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ABSTRACT
Plan recognition has been widely used in agents that need to
infer which plans are being executed or which activities are
being performed by others. In many applications, reason-
ing and acting in response to plan recognition requires time.
In such systems, plan recognition is expected to be made
not only with precision, but also in a timely fashion. When
recognition cannot be made in time, an agent attempting to
recognize plans can interact with the observed agents to dis-
ambiguate multiple hypotheses. However, such an intrusive
behavior is often not possible, very costly, or undesirable.
In this paper, we focus on the problem of deciding when to
interact with the observed agents in order to determine their
plans under execution. To tackle this problem, we develop a
plan recognizer that, on one hand is the least intrusive pos-
sible, and on the other hand attempts to recognize the plans
of the observed agents with precision as soon as possible and
no later than it is viable to respond to the recognized plan.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Algorithms, Design, Theory

Keywords
Plan recognition, Plan disambiguation, Multiagent systems

1. INTRODUCTION
Plan recognition has been widely employed in a variety of

applications in which an agent needs to infer which plans are
being executed or which activities are being performed by
others. Such recognition might be aimed at either coordinat-
ing with other agents, assisting human users in their daily
activities, or even identifying potentially dangerous behav-
ior from other agents. Examples of such applications include
multigent teamwork coordination [19], assistant agents for
norm violation prediction [16], detecting abnormal behavior
for airport security [4], intrusion detection systems, [11] and
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a host of proactive interface agents [1]. Common to all of
these applications is that plan recognition is always found
as a part of a larger reasoning cycle whereby the output of
the plan recognizer is used as input to some other decision-
making process. Thus, any reasoning process depending on
the output of plan recognition must deal with the uncer-
tainty and inherent latency that occurs as the agent gathers
observations about the subjects of plan recognition.

In many multiagent applications, reasoning and acting in
response to plan recognition may require time. For instance,
consider a mechanism that monitors tasks being executed by
other agents and reallocates the tasks that are about to fail.
Such a mechanism may take time to successfully predict fail-
ures in plans under execution and compute reallocation so-
lutions. In such applications, plan recognition is expected to
be made not only with precision, but also in a timely fashion.
This means that plans under execution need to be recog-
nized with consistency and within specific time constraints
(i.e. while reallocation still can avert failure), so responses
to plan recognition can be effectively taken (e.g. reallocation
of tasks, suggestion of alternative plans, warning messages).
In practice, time and precision requirements can be hard to
fulfill since the recognizer may contend with multiple hy-
potheses for a long time due to ambiguity in the candidate
plans. In this situation, plans under execution are recog-
nized with precision only when all hypotheses but one have
been ruled out by the plan recognizer.

If the time constraint in a plan recognition attempt cannot
be met, the recognizer can interact with the target agent1

in order to ask for information about its plans. The prob-
lem with relying on such interactions to recognize plans is
that, in systems in which agents are autonomous, there is
no guarantee that the target agents will behave in an en-
tirely predictable way. Human users, for example, may take
a long time to reply to requests from the plan recognizer, or
even intentionally ignore the requests if they are made too
often [12], if they provide wrong information, or if they are
made in an intrusive way [20]. Furthermore, communica-
tion infrastructure may not be available, or interaction be-
tween the recognizer and target agents may not be allowed
or recommended during the plan recognition process. For
example, in applications where the agents communicate in
inherently or potentially hostile environments, the messages
exchanged between the agents might be used by adversaries
for malicious purposes [17].

1Target agents (observed agents) execute the plans that the
observer agent aims to recognize. Target agents can be soft-
ware agents or human users interacting with the system.
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On that basis, we develop a plan recognizer that, on one
hand is the least intrusive possible, and on the other hand
aims to recognize the plans under execution with precision
as soon as possible and no later than it is viable for the agent
system to respond to the recognized plan. In this paper, we
focus on the plan recognition problem of deciding when to
interact with the target agents in order to determine their
plans under execution. To deal with this problem, we extend
the Symbolic Plan Recognition (SBR) technique proposed by
Avrahami-Zilberbrand and Kaminka [2] in order to support
such a decision-making process during the plan recognition.
First, we develop a method to estimate the expected time to
recognize a plan from multiple hypotheses given a sequence
of observations. Second, we propose a method to save data
about how many times a plan is selected, taking into account
the context where it has been executed. Using this method,
a plan recognition agent is able to reason about and dynam-
ically adjust the certainty it ascribes to the observed plans
as they are recognized.

