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ABSTRACT

We develop a novel multi-armed bandit (MAB) mechanism
for the problem of selecting a subset of crowd workers to
achieve an assured accuracy for each binary labelling task
in a cost optimal way. This problem is challenging because
workers have unknown qualities and strategic costs.

Categories and Subject Descriptors

1.2.6 [Learning]: Miscellaneous; 1.2.11 [Distributed Ar-
tificial Intelligence]|: Intelligent agents
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1. INTRODUCTION

Consider a company (requester) that provides financial ad-
vice to its clients on whether or not to invest in a particular
security. In order to advice the clients, the company has a
pool of financial consultants (crowd workers). Gathering the
opinion of as many consultants as possible and aggregating
their opinions increases the probability of providing a high
quality advice, however, it also entails increased costs. The
company has two conflicting business requirements, firstly
to keep the costs low, and secondly, to provide a quality of
advice that meets a minimum threshold. The financial con-
sultants have heterogeneous and unknown skill sets and their
costs are typically private information. Given noisy labels
from selected financial consultants, the company seeks to ag-
gregate the labels to achieve a certain target accuracy, at the
same time giving the right incentives to the workers so that
they report their costs truthfully. The problem addressed in
this paper is motivated by such real world problems.

We propose a novel framework, Assured Accuracy Ban-
dit (AAB), in which we formulate an optimization problem
for minimizing total cost subject to the constraint that the
probability of occurrence of the most likely outcome that
leads to an error is below a certain threshold level when
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majority voting is used for aggregation. We then provide an
exploration separated algorithm which we call a Constrained
Confidence Bound (CCB) algorithm that ensures that the
constraint is satisfied for each task with high probability.
We provide an upper bound on the number of exploration
steps and show that the CCB algorithm produces an ex-post
monotone allocation rule which can be transformed into an
ex-post incentive compatible and ex-post individually ratio-
nal mechanism.

2. THE MODEL

Let N be the set of n crowdsourcing workers, who are avail-
able for completing T similar crowdsourcing tasks. Quality
qi; of any worker i represents the probability of the agent
providing the correct answer and is assumed to be indepen-
dent of the qualities of other workers. A cost ¢; is associated
with each worker that can be reported strategically by the
workers. Let 1 — e be the target accuracy provided by the
requester that determines the trade-off between cost and ac-
curacy to be achieved. We assume that the workers are not
spammers and the quality of their work is at least better
than just random selection of a label (¢; > 0.5 V4).

2.1 Assured Accuracy Bandit (AAB) Frame-
work

Let ¢; denote the noisy label from worker ¢ and 3(.S) be the
vector of noisy labels if set S = {1,2,..., s} is selected with
quality vector ¢ = {q1,q2,...,qs} such that ¢1 < g2 < ... <
gs- Let g and y denote the predicted label and true label
respectively. We bound the probability of occurrence of the
most likely outcome that leads to an error P(Egg)). If the
aggregation rule is majority voting then:

P(Es(q)) P(5(S), 9 # yly)

max
§(s)€{0,1}%

(1 - ql)(l - q2) cee (1 - QS’)QS’—H .. -(Qs,
where 5" = [((s +1)/2)]

Bounding the probability of the most likely outcome is the

first step as it makes our analysis easier, though a natural
approach would be to bound the probability of error. The
optimization problem is then given as:

51%1]1\1/; ci st. P(Egg) <e

(1



where, P(Es(q)) =1-q)(1—q2)...(1—gqs) (2)

We further bound P(Es4)) by P(Es(q)) due to the following
reasons: 1)P(Es(y) < P(Es(y) Vg, VS and 2) P(Es(y) is
monotonic i.e. with two quality profiles, ¢ and ¢’ such that

g < q; Vi € S, then P(Eg()) < e implies P(Es(q/)) <e.

We assume that A = e— P(Eg(q)) > 0, which plays a crucial
role in bounding the number of exploration steps.

