use it to define a similarity quantifier.

4. SIMILARITY VIA PRIME IMPLICANTS
A prime implicant [8] is a minimal subset, with respect to

set inclusion, of a set of formulas, s.t. when the truth value
of each formula in the prime implicant is chosen, the truth
value of every other formula in the set is determined as well.
Prime implicants have been used in many disciplines such
as belief revision, automated reasoning, decision theory etc.
We extend the concept of prime implicants to judgment sets.

Definition 1. Consider an agenda A, a consistent, but
possibly incomplete, set of judgements J Ă DpAq, and an
I Ď J . The set I is an implicant of J iff for every ϕ P J it
holds that p

Ź

Iq Ñ ϕ. I is a prime J-implicant iff I is an
implicant of J and there exists no I 1 Ă I s.t. p

Ź

I 1q Ñ ϕ

for every ϕ P J . The minimal prime J-implicant is a prime
J-implicant that, among all of the prime J-implicants, has
the minimal cardinality. We denote the minimal prime J-
implicant with MPIpJq.

We now define a similarity quantifier dmpi based on min-
imal prime implicants. Intuitively, dmpipJ1, J2q is the min-
imum number of judgments that need to be reversed in J1

in order to transform J1 into J2.

Definition 2. The function dmpi : DpAqˆDpAq Ñ N
0 is

defined, for every A Ă L, as dmpipJ1, J2q “ |MPIpJ2zJ1q|.

It is easy to show that dmpi is not symmetric and thus
this function, unlike dD, dH , and dG, is not a metric in
the topological sense. However, we can still use it to build
meaningful judgment aggregation operators. Using the dmpi

we obtain a unique judgment aggregation rule:

FmpipP q “ F
dmpi,

ř

pP q “ arg min
JPDpAq

ÿ

JiPP

dmpipJi, Jq.

A collective judgment set can be seen as a consensual judg-
ment set for the agents in the profile. This is our motivation
for asking, not how much should the potential judgment set
J P DpAq change to match Ji, but how many of her positions
would the agent i be actually forfeiting if J is the chosen
consensus. Hence, Ji is the first argument in dmpipJi, Jq.

Example 4.1 illustrates how Fmpi aggregates the well known
profile from the doctrinal paradox, see e.g., [6].

Example 4.1. Consider rAs “ tp, q, p^ qu, and the pro-
file from the doctrinal paradox P “ xtp, q, pp ^ qqu,
t p, q, pp ^ qqu, tp, q, p ^ quy. We obtain that FmpipP q “
ttp, q, p ^ quu with dmpi distances 1, 1, and 0, respectively,
from the judgment sets in P .

It is not difficult to show, using counter examples, that
Fmpi is different from the other judgment aggregation rules
proposed in the literature, including the scoring rules based
on minimal-entailment scoring in [1]. For instance, for the
rules in [1], the doctrinal paradox suffices as a counter ex-
ample for demonstrating the distinctness of Fmpi.

5. CONCLUSIONS
We introduced the concept of prime implicants in judg-

ment aggregation and used it to construct a similarity quan-
tifier for sets of judgments. The similarity quantifier
dmpipJ1, J2q looks at the cardinality of the minimal prime
implicant of J2zJ1, instead of the whole J2zJ1 like the Ham-
ming and Drastic distances do. Examples of other quanti-
fiers that can be defined using MPI are:

‚ minp|MPIpJzJiq|, |MPIpJizJq|q,

‚ maxp|MPIpJzJiq|, |MPIpJizJq|q,

‚ |MPIpJzJiq| ` |MPIpJizJq|, etc.

Note that these functions are also symmetric and thus pseudo-
metrics in the topological sense.

The definitions of theMPI-based quantifiers can be easily
adjusted to accept any two sets of formulas, not only com-
plete and consistent judgment sets, thus making these quan-
tifiers applicable to other information aggregation problems
like belief merging, merging of arguments etc. This is one of
the directions of future work we aim to pursue, in addition
to studying the properties of the judgment aggregation rules
based on comparing minimal prime implicants.
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