We assume the existence of a recognition deadline indi-
cating the time limit for a response to the recognized plan
to be effectively taken, and a degree of certainty (thresh-
old) that determines the minimum probability to consider a
plan hypothesis as correct. Our plan recognition agent then
checks the following two conditions to decide whether or not
to interact with the target agent:

(1) Does the expected time to recognize a plan from mul-
tiple hypotheses exceed the deadline to act in response
to the plan recognition?

(2) Is there no plan recognition hypothesis with degree of
certainty that exceeds the given threshold?

This paper is organized as follows. In Section 2, we briefly
survey related work about plan recognition and we comment
on their limitations. We follow with the development of our
contribution in Section 3, describing the underlying SBR
approach and our extensions. In Section 4, we validate our
algorithms. Finally, we conclude the paper pointing towards
future developments in Section 5.

2. RELATED WORK
Algorithms to recognize the intentions and plans executed

by autonomous agents (including human agents) have long
been studied in the Artificial Intelligence field under the gen-
eral term of plan recognition. Such work has yielded a num-
ber of approaches to plan recognition [6, 18] and models that
use them in specific applications [19, 16, 4, 11]. The reader
is referred to [1, 8] for a survey on plan recognition.

The contributions of this paper build on SBR [2], an exist-
ing symbolic plan recognition model detailed in Section 3.1.
SBR has been extended in [5] to deal with constraints on
plan duration. YOYO* [14] is a probabilistic plan recogni-
tion algorithm that uses information about the average plan
steps duration. Duong et al. [10] provide probabilistic con-
straints over duration of plans using a hidden semi-Markov
model. Reasoning about duration constraints is useful to
improve the hypotheses elimination process, but it does not
tackle our problem of estimating the expected time to plan
recognition given a sequence of observations (i.e. context).

The work in [3] relies on SBR to develop a hybrid symbolic-
probabilistic plan recognizer which disambiguates hypothe-
ses using probabilistic information in the plan library. In
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Figure 1: Plan recognizer architecture.

this work, the probabilities are hard-coded into the plan li-
brary, and the context at which plan steps are executed is
not taken into account to learn or assess the probabilities.
Bui et al. [7] propose a framework for online probabilistic
plan recognition using Markov models, but no technique to
learn the model parameters is proposed. In our approach,
we count plan selections and we infer the chances of the cur-
rent hypotheses based on how many times they have been
selected in previous episodes.

3. PLAN RECOGNITION AGENT
This section describes our model for a plan recognition

agent, outlined in Figure 1. The agent model is made up of
five components (grey boxes). SBR [2] is a symbolic plan rec-
ognizer which generates hypotheses based on a sequence of
observations. Our contribution relies on the SBR (Symbolic
Plan Recognition) technique, which is briefly presented in
Section 3.1. The ERT (Expected Recognition Time) compo-
nent, which uses the hypotheses generated by SBR to assess
the expected time to recognize a plan, is described in Section
3.2. The PSC (Plan Selection Counter) component is used
to save data about plan selections made by the target agents,
taking into consideration their context of execution. PSC is
detailed in Section 3.3. Finally, the Interaction Component,
which makes the decision about whether or not to ask the
target agents for further information, is detailed in Section
3.4. The Response Component, which acts in response to the
plans that have been recognized, is not described in detail
because its implementation is application-specific.

3.1 Symbolic Plan Recognition
Symbolic Plan Recognition (SBR) is a method for com-

plete and symbolic plan recognition that uses a Feature De-
cision Tree (FDT) to efficiently match multi-featured obser-
vations to plan steps in a plan library. In what follows, we
briefly describe this method (for details, see [2]).

The plan library is hierarchically represented by a single-
root directed acyclic connected graph where the children of
the root node are top-level plans and all other nodes are sim-
ply plan steps. In the library, plan steps can have sequential
edges specifying a totally-ordered plan execution sequence.
A plan step can be decomposed into sub-steps by vertical
edges. No hierarchical cycles are allowed in the library. The
only kind of cycle permitted is the self-cycle which repre-
sents a plan step being executed during multiple subsequent
time stamps. Figure 2 shows part of a plan library provided
as an example in [2], inspired by the behavior hierarchies
of Robocup soccer teams [15]. In this library, solid lines
represent decomposition links and dashed lines represent se-
quential links. For instance, there is a decomposition link
between defend and position, and a sequential link between
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Figure 2: Plan library example [2].

this position and turn; in this example, the path root →
defend → turn → with-ball can be a hypothesis as to the
plan being executed by the observed player. In the plan li-
brary, numbers denote time stamps (e.g. position has been
considered a hypothesis at time stamp 1).