3. THE CCB ALGORITHM

ALGORITHM 1: CCB Algorithm

Input: Parameter e, tasks T', workers A/, confidence p
Output: Labeler selection set S*, Label §; for task ¢

1 =01 -1 =), Vi, q =1,4 =05, ci1=0
2 S' =N, collect §(S') and §1 = MAJORITY(S")
3 Observe true label y;
aVieN,ni1=1,¢1=1if g =y and §; = Ci,1 /M
5 for t =2 to T do
6 Let Sf)pt = arg minZCi s.t. T:’(Es(ﬁ)) <e
SCN ies
7 if P(Esﬁpt(é‘)) > e then
8 St =N, g = MAJORITY(S*) % Explore
9 Observe true label y;
10 Vie S nip=mnit+1, cip=cit+ 1if §i = yu,
Gi = cit/ni, Lf:r =q + 2nli’tln(%)7
4; =G — 2n1i’tln(%)
11 else
12 tr =1
13 St =S, , Gt = MAJORITY(S?)
14 | Break % Goto Step 16
15 |
16 fort =t"+1 to T do
17 | S'=8", § = MAJORITY(S") % Exploit

The CCB algorithm is presented in Algorithm 1. We assume
that the true label is observed once the task is completed and
there are enough number of workers such that the constraint
is satisfied with respect to the true qualities by selecting all
the workers. The algorithm works on the principle of the
UCB algorithm [1] and ensures that the constraint in (1) is
satisfied with high confidence u. Upper confidence (¢) and
lower confidence (¢~ ) bounds on qualities are maintained
based on Hoeffding’s inequality such that true qualities lie
between these bounds with probability 1 — p/. The idea is
to first solve the optimization problem with respect to the
upper confidence bound. Select all the workers (Exploration
round) if selected set S* does not satisfy the constraint with
respect to lower confidence bound else S* is the optimal set
with probability 1 — p (Lemma 3.1) and hence select the set
S for all the remaining rounds (Exploitation rounds).

Lemma 3.1 The set St returned by Step 13 is the optimal
set with probability 1 — p

4. KEY RESULTS

The CCB algorithm is adaptive exploration separated where
the number of exploration rounds in which all the workers
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are selected depends on the way learning progresses. Theo-
rem 1 provides bounds on the number of exploration steps.

Theorem 1 The number of exploration rounds is bounded
by %nzln(%) with probability 1 — p where (1 — p) = (1 —
"’

Let the optimal set be denoted by S*. We prove the above
theorem by showing that with probability (1 — u), after
tt = ngnzln(%) rounds of uniform exploration no other set
S # S* with lower cost satisfies the constraint with respect
to the upper confidence bound using Hoeffding’s inequality.
Moreover, P(Egx«;-)) < e with probability (1 — ) after ¢t*
uniform exploration rounds. Thus, the expected number of
exploration rounds is given by (1 — H)%RQZW(ﬁ) + T

Theorem 2 The CCB algorithm gives an ex-post monotone
allocation rule i.e. for every random realization, Vi, Yé_;,
& < &f = Ai(8i,6-q) > Ai(&, ¢-i) where Ai(é;,é—;) is the
number of tasks given to the i'" worker with bids ¢ and é_;

For a fixed random realization, quality updates remain the
same for the same number of exploration steps. Since the
optimization problem involves cost minimization, if quality
updates are the same then, if the optimal set contains 4
with bid ¢ then i belongs to the optimal set with bid ¢;.
Let t*(¢;) and ¢*(&]) represent the number of exploration
steps with bid ¢ and éj‘ respectively. We show that if 4
belongs to the optimal set with bid ¢ but not with bid &
then ¢*(¢]) < t*(¢&;) and hence, monotonicity follows. In the
other cases when i € S* with bids ¢; and & or when i ¢ S*
with bids & and ¢, then we show that t*(¢&;) = t* (¢]).
Now the transformation presented in [2] can be used to
produce a randomized mechanism which is ex-post incentive
compatible and universally ex-post individually rational.

S.  SUMMARY AND FUTURE WORK

To the best of our knowledge this is the first contribution
that combines learning of qualities and eliciting of true costs
in a crowdsourcing environment. The algorithm works well
when the number of workers is manageable and qualities are
high enough. However, the scalability of the algorithm needs
to be investigated and worked upon further. The algorithm
is currently exploration separated in order to achieve ex-
post monotonicity. One can investigate existence of other
algorithms satisfying desirable mechanism properties with
lower regret. Currently, the proposed monotonic constraint
is stiffer than the desirable constraint. It would be nice to
see if the constraint can be stronger compared to the actual
one. One can also use different rules to aggregate crowd
answers like weighted majority voting.
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