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ABSTRACT
Researchers often use normal-form games to model multi-
agent interactions. When a game model is based on obser-
vational or simulated data about agent payoffs, we call it
an empirical game. The payoff matrix of an empirical game
can be analyzed like any normal-form game, for example,
by identifying Nash equilibria or instances of other solution
concepts. Given the game model’s basis in sampled data,
however, empirical game analysis must also consider sam-
pling error and distributional properties of candidate solu-
tions. Toward this end, we introduce bootstrap techniques
that support statistical reasoning as part of the empirical
game-theoretic analysis process. First, we show how the
bootstrap can be applied to compute confidence bounds on
the regret of reported approximate equilibria. Second, we
experimentally demonstrate that applying bootstrapped re-
gret confidence intervals can improve sampling decisions in
simulation-based game modeling.

1. MOTIVATION
Traditional game-theoretic analysis is often confined to

what is mathematically tractable for the game theorist, and
as such is often restricted in scale (numbers of players, strate-
gies) and complexity (dynamics, strategic interaction, infor-
mation structures). When the extremes of abstraction re-
quired for analytic solution are too constraining, we may
instead describe a strategic scenario in terms of an agent-
based model (ABM), and attempt to build a game form by
simulating that ABM [5, 6, 12, 18]. Alternatively, we may
wish to build game models by observing real world play [4,
10]. In either case, payoff observations may be noisy, lead-
ing to uncertainty as to whether the game model accurately
describes the true game. As such, we would like to quantify
this uncertainty when conducting game-theoretic analysis on
such games.

The approach of building and analyzing game models from
data is known as empirical game-theoretic analysis (EGTA)
[17]. Though some EGTA studies report statistical infor-
mation (e.g., error bars on payoff estimates or significance
of particular comparisons), there has been limited work to
date on general methods for statistical reasoning about con-
clusions from empirical games. Instead, studies rely on ex-
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tremely large sample size [18], or variance reduction tech-
niques [12], to bolster confidence in results. Whereas more
samples and less variance does increase confidence, we must
quantify this confidence if results from EGTA studies are to
be taken as serious scientific evidence for propositions of in-
terest. In the absence of statistical guidance, we cannot tell
whether practitioners are taking insufficient or excessive ob-
servations, or whether complex variance reduction measures
are worth their cost, or most importantly, whether published
results reflect fundamental properties of the games studied
or artifacts of sampling variation.

The general dearth of statistical analysis in EGTA is un-
derstandable, given the difficulty of evaluating complex game-
solution hypotheses in a traditional statistical framework.
Little is typically known about payoff distributions prior to
observing play, rendering parametric approaches inapplica-
ble. Moreover, determining whether a profile satisfies a so-
lution concept such as Nash equilibrium generally requires
evaluating multiple statistical hypotheses about comparison
of corresponding payoffs across potential deviations. This
raises multiple-testing concerns [3], as well as other complex-
ities due to the interdependencies among these comparisons.

This paper represents a first systematic effort to develop
statistical methods generally applicable to game models de-
rived from empirical data. Our approach is based on boot-
strap techniques, which leverage the additional information
available in observation data to characterize distributions
over game-theoretic conclusions. We apply this approach
to two problems. First, we present a bootstrap method to
calculate statistical confidence bounds on reported equilib-
ria. Second, we exploit this statistical information in an
algorithm to improve sampling decisions.

2. BACKGROUND

2.1 Simulation-Based Games
In most applications of EGTA, a simulator acts as an or-

acle for player utility functions, taking as input a strategy
profile—an assignment of one strategy to every player—and
returning an observation of the payoff each player accrued
from that profile in simulation. Since ABMs typically incor-
porate stochastic factors (uncertainty in environment and
agent private information), the payoff-vector observation is
actually a sample from some underlying distribution of pay-
off outcomes. Using the ABM simulator, we collect an ob-
servation set Θ by repeatedly sampling each strategy profile.
We can then construct a game model M(Θ) from the ob-
servation set. The most common way to construct a game
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model from simulation data is to build a normal-form payoff
matrix, where each entry in the matrix corresponds to the
mean of payoff observations of the corresponding profile. Re-
searchers adopting the EGTA approach have used such mod-
els to perform standard game-theoretic calculations, such as
derivation of Nash equilibria or finding dominant strategies
[2, 12, 14]. They have also employed results of these game
computations to estimate features of ABM outcomes in equi-
librium, such as the average price of a security in a financial
market [5].