A step common to several plan recognition approaches is
the matching phase where the recognizer matches observa-
tions to plans stored in the plan library. SBR assumes that
there is a set of conditions on observable features associated
with each plan step. When these conditions hold, the ob-
servation is said to match the plan. In order to efficiently
match observations to plans, SBR augments the plan library
with a decision tree (the FDT) that indexes each node in
the plan library by the observations consistent with their
execution. As a decision tree, nodes in the FDT represent
observable features and the branches represent conditions
on their values. Thus, from a set of observable features,
finding all matching plans is just a matter of traversing the
FDT top-down until a leaf node is reached (the leaf nodes
are pointers to plan steps in the plan library).

To determine what are the possible paths in the plan li-
brary that the target is pursuing, SBR admits all recognition
hypotheses that are consistent with the observation history,
with no hypothesis ranking. The algorithm that answers the
current state hypothesis is divided into two phases. First, the
plan steps that match the observations are found by cross-
ing the FDT top-down in the matching phase. Each matched
plan step is tagged with the observation time stamp that is
propagated up to ensure that complete paths (root-to-leaf)
are also tagged. During this propagation phase, the tag con-
sistency is checked. A tag t is considered consistent only if
one of the following three cases hold: (a) the tag constitutes
a self-cycle (the same plan step was tagged in the time stamp
t–1); (b) the tag follows a sequential edge that was tagged
at time stamp t–1; or (c) the tag is attached to a first child
plan step (leftmost) in the library and, therefore, there is no
sequential edge to be followed back in time t–1. If the path
is not consistent, all tags in the path are deleted.

The time stamps can also be used to answer queries about
sequences of plan steps that have been observed. Such queries
are called state-history queries and they are answered by
means of a hypotheses graph, an incrementally-maintained
structure which holds hypotheses in levels according to time
stamps. A node in the graph represents a complete tagged
path and an edge connects a hypothesis tagged at a time
stamp t with a consistent hypothesis tagged at t+1. Each
graph level represents a time stamp and the nodes inside
a level are all hypotheses for that time stamp. To deter-
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Figure 3: Hypotheses graph example [2].

mine consistent sequences of plan paths, it is necessary to
traverse the graph bottom-up. Paths that connect the last
level to the first level denote valid state histories. In Fig-
ure 3, we show an example of hypotheses graph, also from
[2], in which the sequence of plan steps attack → position
(at t=1), attack→ turn-with ball (at t=2), and score→ kick
(at t=3) is a valid state history.

3.2 Assessing the Expected Time to Recognize
Plans

Although SBR may be used to recognize plans, it cannot
estimate the expected time to recognize these plans. That is,
during the plan recognition process, the agent can entertain
several hypotheses due to the ambiguity inherent to the plan
library, but it cannot estimate the expected amount of time
needed to confirm one of these hypotheses. In what follows,
we describe the ERT (Expected Recognition Time) method,
our proposal to make this assessment on the basis of previous
plan recognition episodes.

To develop ERT, we have extended SBR, though we have
made an additional assumption on the way observations are
made. We assume that observations in SBR are made in
fixed intervals of time (e.g. a new observation is made ev-
ery n milliseconds), which allows us to assess time amounts
using the time stamps in the plan step tags. Previous work,
such as [5, 14], has already used the notion of step duration,
but not for estimating expected disambiguation time.

In SBR, each plan representation has an associated set of
conditions on observable features of the target agent and its
actions. In one possible implementation (which we use as an
example for this paper) we express conditions and observa-
tions by means of propositions. For instance, in Figure 4 we
defined the following conditions for the plan step position:

{location(X,Y ) | (0 < X ≤ 20) ∧ (0 < Y ≤ 10)},
{uniform number(X) | (1 ≤ X ≤ 3)},
¬have ball.

The following observation satisfies this condition:

location(2, 1), uniform number(3),¬have ball.

In order to provide a context2 to the plan steps matching
an observation, we tag the concrete actions (leaf nodes in
the plan library) not only with time-stamps as in the origi-
nal SBR, but also with the observation that led to it being

2A context is given by propositions and determines the cir-
cumstances in which plan steps have been observed.

