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ABSTRACT
We propose a logic-based mechanism for robot action decisions
that is robust over the environmental noise of the real world and
has a formal way to reason the possibility of achieving the robot’s
goal. Our experimental demos show that a robot can eventually
reach its destination even if its actions are not that accurate.

Figure 1: Q.bo Lite Evo
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1. INTRODUCTION
Recently, there has been growing interest in a combination of

robotics and logic programming. In a logical way, the behavior of
agents (or robots) can be expressed in a natural manner. In addition,
logic-based decisions for actions can be used to check or certify
that the robot can achieve its goal in a formal method. However, to
reach the goal in the real world, the decision making of a robot has
to be robust over variance of its action due to the noise of sensors
and actuators.

In this paper, we propose a logic-based mechanism for the robot
action decision process, which is being developed together with a
logical framework to certify the robot’s reachability to the goal for-
mally (see Sec.3). Our method is much like teleo-reactive logic
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programs (TLPs) [2], but by using atomic actions designed reac-
tively, the robot can eventually reach its goal in the real world,
which involves dynamic changes. This will be a meaningful contri-
bution toward realizing the general ability of robots to reach goals
in the real world.

2. APPLICATION DOMAIN AND
PROBLEM SCENARIO

2.1 Application domain
We aim to develop a robot that can achieve its goal by thinking

and acting for itself. Toward that aim, we chose the housekeeping
problem as the application domain. Housekeeping requires appro-
priate movement under dynamic environment changes. For exam-
ple, the position of furniture in the house changes. Therefore, we
started with the problem of moving around the corridor and finding
the target object under a dynamic environment. Therefore in this
paper the robot’s goal is to reach an objective point.

2.2 Problem scenario
We placed a robot and the target in a corridor. The target was put

ahead of it, and it was informed of the rough direction of the target.
There were no obstacles on the way to the target at the beginning.
When it found the target, we set down an obstacle on the way to
the target. The robot’s goal is to reach the target while avoiding the
obstacle.

2.3 Description of robot
We used the ‘Q.bo Lite Evo’ robot (Fig. 1). A Spanish company,

TheCorpora S.L., sells this robot, and distributes Q.bo’s particular
Linux distribution based on Ubuntu.

Q.bo moves with two side wheels at the rear, and one caster
wheel at the front. It has many applications, e.g. face recognition,
speech recognition, and object recognition. We can control Q.bo
with a robotic software platform called ROS (Robot Operating Sys-
tem)[4].

2.4 Technology used
For Q.bo’s motion planning, we wrote the action decision mak-

ing program and computer programs that run Q.bo’s atomic ac-
tions. Atomic actions were written in Python, and the action deci-
sion making program was implemented in SWI-Prolog[5].
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In our system, thinking and action were generally run by turn.
First Q.bo runs the action decision making program to get a new
atomic action. Second, Q.bo runs this atomic action while sensing
in the real world, and passes the requisite information on to the
action decision making program after the atomic action terminates.
Q.bo continues to perform these two processes.

2.4.1 Atomic actions
We controlled Q.bo with ROS, which uses ROS Topics for shar-

ing information. In this experiment, we used ROS Topics with a
focus on motion planning. The requisite information (e.g. start a
motor to move, recognize objects, measure distance, direction, and
velocity, etc.) were shared using ROS Topics.

Atomic actions were made using these topics, which were up-
dated in real time. Thus, Q.bo could move in response to changes
in the environment in a way that is similar to reflex actions.

A detailed explanation of atomic actions follows1.

• looking_Qbo

– Q.bo looks for the target while moving its head. This
action returns the direction of the target, when Q.bo
detects it.

– If Q.bo cannot detect the target, this action simply re-
turns the rough direction given in Sec. 2.2.

• search_Qbo(Direction)

– Q.bo turns around, searches for a direction with no ob-
stacles, and moves forward in this direction. When
Q.bo searches for such a direction, it makes an effort
to choose the direction that is as close to the argument
Direction as possible.

• forward_Qbo(Direction)

– Q.bo moves ahead for a fixed distance or until an ob-
stacle is found.

– If Q.bo finds an obstacle when it is moving forward, it
stops moving, and terminates this process.

In looking_Qbo, the current version of object recognition for
finding the target was implemented using libSVM[1]. It was trained
using about 40 images of the target and 40 images of different
things, and classified the images from Q.bo’s camera into images
of the target and images of different things. Currently the accuracy
of the classification is not that high. We are planning to compare
this implementation with one implemented using OpenCV.

2.4.2 Action decision making program
Q.bo ran action decision making program to get a new atomic

action that was suitable for the circumstances at that time. Action
decision making program is implemented in Prolog. The derivation
of Prolog enables Q.bo to infer a new atomic action, and the uni-
fication in Prolog enables Q.bo to update the requisite information
such as sensor information.

By and large, two kinds of rules made up the action decision
making program. One group relates to storing sensor information,
and the other relates to conditional execution of atomic action.

Abstract descriptions of the action decision making program were
as the following pseudo-Prolog code2.
1Any atomic action terminates eventually, i.e. no action has a time-
out. In particular, search_Qbo currently assumes that it can even-
tually find a direction without an obstacle.
2For simplicity, we did not consider what happens after the robot
reached the target. To do so, we can add a clause like “Goal’ :-
Termination_Condition, !.”.

Toplevel :- Initialize, Goal.
Goal :- Percept, Goal’.
Goal’ :- Condition, !, Atomic_action, Goal.

The following is a detailed explanation of the action decision
making program.

1. Initialize: Initialize information from stored sensor infor-
mation of Q.bo. In particular, Initial_state/3 is updated
to record Q.bo’s initial direction and location.

2. Perception: Q.bo runs a specific atomic action (e.g.
looking_Qbo) to have external perceptions to get some in-
formation like its position and direction.

3. Branch condition: The branch that is the first to have its
condition satisfied with the perceptions is chosen to execute.

4. Run an atomic action: Q.bo runs the following atomic ac-
tion (e.g. search_Qbo/1, forward_Qbo/1). At this point,
Q.bo waits for termination of the atomic action.

The action decision making program continues to repeat 2∼4.

3. THE INNOVATION OF THE SYSTEM
Our method of generating and executing actions is logically much

similar to that of TLPs. That method robustly directs an agent to-
ward a goal in a manner that continuously takes into account the
agent’s changing perceptions of a dynamic environment. However,
most studies for application using teleo-reactive logic programs do
not use actions associated with sensing; they only deal with prob-
lems in which the effects of actions can be accurately modeled (e.g.
block worlds, driving in simulators). In contrast, in our method, the
robot can respond to dynamic continuous changes of the environ-
ment, where we cannot model accurately, using reactive actions.

We are currently developing a logical framework to certify the
possibility of achieving the robot’s goals in a formal way. We are
planning to construct it based on our extended BDI-logic with prob-
abilistic semantics named TOMATO[3], and its goal is to show that
the possible range of the robot’s existence ‘converges’ to the target
point.

4. CONCLUSION
As the demo shows, the robot can reach its destination while its

atomic actions are rather rough. Our future plan, in addition to
trying larger and more realistic examples, is to move ahead with
developing a formal way to verify the robot’s actions further.
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