Due to its statistical nature, it may be costly or impossi-
ble to identify exact Nash equilibria of the game underlying
the simulator (hereafter referred to as the true game). In-
stead, it is often helpful to identify profiles that are close
approximations to Nash equilibria. Quality of an approx-
imate equilibrium is measured by regret, the largest gain
any player can achieve through unilateral deviation. For-
mally, regret of a (potentially mixed-strategy) profile ~σ in a
symmetric game is given by:

ε(~σ) = max
σ∈~σ

max
s∈S

u(s, ~σ−σ)− u(σ, ~σ),

where S is the set of pure strategies available to each player,1

u(·) is the utility function, σ ∈ ~σ indicates that in profile ~σ
some player is playing strategy σ and ~σ−σ is the partial
profile where the player using σ has been removed. By def-
inition, a profile is a Nash equilibrium if and only if it has
zero regret. We say a profile approximates Nash equilibrium
at the level ε if the profile has regret less than or equal to ε.

Since empirical games are constructed from limited sam-
pling of a noisy payoff-generating process, even exact equi-
libria of the empirical game may have non-negligible regret
in the true game. Therefore, in order to draw conclusions
about the true game, we wish to estimate the regret of a
profile in the true game from payoff sample data. More
specifically, we would like to state with statistical confidence
whether or not a profile is an ε-Nash equilibrium of the true
game through limited sampling of the simulator.

2.2 Bootstrap Statistics
The bootstrap is a computational method for estimat-

ing distributional information about a statistic computed
on sample data [7]. Unlike classical statistical tests, it does
not rest on explicit assumptions about the shape of the dis-
tribution. This feature is useful in reasoning about game
solutions derived from sample data since nothing is initially
known about the true payoff distributions. Furthermore,
since the primary measure of interest, regret, is computed
through taking a maximum rather than a sum or average, we
cannot rely on the central limit theorem to fit a parametric
statistical model to our sampling distribution.

The bootstrap treats a sample set as representative of the
population and resamples the sample set to simulate drawing
many samples from the population. If the original sample
has size n, then each resample is a set of size n drawn with
replacement from that sample. The statistic is then com-
puted on each resample set, giving a bootstrap distribution
for the statistic that can be used in place of a sampling distri-
bution for the statistic. Of particular interest, the bootstrap

1We describe and test our methods using symmetric games
to simplify exposition and because most EGTA studies have
been on symmetric games. However, none of the techniques
we describe depend on symmetry and all should be more
broadly applicable.

distribution can be used to estimate confidence intervals for
the statistic: the interval between the 2.5th and 97.5th per-
centile of the bootstrap distribution gives a two-sided 95%
confidence interval, while the 5th or 95th percentiles give
one-sided 95% confidence bounds.

2.3 Related Work
There has been limited work using bootstrapped statistics

to analyze an agent-based model, let alone to analyze games.
In contrast, discrete-event systems modeling has seen adop-
tion of the bootstrap to analyze the output of simulation
[8]. Axtell, et al. [1] suggested that a bootstrap approach
may be necessary for determining if two agent-based mod-
els are equivalent, due to the complicated nature of such a
hypothesis.