391



position

34           ( (2,3) (2) )location ,uniform_number ,¬have_ball

time stamps observations

35           ( (2,3) (2) )location ,uniform_number ,¬have_ball

36           ( (2,3) (2) )location ,uniform_number ,¬have_ball

37           ( (2,4) (2) )location ,uniform_number ,¬have_ball

38           ( (2,4) (2) )location ,uniform_number ,¬have_ball

37           ( (3,4) (2) )location ,uniform_number ,¬have_ball

38           ( (3,4) (2) )location ,uniform_number ,¬have_ball

Figure 4: Example of CE table, showing the columns
time stamps and observations.

tagged. In this way, we keep record that this plan step (con-
crete action) may have been executed in a given context
at a given moment. In Figure 4, we illustrate a plan step
position with seven time stamps and the observation made
at each of these time stamps. The time stamps and their re-
spective observation are kept in a temporary table discarded
when the current plan recognition episode ends. This table
is hereafter referred to as CE (Current Episode) table. Note
that CE tables exist only in leaf nodes in the plan library;
non-leaf nodes are tagged only with time stamps as in the
original SBR.

Figure 4 shows only two columns of the table,“time stamps”
and “observations”, which are relevant at this point; the
other columns are shown later in this section. In this ex-
ample, for the sake of clarity, we specify complete observa-
tions. In practice, propositions with no variable parameters,
such as have ball, are not saved in the table. We could im-
plicitly assume that, for each entry in the CE table in Fig-
ure 4, ¬have ball has been observed since this proposition
is in the condition for position. This assumption cannot be
made with location and uniform number, given that these
propositions have variable parameters and the value of these
variables is part of the context.

The SBR algorithm is executed as specified in [2] until we
eliminate all hypotheses but one (the remaining hypothesis
is assumed to be the plan under execution). At this mo-
ment (in recognition time stamp t), the recognizer triggers
Algorithm 1, which updates the expected times to recognize
the plans based on the concluded episode. The algorithm
has two inputs: the plan library l and the recognition time
stamp t. For each leaf plan step in l, the algorithm checks
if there is a CE table associated to the step. If there is a ta-
ble, the algorithm creates the set Observ that stores only the
distinct observations made in the plan step. For instance, in
the CE table in Figure 4, there are seven entries, but only
three distinct observations, which are:

(location(2, 3), uniform number(2),¬have ball),
(location(2, 4), uniform number(2),¬have ball),
(location(3, 4), uniform number(2),¬have ball).

For each entry of the table (Algorithm 1, Lines 4–6) in
which t′ is the time stamp at which the observation obs
has been made, the algorithm calculates the number of time
steps taken to recognize the plan from this step and inserts
this value into the entry (that is, it took t− t′ time steps to
eliminate all hypotheses but one from the moment t′ when
the observation obs was made). In practice, we append in the

CE table a cell with the value t − t′ (Line 5). In Figure 5,
we show the same table as Figure 4 but with two extra
columns: the time needed to recognize the plan (“ t − t′”)
and the average time to recognize (“avg”), as computed by
Algorithm 1. In this table, the plan has been recognized at
t = 50. For example, in the first entry, the observation is
(location(2, 3), . . .) and t′=34, so it took 16 time steps to
recognize the plan. To update Observ, we use the union
operator, so no duplicate observation is added to this set.

For all observations in Observ (Lines 7–9), the algorithm
calculates the average number of time steps necessary to
recognize the plan under execution. This value means that,
on average, it takes avg steps to recognize the plan when
the given plan step is an hypothesis in the context given in
obs. In the fourth column of the table in Figure 5 (“avg”),
we can see the averages 15.0, 12.5, and 10.5 for the three
distinct observations, respectively. These values have been
inserted into the table by the function average (Line 8). For
example, in the current plan recognition episode, when the
observation (location(2, 3), . . .) was made, it took on aver-
age 15 time steps to recognize the plan of the target agent.
Finally, the algorithm calls ERT-UPDATE (Algorithm 2),
which employs the values in the CE table to update the
expected times learned from past plan recognition episodes.

Algorithm 1
ERT(Plan Library l, Recognition Time Stamp t)

1. for all step ∈ leafPlanSteps(l) do
2. if CE (step) 6= null then
3. Observ← ∅
4. for all entry = 〈t′, obs〉 ∈ CE (step) do
5. append(entry, t− t′)
6. Observ ← Observ ∪ {obs}
7. for all obs ∈ Observ do
8. avg ← average(obs,CE (step))
9. ERT-UPDATE(obs, avg, step)

Up to this moment, we have shown how to calculate the
average time taken to recognize a plan based on observations
made during a single recognition episode. In what follows,
we show how to calculate/update the expected times to rec-
ognize plans based on past episodes. We save these expected

position

34                  ( (2,3)     )             16location , ...

time stamps ( )t observations ( )obs

12.5

10.5

t= recognition time stamp50 ( )

t - t avg
,,

35                  ( (2,3)     )             15location , ... 15.0

36                  ( (2,3)     )             14location , ...

