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ABSTRACT

Difference evaluation functions have resulted in excellent
multiagent behavior in many domains, including air traf-
fic control and distributed sensor network control. In addi-
tion to empirical evidence, there is theoretical evidence that
suggests difference evaluation functions help shape private
agent utilities/objectives in order to promote coordination
on a system-wide level. However, calculating difference eval-
uation functions requires global knowledge about the system
state and joint action as well as the mathematical form of
the system objective function, which are often unavailable.
In this work, we demonstrate that a local estimate of the
system evaluation function may be used to locally compute
difference evaluations, allowing for difference evaluations to
be computed in multiagent systems where only local state
and action information as well as a broadcast value of the
system evaluation function are available. We demonstrate
that approximating difference evaluation functions results
in better performance and faster learning than when using
global evaluation functions, and performs only slightly worse
than when directly computing difference evaluations.
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INTRODUCTION

Difference evaluation functions have been shown to sig-
nificantly improve learning in multiagent systems, and have
produced excellent results in many multiagent settings, in-
cluding air traffic control and multiple mobile robot control
[1, 2]. Difference evaluation functions are defined as [1]:

1.

Di(s,a) = G(s,a) — G(s—i + cs,i, a—i + Cai) (1)
Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
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where G(s,a) is the system evaluation function, s is the
system state, a is the joint action, s_; is the system state
excluding agent i, a_; is the joint action excluding agent ¢,
and cs,; and cq,; are counterfactual terms used to replace
the state and action of agent ¢, respectively. Intuitively, the
difference evaluation function determines the impact that
agent 7 has on the system evaluation function. Difference
evaluations have two key properties that lead to their effec-
tiveness. First, they are aligned with the system evaluation
function, meaning an agent which increases D; (s, a) also in-
creases G(s,a). Second, as the last term in D;(s,a) removes
portions of G(s,a) which aren’t impacted by agent 4, dif-
ference evaluations provide a favorable signal-to-noise ratio
in the learning feedback signal, allowing for agents to more
easily discern the effects of their actions.

Although difference evaluations provide excellent learned
performance, they are often difficult to compute in prac-
tice. In order to compute the second term of D;(s,a), the
global state and joint action must be known, as well as the
mathematical form of G(s,a). In practice, such knowledge is
typically unavailable to learning agents, making direct com-
putation of D;(s,a) impractical. In order to allow for the
implementation of difference evaluations, they must be ap-
proximated when global knowledge is unavailable. Differ-
ence evaluations have been approximated in past work [3],
but this approximation required expert domain knowledge,
and thus did not address the key factors requiring the ap-
proximation of difference evaluations.

2. DOMAIN AND APPROACH

In order to approximate difference evaluation functions,
we assume that each agent has access to its local state and
action, as well as a broadcast value of G(s, a). This informa-
tion is typically available in any multiagent learning system,
as some type of global evaluation function is used to pro-
vide feedback to the system. At each time step, each agent
record its local state s; and action a;, as well as the broad-
cast value of the system evaluation function G(s,a). Each
agent maintains a local approximation G’(si,ai), and uses
the (si, a:, G(s,a)) tuple to update the approximation. The
approximate difference evaluation function is defined as:

Dj(s,a) = G(s,a) — G(cs,i,Cayi) (2)

This approximation only requires local state and action in-
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Figure 1: Rover domain results (10 agents). Ap-
proximating D;(s,a) results in 88% of the per-
formance attained when analytically computing
Di(s,a). Approximating the difference evaluation
function results in significant performance gains
when compared to using the system evaluation func-
tion G(s,a).

formation, as well as the broadcast value of the system eval-
uation function. This information is typically available in
any multiagent learning system.

This approximation approach is tested in a multiagent
rover domain (See [2] for details on implementation), where
a set of rovers move in a planar world in order to observe
points of interest. Agents are trained using a cooperative co-
evolutionary algorithm, and fitness values are assigned with
either G(s,a), D;(s,a), or D;(s,a).

3. RESULTS

The rover domain experiments were initialized as follows.
For the first experiment, there are 10 agents and 10 points
of interest in a 25 by 25 unit planar world. For coevolution,
each agent maintains a population of 25 neural network poli-
cies. Each episode lasts 25 timesteps, and the coevolutionary
algorithm is allowed to run for 3000 generations. 150 statis-
tical runs were conducted, and reported error bars represent
error in the mean. For the second experiment, there are 100
agents and 100 points of interest in a 50 by 50 unit planar
world, and learning proceeds for 5000 generations. Other
parameters are identical to the first experiment.

Results for the 10 agent rover domain are shown in Fig-
ure 1. Approximating D;(s, a) results in 23% better perfor-
mance compared to G(s,a), and achieves 88% of the per-
formance when analytically computing D(s,a). Although
D;(s, a) results in 12% lower performance than D(s, a), it re-
quires 90% less information to compute, demonstrating the
approximation is effectively utilizing locally available infor-
mation.

Results for the 100 agent rover domain are shown in Figure
2. Dy(s,a) results in 49% better performance than G(s,a),
and achieves 79% of the performance of analytically com-
puting D;(s,a). It is of note that in this larger domain, al-
though D;(s,a) performs worse compared to D;(s,a) (79%
vs. 88%), it outperforms G(s,a) by a wider margin (49%
vs 23%). Additionally, in this larger domain, D;(s,a) re-
quires even less information than D;(s,a) compared to the
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Figure 2: Rover domain results (100 agents). Ap-
proximating D;(s,a) results in 79% of the per-
formance attained when analytically computing
Di(s,a). Approximating the difference evaluation
function results in significant performance gains
when compared to using the system evaluation func-
tion G(s,a).

10 agent domain (99% less vs. 90% less). This demonstrates

that D;(s,a) scales well with the number of agents in the
system.

4. DISCUSSION

Although difference evaluation functions have produced
excellent results in many multiagent settings, their require-
ment for global state and action information makes them
difficult to compute in practice. The contribution of this
work is to demonstrate that agents may approximate differ-
ence evaluations requiring only local knowledge. Our results
demonstrate that the approximation uses far less informa-
tion than D;(s,a) (90-99% less), but still achieves compa-
rable performance (up to 88%). The information require-
ments for this approximation technique are equivalent to
traditional multiagent learning techniques, allowing for the
implementation of difference evaluations in any multiagent
system where the system evaluation function is broadcast.
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