While the bootstrap has not previously been used in an-
alyzing games, two methods for estimating true game re-
gret from payoff sample data have been introduced. Reeves
[15] proposed estimating the empirical distribution of regret
of a profile by sampling game matrices from the space of
possible matrices induced by assuming every payoff is inde-
pendent and distributed normally with mean and variance
equal to its sample mean and sample variance respectively.
He recommended using the probability that a profile’s re-
gret is zero from the estimated empirical distribution of re-
gret as a measure of the confidence that a profile is a Nash
equilibrium. However, it is easy to demonstrate that mixed-
strategy profiles, even true-game Nash equilibria, will have
estimated regret of zero with negligible probability. Vorob-
eychik [16] presented a Bayesian framework for determining
the posterior probability that a profile is an ε-Nash equilib-
rium of the true game from payoff sample data. The author
proved tight probability bounds under the assumption that
payoff observations are independent draws with Gaussian
noise, and much weaker distribution-free bounds. Both of
these works ignore the possibility that payoffs within a single
observation of a profile may be correlated, and rely on dis-
tributional assumptions that cannot be guaranteed for small
samples. No empirical evaluations have been presented for
these methods, leaving open the question of their usefulness
under more varied simulators and sampling designs.

3. METHODS
We propose two methods that apply bootstrapping to im-

prove empirical game-theoretic analysis. First, we show how
to estimate confidence intervals for the regret of strategy
profiles, and in particular approximate Nash equilibria. We
then show how such confidence intervals can be used to im-
prove sample control decisions in simulation-based games.

3.1 Bootstrap Regret Estimates
Because empirical games are constructed from data, it is

often unclear whether approximate Nash equilibria calcu-
lated in an empirical game correspond to Nash equilibria of
the true game. Vorobeychik [16] proved that in the infinite-
sample limit, empirical-game and true-game equilibria are
identical, however, this does not rule out reporting spurious
equilibria in empirical games. The bootstrap estimate of
regret allows us to report confidence intervals for the true-
game regret of empirical-game equilibria.

To compute a bootstrap distribution for the regret of a
(mixed- or pure-strategy) profile ~σ, we construct a large
number of bootstrap games by simultaneously resampling
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the observations of every entry in the payoff matrix. For
each bootstrap game, we construct a resampled observation
set Θ̂ where for each payoff, we draw with replacement from
its samples a resample set of equal size. We then construct
a bootstrap game modelM(Θ̂) by applying the same proce-
dure used to construct the empirical game (usually setting
payoffs equal to sample averages).

Frequently, the payoffs for all strategies in a profile are
observed in a single simulation. In this case, correlation
between samples can be preserved by applying common in-
dexing, where the resample is computed over indices i ∈
{1, . . . , n}. If i is drawn, then the ith observation of each

payoff is included in Θ̂. In the event that all payoffs in a
game were sampled with common random numbers, correla-
tions can similarly be preserved by common indexing across
all payoffs in the game.

In each bootstrap game, we compute the regret of profile
~σ, and across many bootstrap games, these values consti-
tute a bootstrap distribution for the regret statistic. If ~σ
is an equilibrium of the empirical game, we are generally
interested in an upper bound on its true-game regret. The
95th percentile of the bootstrap distribution gives us a 95%-
confidence upper bound for ε(~σ). In Algorithm 1, we will
also be interested in a two-sided confidence interval for ε(~σ),
which is estimated by the 2.5th and 97.5th percentiles of the
bootstrap distribution.

3.2 Sampling Control
When game data is generated by a simulator, the prac-

titioner may exert control over how many observations to
gather of each profile. Historically, researchers have inter-
woven sampling and interim game-theoretic analysis to min-
imize the number of observations gathered in unproductive
regions of profile space [13]. Similarly, it may be possible
to reduce the number of observations taken even of rele-
vant profiles while still delivering a baseline of statistical
confidence by interweaving evaluation of regret confidence
intervals with sampling. At the conclusion of a stage of sam-
pling, a γ-level two-sided confidence interval on the regret of
a profile expresses with greater than γ confidence that the
profile is an ε-Nash equilibrium of the true game when the
interval falls below ε; however, when the interval includes
ε, we are unable to distinguish between having insufficient
evidence that the claim is true and having sufficient evi-
dence that the claim is false. Rather than report that we
are uncertain whether or not a profile is an ε-equilibrium,
we would often prefer to continue sampling until we have
sufficient confidence to make a determination. To address
this issue, we propose the Confidence-Interval-Based Stop-
ping Rule (CIBSR) presented in Algorithm 1.