37                  ( (2,4)     )             13location , ...

38                  ( (2,4)     )             12location , ...

39                  ( (3,4)     )             11location , ...

40                  ( (3,4)     )             10location , ...

Figure 5: Example of CE table with time stamps
(t’), observations (obs), time to recognize the plan
(t-t’) and average time (avg), with plan recognition
time stamp t=50.
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times in tables called ERT tables, which, unlike CE tables,
are not discarded once the executions of the SBR and ERT
algorithms finish. That is, ERT tables are stored through-
out the lifetime of the plan recognizer agent. There is an
ERT table for each plan step in the library. The entries
in these tables are composed of a unique “observation”, the
expected time to recognize the plan (“ert”) from the plan
step given the observation, and the number of times that
the “ert” value has been updated (“nupd”). In Figure 6, we
show: (a) the same CE table with the plan step position in
Figure 5, except that we show only the second and fourth
columns; (b) the ERT table of position before executing the
ERT-UPDATE algorithm; and (c) the resulting ERT table,
highlighting the entries that have been added or updated on
the basis of the three observations in the CE table.

Algorithm 2 describes how an ERT table is updated. This
algorithm has three inputs: an observation (obs), the av-
erage time to recognize the plan (avg), and the plan step
(step). Note that the first two input parameters correspond
to the second and fourth attributes of a line in the CE ta-
ble associated to the given plan step, respectively (see Fig-
ure 5). First, Algorithm 2 checks if obs has already been
inserted into the ERT table. If the observation is not in
the table, the algorithm adds a new entry (Lines 2–3) con-
taining: (i) the observation obs; (ii) the average time avg (in
this case, the expected time to recognize the plan is the only
time known, estimated during the current plan recognition
episode); and (iii) the integer 1 which initializes the update
counter “nupd”. If the observation already exists in the ta-
ble, its corresponding entry e is retrieved (Line 5), and the
value in the field“nupd”of the ERT table is increased by one
(Line 6). In the notation used in the algorithm, e[“nupd”]
denotes the column “nupd” in the entry e in the ERT table
of step (Figure 6(b) illustrates an ERT table). Finally, the
expected recognition time in the column “ert” of the ERT
table is updated in Line 7, where function α weights new and
previous expected recognition times, and avg is the average
time to plan recognition in the current episode (input).

Algorithm 2
ERT-UPDATE
(Observation obs, Average Time avg, Plan Step step)

1. if obs /∈ ERT(step) then
2. e← 〈obs, avg, 1〉
3. add(e, ERT(step))
4. else
5. e← entry(obs, ERT(step))
6. e[“nupd”]← e[“nupd”] + 1
7. e[“ert”]← (1−α(e[“nupd”]))e[“ert”]+α(e[“nupd”])avg

In order to avoid fluctuations in the value of the expected
recognition time due to variations in user behavior, the up-
date of the expected time to recognition (Line 7) leverages
the notion of learning rate from reinforcement learning in the
form of an α multiplier. Introducing α prevents ert from be-
ing affected by unusual behavior by multiplying the update
value by a number in the (0, 1] range. In our approach, the
learning rate is a function of the number of times a certain
observation has been made by the agent during recognition,
and we want the estimation of expected time to recognition
to gradually stabilize as the agent has gathered enough data.

ERT table

position

( (2,3)     )     15.0location , ...

( (2,4)     )     12.5location , ...

( (3,4)     )     10.5location , ...

( (1,3), .. )location .

( (2,3)    .)location , ..

( (3,2), ...)location

( (3,3), ...)location

( (3,4), .  )location ..

21.04

12.92

14.65

10.77

7.62

20

8

11

7

13

ERT-UPDATE

entries that
have been

added/updated

(b)

(c)

CE table
(compact view)

(a)

observations        avg

observations ert nupd

( (1,3), ...)location

( (3,2), ...)location

( (3,3), ...)location

21.04

14.65

10.77

20

11

7

observations ert nupd

( (2,3), ...)location

( (3,4), ...)location

( (2,4), ...)location

13.15

7.82

9

14

12.50 1

Figure 6: Plan step position with (a) the CE table
(compact view), (b) ERT table before executing the
ERT-UPDATE algorithm, and (c) after executing
the algorithm.

Hence,the function α used in Algorithm 2 takes the following
form:

α(n) =
1

n

In Figure 6(b), we show an example of ERT table with
five observations and their respective“ert”and“nupd”before
calling ERT-UPDATE. There are three distinct observations
within the CE table of the plan step position, so three entries
of the ERT table will be added or updated. In Figure 6(c),
we show the ERT table after the execution of the algorithm,
with one new (the third) and two updated (the second and
the last) entries.

3.3 Plan Selection Count
While other plan recognizer approaches, such as [9, 13, 5],

assume that probabilities for plan selection are provided at
design-time, we aim to determine these probabilities based
on past successful recognition episodes. In Section 3.2, we
have shown that SBR can be extended to allow the assess-
ment of the time needed to recognize a plan, and this section
shows how SBR can be extended to allow us to count how
many times each plan has been selected by the target agent,
taking into account the context where it has been executed
(e.g. how many times position has been selected by the
target agent when location(2, 3), uniform number(2) and
¬have ball have been observed).
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augmented ERT tableposition

( (1,3), ...)location

( (2,3), ...)location

( (3,2), ...)location

( (3,3), ...)location

( (3,4), ...)location

21.04

13.15

14.65

10.77

7.82

20

9

11

7

14

ertobservations

( (2,4), ...)location 12.50 1

17

8

10

5

0

1

npsnupd

Figure 7: ERT table with plan selection count (nps).

PSC (Plan Selection Count) is a simple method that uti-
lizes an augmented ERT table to keep track of how many
times the given plan step has been taken when certain ob-
servations were made. To this end, we have included a new
column, named “nps” (see Figure 7). Note that “nupd” and
“nps” count events of different types: the first indicates how
many times the respective “ert” has been updated, and is
computed by Algorithm 1, while the second indicates how
many times the plan has been in fact executed in a given
context, and is computed by Algorithm 3.

In our plan recognizer model, Algorithm 3 is used to up-
date the plan selection count every time a plan execution
ends. First, the algorithm initializes three variables (Lines
1–3): the empty set V isitedSteps, used to store the plan
steps of the plan library l visited during the algorithm exe-
cution; level, initialized with the last level of the hypotheses
graph g; and the set Nodes, initialized with all nodes in the
last level of g. This algorithm iterates over the levels in the
graph g (Lines 4–20), starting in the last level at which the
plan execution ended, traversing to the parent nodes in the
level t–1, and so on until the nodes in the first level have
been visited. Note that the algorithm travels from child to
parent nodes, so some of the nodes in the level may not be
visited since they correspond to hypotheses that have been
dismissed by negative evidence along the plan recognition
process. For example, in the hypotheses graph shown in
Figure 3, the last level is 3, and there is only one node in
this level, score → kick. Traversing the graph to the par-
ent nodes would lead us to attack → turn → withoutball
and attack → turn → withball, which in the next iteration
would lead us to attack → position. Only these four graph
nodes would be visited by Algorithm 3 since they constitute
the confirmed hypothesis.

For each node in the current level, the algorithm gets
the plan decomposition path3 represented within the node.
Then, the algorithm gets the leaf plan step (recall that only
leaf plan steps save CE tables) in the decomposition path,
and verifies if this plan step has not been visited. In that
case, the algorithm adds the plan step to the set of visited
steps and creates the set Observ that will store the distinct
observations made in the plan step. These distinct obser-
vations are stored in the CE table which, at this point, has
not been discarded yet. To select only distinct observations,
the algorithm iterates over the CE table and checks if the

3Recall that a node in a hypotheses graph stores plan steps
as a plan decomposition path, from root to leaf. For exam-
ple, in the node of level 3 in Figure 3, the decomposition
path is attack → kick.

observation o within the current entry (e1 is an entry of the
CE table) is not in the set Observ (Lines 11–14). If o is not
in the set, the algorithm adds this observation to Observ,
and increases by one the value of nps in the corresponding
entry (e2) in the ERT table (Lines 15–16). In summary,
we travel along the confirmed hypothesis in the hypotheses
graph, updating the values that indicate how many times the
selected plan has been executed for each observed context.