CIBSR is similar to the repeated confidence interval ap-
proach to terminating clinical trials proposed by Jennison
and Turnbull [11], but utilizes the bootstrap to construct
confidence intervals in place of parametric assumptions. The
algorithm takes as arguments a candidate profile ~σ, and any
observations taken thus far Θinit, and samples sequentially
until there is sufficient evidence to decide whether or not
the candidate profile is an ε-equilibrium of the true game.
CIBSR is parameterized by the acceptable regret threshold
ε, the confidence interval level γ, and the number of ob-
servations to gather of each relevant profile in each step x.
CIBSR decides if a candidate is an ε-equilibrium by com-

Algorithm 1 Confidence-Interval-Based Stopping Rule
(~σ,Θinit, ε, γ, x)

Require: ~σ, the profile to evaluate
Require: Θinit, the observations used to identify ~σ as a

candidate
Require: ε, the acceptable approximation threshold
Require: γ, the confidence level to use
Require: x, the number of observations to take of each

profile in each step
Θseq ← Θinit

[εleft, εright]← two-sided-regret-CI(~σ,Θseq, γ)
while εleft < ε and εright > ε do

Append x observations of each profile s ∈ S(~σ) ∪
(
S
~̂σ∈D(~σ) S(~̂σ)) to Θseq

[εleft, εright]← two-sided-regret-CI(~σ,Θseq, γ)
end while
return εright ≤ ε

paring the boundaries of a two-sided confidence interval2 to
ε, accepting the hypothesis that ~σ is an ε-equilibrium when
the interval falls entirely within [0, ε], rejecting it when the
interval falls entirely within (ε,∞), and otherwise requesting
further observations. Sampling under CIBSR is restricted to
profiles that can affect the estimated regret distribution of
the candidate. These profiles belong to either S(~σ), the set
of pure-strategy profiles that are realized with positive prob-

ability under the profile ~σ, or
S
~̂σ∈D(~σ) S(~̂σ), the set of pure-

strategy profiles that are realized with positive probability
under some profile reachable from ~σ through a unilateral
deviation to a pure strategy.

Rather than simply wishing to determine if a particular
profile is an equilibrium, practitioners may begin with no
specific candidates, but sample from a simulator with the
purpose of finding one or more equilibria of the true game.
At any point in the sampling process, equilibria may be com-
puted in the empirical game induced from the observations
gathered thus far. As nothing is known about the payoff
distributions prior to sampling, nor even which payoff dis-
tributions will be relevant for identifying equilibria of the
game, practitioners typically sample sequentially according
to rules of thumb, such as taking observations until the set
of equilibria of the empirical game does not change with
further sampling. Existing rules of thumb may reduce un-
certainty in an indirect manner, but when such procedures
terminate, no direct evidence can be provided of the regret
of playing equilibria of the empirical game in the true game.
Furthermore, since these stopping rules are typically very
coarse heuristics, they may actually require more sampling
than is necessary to have sufficient confidence that a profile
is an ε-Nash equilibrium of the true game. We propose in-
corporating bootstrap confidence intervals into a sequential
equilibrium finding procedure as in the Confidence-Interval-
Based Equilibrium Finding (CIBEF) algorithm, presented
in Algorithm 2.