Algorithm 3
PSC(Hypotheses Graph g, Plan Library l)

1. VisitedSteps← ∅
2. level← max level (g)
3. Nodes← nodes(g, level)
4. repeat
5. for all node ∈ Nodes do
6. path← decompostionPath(node, g)
7. step← leafPlanStep(path)
8. if step /∈ VisitedSteps then
9. VisitedSteps← VisitedSteps ∪ {step}

10. Observ← ∅
11. for all e1 ∈ CE (step, l) do
12. o← e1[“obs”]
13. if o /∈ Observ then
14. Observ ← Observ ∪ {o}
15. e2← entry(o, ERT(step))
16. e2[“nps”]← e2[“nps”] + 1
17. if level > 1 then
18. Nodes← parents(g,Nodes)
19. level← level − 1
20. until level ≤ 0

3.4 Interaction Component
The interaction component is employed to decide whether

or not to interact with the target agent in order to determine
which plan is being executed by that agent. Such a decision
is supported by the information computed by ERT and PSC.

Unlike the ERT algorithm which is called only when a plan
recognition episode ends, the interaction component is called
every time new observations arrive. This way, the recognizer
is able to decide whether to interact or not with the target
agent at any time step. First, this component calculates
ert(t), the average of the expected recognition times (saved
in the ERT tables) of all valid hypotheses at the current
time stamp t, which are indicated in the last level of the
hypotheses graph. To calculate this average, we use the
last observation as a key to the ERT table of each plan
hypothesis. For example, if we have observed

location(1, 3), uniform number(2),¬have ball

at time stamp t and defend→ position is a valid hypothesis
at t, we get the ert for this observation, which would be 21.04
according to the ERT table in Figure 7. The average ert(t)
is calculated with ert of each valid hypothesis.

On this basis, we expect to recognize the plan of the target
agent at time t+ert(t). We assume that there is a recognition
deadline, denoted as ρ(t), which gives the period (in number
of time steps from t) in which a response to plan recognition
is effective. The specification of the deadline function ρ is
application-specific and lies out of the scope of this paper.

To support the decision making process, this component
calculates the chance of each hypothesis by employing the
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selection count (“nps”attribute in the ERT table) of the cur-
rent valid hypotheses in the hypotheses graph. For example,
consider two hypotheses: one has been confirmed 20 times,
while the other has been confirmed only 5 times in past
recognition episodes. Based on these counts, we assess that
the first hypothesis has chance 0.8, while the second 0.2.
The function maxChance(t) returns the maximum chance
between all current hypotheses. In our example, this func-
tion would return 0.8. We assume that there is a threshold ϕ
which indicates the minimum chance to consider a hypoth-
esis as correct (although it may turn out to be incorrect).

In what follows, we analyze the four possible situations in
which a plan recognition agent can find itself when deciding
whether or not to interact with the target agent:

(1) ert(t) ≤ ρ(t)
The average expected recognition time ert(t) is smaller
than or equal to the recognition deadline ρ(t). In this
case, the recognition deadline is expected to be met.
Still, there is no guarantee that this will happen since
the average time is assessed on past experiences that
may not repeat themselves exactly before.

(1.1) maxChance(t) ≥ ϕ
There is a hypothesis with chance greater than or
equal to the threshold ϕ. In this case, an inter-
action with the target agent is not recommended
since recognition is likely to happen with success.
If the recognition does not happen by the dead-
line ρ(t), the recognizer can assume that the most
likely hypothesis is the correct one.

(1.2) maxChance(t) < ϕ
There is no hypothesis with chance greater than
ϕ. In this case, the decision is supported only by
the expected recognition time. If the plan recog-
nition agent decides not to interact with the tar-
get agent and the recognition does not happen by
the deadline, there will be no information to sup-
port the decision about which response to trigger.
Recall that responses are normally highly depen-
dent on the plan under execution.

(2) ert(t) > ρ(t)
It is not expected that the deadline will be met, and
in this case, it is not recommended to rely on the plan
recognition algorithm to determine the plan under ex-
ecution in time.

(2.1) maxChance(t) ≥ ϕ
There is a hypothesis with chance greater than or
equal to the threshold ϕ. In this case, the agent
can trigger the response based on the chances,
but it will be unlikely to confirm the hypothesis
in time given that the plan recognition is expected
to be made after the deadline ρ(t).

(2.2) maxChance(t) < ϕ
In this case, interaction with the target agent is
recommended since meeting the deadline is not
expected, and there is no hypothesis with chance
greater than ϕ.