At each step, CIBEF requests x additional observations
of each profile and finds equilibria of the updated empirical
game. For each equilibrium of the empirical game, a one-
sided regret confidence interval at the γ-level is constructed,

2For all experiments we present, one-sided-regret-CI and
two-sided-regret-CI implement the confidence interval
methods described in Section 3.1.
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Algorithm 2 Confidence-Interval-Based Equilibrium Find-
ing (ε, γ, x)

Require: ε, the acceptable approximation threshold
Require: γ, the confidence level to use
Require: x, the number of observations to take of each

profile in each step
Θseq ← {}
E ← {}
while E = {} do

Append x observations of each profile to Θseq

for ~σ ∈ Equilibria(Θseq) do
if one-sided-regret-CI(~σ,Θseq, γ) ≤ ε then

Append ~σ to E
end if

end for
end while
return E

and if the right-hand side of this interval is not greater than
ε, the profile is appended to the set of equilibria. When
one or more equilibria of the empirical game meet this cri-
terion, sampling is terminated and the candidates meeting
the criterion are returned.

4. EXPERIMENTS

4.1 Regret Bootstrap Experiments
For our bootstrap regret confidence intervals to be useful,

we need to show that they are well-calibrated. We hypoth-
esize that the 95th percentile of the sample-game bootstrap
distribution of the regret of a candidate equilibrium pro-
vides an accurate 95% confidence bound for the true-game
regret of that candidate. We are not aware of sufficient the-
oretical foundations to prove this hypothesis, so we test it
experimentally.

4.1.1 Experimental Setup
Our hypothesis yields several testable predictions: most

importantly, the confidence bound should be well-calibrated,
namely the true-game regret of an equilibrium candidate
should fall below the 95th percentile of the bootstrap dis-
tribution 95% of the time. We would also expect the other
quantiles of the bootstrap distribution to be well-calibrated.
In addition, confidence bounds should grow tighter as data
is acquired, so the 95th percentile of the bootstrap distri-
bution should shrink as the number of payoff observations
grows. We also expect confidence bounds to be wider when
data are more noisy, so the 95th percentile should grow as
the variance of payoff samples grows.

We test these hypotheses by artificially generating true
games and drawing samples from known noise distributions
centered around each true game payoff. We then compute
pure-strategy Nash equilibria and symmetric mixed-strategy
Nash equilibria in the resulting empirical games3, and use
our bootstrap method to estimate the distribution of each
candidate equilibrium’s regret. These bootstrap estimates
estimates are compared against the true-game regrets of the
equilibrium candidates. Across a large number of randomly
generated true games, our hypothesis predicts that k% of

3In all of our experiments, mixed-strategy equilibria are
computed using replicator dynamics [9].

Game, Noise Size .95 Frac. .95 ε .95 Frac. .95 ε
z̄ = 100 pure pure mixed mixed

uSym, normal 10 0.924 34.4 0.951 25.9
uSym, normal 100 0.947 1.5 0.955 6.3
uSym, bimodal 10 0.949 71.6 0.957 50.1
uSym, bimodal 100 0.935 13.5 0.949 12.7
Cgst, normal 10 0.928 20.6 0.966 18.1
Cgst, normal 100 0.972 0 0.941 1.8
CredNet, agg. 10 0.981 1.51 0.997 1.04
CredNet, agg. 100 0.971 0 0.927 0.23

Table 1: Bootstrap confidence intervals for regret.

true-game regret values will fall below the kth percentile
of the empirical game’s bootstrap regret distribution, espe-
cially when k = 95.

Our experiments employ two classes of synthetic games:
uniform symmetric games (uSym) and congestion games
(Cgst), as well as one class of simulated game: credit net-
work games (CredNet). To generate a true game from the
uSym class, we draw a value from the distribution U [0, 100]
for each unique payoff in a symmetric game with p ∈ {2, 4}
players and s ∈ {2, 4, 6} strategies. All results presented
here use uSym games with 4 players and 4 strategies; re-
sults for other combinations of players and strategies are
similar. To generate a true game from the Cgst class, we
use 5 players and 3 strategies; each strategy s has a base
value vb(s) ∼ U [0, 3], a linear congestion cost vl(s) ∼ U [0, 1],
and a quadratic congestion cost vq(s) ∼ [0, 1]. The pay-
off to a player choosing strategy s is a function of the to-
tal number n(s) of players choosing that strategy: u(s) =
vb(s)− vl(s)n(s)− vq(s)(n(s))2. CredNet games are gener-
ated based on data from a simulator described by Dandekar,
et al. [6]. In our initial experiments, we generated a Cred-
Net game with 6 players, 6 strategies, and 2644 samples of
each payoff, but found that it had particularly high vari-
ance; therefore we also generated a second data set with
the same players and strategies called CredNet agg., where
each of 1000 samples comes from 20 pre-aggregated runs of
the simulator. The true game in our CredNet experiments
is always the empirical game constructed using the full set
of samples. To facilitate comparison of regret values across
classes, we applied an affine transformation to rescale each
uSym and Cgst payoff matrix to match range [0, 100], which
closely matches the payoff range of the CredNet true game.

Given a true game from the uSym or Cgst classes, we
created noisy samples of each payoff by drawing from a
known distribution centered at the true-game payoff and
constructed empirical games from these sample sets. For
Cgst, we added only normally distributed noise, but across
uSym experiments we varied the noise distribution among
normal, uniform, bimodal Gaussian mixture, and Gumbel.
For both synthetic game classes, we varied the maximum-
width parameter z̄ ∈ {0.1, 1, 10, 100} over four orders of
magnitude. For all experiments, we drew z ∼ U [0, z̄] in-
dependently for every true-game payoff. For normally dis-
tributed noise, observations of each payoff are drawn from a
normal distribution with variance z; for bimodal Gaussian,
the z parameter controls the variance of the two Gaussians,
which are spread apart by a random draw from N(0, z̄); for
uniform noise, z is equal to the half-width of the distribu-
tion; for Gumbel noise, z is the scale parameter. We also
tested drawing noise from different models for different pay-
offs in the same game, and found similar results (not shown).
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Figure 1: Bootstrap distribution calibration relative
to the true game regret distribution in uSym games.

To create each sample game for the CredNet class, we se-
lected a subsample without replacement out of the full set
of simulator observations.

4.1.2 Experimental Results
For each combination of synthetic game class, number of

players/strategies, and noise model, we generated 1000 true
games. For each synthetic and simulated true game, we gen-
erated empirical games with sample sizes ranging from 5 to
500, and in each empirical game, we computed pure- and
mixed-strategy Nash equilibria. We then computed boot-
strap distributions for the regret of each equilibrium, which
we compared to that equilibrium’s true-game regret. Table 1
shows, in the “.95 Frac.” columns, the fraction of true-game
regrets that fell below the 95th percentile of the bootstrap
distribution for a subset of game settings, noise models, and
sample sizes. The data indicates that the 95th percentile of
the regret bootstrap distribution provides a well-calibrated
95% confidence interval for true-game regret of equilibria
computed in empirical games, especially in our synthetic
games. Note that the 95th percentile of regret is sometimes
very high, demonstrating the danger of reporting empirical
game equilibria without statistical testing.

Table 1 also helps to support some of our secondary hy-
potheses: the “.95 ε” columns show the regret threshold
growing tighter as the bootstrap gets more samples. Ad-
ditional data (not shown) also demonstrates that the boot-
strap confidence intervals are wider when variance is higher.
Results for the other synthetic games, other noise magni-
tudes, and other numbers of samples are broadly similar.

While Table 1 shows good calibration for the 95% boot-
strap confidence bound, we would hope that the whole boot-
strap regret distribution, and not just the 95th percentile is
well-calibrated. Figure 1 shows that for 4-player, 4-strategy
uSym games with normal noise this is indeed the case: each
curve shows the cumulative fractions of empirical game equi-
libria for which the true-game regret fell below each succes-
sive percentile of the bootstrap distribution. Because the
curves closely track the 45◦ line, we conclude that on average
the shape of the bootstrap distribution closely matches that
of the sampling distribution for regret. Such plots for other
synthetic games (not shown) appear similar: except with
very small sample sizes or noise that completely swamps
payoff variation (we ran one experiment with z̄ = 1000), cal-

ibration is consistently good. In our CredNet experiments,
on the other hand, the cumulative fraction curves do not
match the 45◦ line as closely and do not improve as much
as the sample set grows. It is possible that this happens
because we have only one true game for the CredNet class,
from which each empirical game is a subsample. Unfortu-
nately, within a reasonable sampling budget, we have no way
to test this possibility. We show in Section 4.2.2 that we can
still use the regret confidence interval from the bootstrap to
make reasonable sampling decisions in CredNet games.