3.5 Complexity Analysis
In this section, we analyze the complexity of the main al-

gorithms presented in this paper. We are aware, of course,

that our complete method relies on extensions to SBR that
might affect the overall complexity (see [2] for a complex-
ity analysis of SBR). Detailed complexity analysis of our
method remains future work.

Let n be the number of leaf plan steps in a plan library and
let m be the number of entries in the CE tables. Regarding
the complexity of the algorithms specified in this section, the
order of growth of Algorithm 1 is O(n ·m) as this algorithm
iterates over the set of leaf plan steps (Lines 1–9), and in
the nested level, over the set of entries of the CE table of
the plan step (Lines 4–6). Note that in this analysis we
do not consider the loop over the set Observ (Lines 7–9)
given that the size of this set is smaller or equal to the size
of the CE table. Therefore, Algorithm 1 is polynomial in
the number of leaf plan steps and number of entries in the
CE tables. In practice, the time complexity is determined
primarily by two factors that affect how big the CE tables
can be: the size of the observation space and how often such
observations are made.

Let l be the number of level of the hypotheses graph, let
k be the number of nodes in a level of the graph, and let
m be the the number of entries in the CE tables of the leaf
plan steps. Algorithm 3 is performed in O(l · k ·m). Again,
time complexity is affected by how often such observations
are made – for each observation, we generate a new level
in the hypotheses graph. In the worst case, all plan steps
could be a hypothesis, which would result in the maximum
size of nodes per level. In practice, this worst case is not
likely to occur: the number of hypotheses tend to reduce as
new observations are made.

4. VALIDATION
In this section, we empirically validate ERT and PSC, the

components that provide the basis on which decisions about
interactions with target agents are made. To do so, we have
used the application domain specified in the plan library in
Figure 2, and we have simulated a sequence of observations
(the observations in the CE table depicted in Figure 4 have
been made in the last plan recognition episode). Our valida-
tion has been carried out using the results of this simulation.

Once the simulation has ended, we have validated the ert
values computed with Algorithm 1. The graph of Figure 8
shows the evolution of the ert values (y-axis) for the plan
step position in Figure 7 as updates are made (nupd, x-axis).
Each line in the graph indicates the expected recognition
time ert for one of the six distinct observations made dur-
ing the recognition episodes. As we can see in the graph,
ert values tend to converge as updates are executed. For
instance, the ert value for “location(1, 3), . . . ” oscillates in
the first 6 episodes and, after this, it stabilizes around 21.
It means that if position is a valid hypothesis when we ob-
serve “location(1, 3), . . . ”, we expect to eliminate ambigu-
ity (recognize the plan under execution) in ∼21 time steps.
Note that the length of the lines can be different since a
certain observation can be made more often than another
(e.g. “location(1, 3), . . . ” has been observed 20 times within
position, while “location(2, 3), . . . ” has been observed 9 times.

The plan selection count (PSC) made in Algorithm 3 has
also been validated. Each value in the “nps” column of the
ERT table in Figure 7 corresponds to the number of times
that the plan step position has been executed by the target
agent when the respective observation has been made.
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Figure 8: ERT evolution as updates are made. The
y-axis indicates the expected recognition time (ert),
and the x-axis indicates the number of updates
(nupd) on the ert for each distinct observation.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed an extension of the SBR

algorithm [2] that not only provides plan hypotheses match-
ing observations, but also provides an anytime expectation
of time to eliminate ambiguity (and thus conclude the recog-
nition process) before the algorithm settles for a single plan
hypothesis. We also extended SBR with a method to assess
the frequency with which particular plans are selected by a
user in a given context. This algorithm allows an agent that
employs the plan recognizer to make decisions not only on
the actual plans recognized, but also on the assumption that
further observations will increase certainty over time. Such
extensions can be very useful to agents that incorporate plan
recognition within a larger reasoning process, providing ad-
ditional information that can help the agent decide its own
courses of action in response to the recognized plan. To this
effect, we provide an analysis of the various situations which
an agent may face, given information provided by our rec-
ognizer. Given our analysis we provide insights into how an
agent may respond to various situations with regards to the
expected time to recognition and the certainty about the hy-
potheses. Our current algorithm has a limitation in that we
do not allow for interleaved execution and lossy observations
as in [5], but we believe that implementing these techniques
with our approach should be straightforward, as extensions
of SBR with this capability show [5, 3]. As future work, we
aim to incorporate an aging mechanism for the observations
to cope with changes to the observed agent behavior, as well
as integrate the algorithm into a larger application in order
to perform experiments in more complex scenarios.
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