4.2 Bootstrap in Sample Control
Frequently, rules of thumb are used to decide when to

terminate sampling in iterative applications of EGTA, such
as sampling until the uncertainty in payoff estimates is be-
low some threshold; however, the theoretical underpinnings
of the bootstrap assume a fixed-sample statistical experi-
ment, and as such may not deliver reliable inference when
applied to EGTA applications where the sampling process
is terminated based upon a feature of the gathered data. To
empirically evaluate the usefulness of bootstrapping regret
for iterative EGTA approaches, including its use in sam-
ple control, we conduct two sets of experiments. In the
first set of experiments, we evaluate the accuracy of using
bootstrapped regret confidence intervals to decide whether a
mixed-strategy profile is an approximate equilibrium in the
algorithm CIBSR. In the second set, we test the accuracy of
bootstrapped regret confidence intervals at the termination
of sampling with CIBEF and two commonly-applied rules of
thumb to determine (i) whether the bootstrap approach is
reliable when working with sequentially gathered data and
(ii) whether CIBEF provides any reduction in sample costs
or expected regret of candidate profiles when compared to
existing rules of thumb.

4.2.1 Labeling Equilibria
To test the efficacy of CIBSR at labeling profiles as either

ε-Nash equilibria (hereafter referred to as Eq) or not (here-
after referred to as Not-Eq), we measure the frequencies at
which the algorithm correctly labels candidate profiles from
synthetic or simulated game data, as in Section 4.1. For each
game type considered, 1000 trials were run, where each trial
consisted of labeling a single candidate profile, which may be
either Eq or Not-Eq with respect to the true game. Similar
to the experiments in Section 4.1, for synthetic games, each
trial corresponds to a different randomly generated game,
while a trial with simulation game data corresponds to a
different random ordering of observations of a fixed data
set, due to the cost of gathering additional simulation data.
This means that for the simulated game trials, the set of ap-
proximate equilibria of the true game remains fixed across
trials.

Selecting profiles randomly for evaluation would be an in-
sufficiently stringent test for the algorithm, since Not-Eq
profiles with high regret can be labeled with confidence with
very few observations. Furthermore, such profiles would not
merit application of statistical tools in practice, as a mixed-
strategy profile is typically only of interest if it is believed
to be a close approximation of equilibrium. We therefore
construct candidate profiles by taking a small number of
observations of each profile and computing an equilibrium
of the current empirical game. These observations are then
passed to the algorithm as Θinit. With this procedure we are
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able to generate candidate profiles of either type, and Not-
Eq instances will frequently be low regret, making correct
labeling appropriately difficult.

For the synthetic games, candidates are selected after tak-
ing 5 observations of each profile. On each trial the algo-
rithm is parameterized with a regret threshold ε = 0.05 and
step size of x = 5 observations. Each trial also has an obser-
vation cap of 1000 observations per profile, at which point,
if the algorithm has not terminated, it labels the point as Eq
if the median of the bootstrap distribution is below ε. For
the credit network simulator, we explored both the unag-
gregated and aggregated data sets described in Section 4.1.
Due to relatively high level of noise in the credit network
data, candidates were chosen after 100 observations for the
unaggregated data, and after 5 observations for the aggre-
gated data.4 Similarly, the algorithm is parameterized with
x = 100 for the unaggregated data and x = 5 for the ag-
gregated data, with observation caps set at the size of the
full data set, 2644 and 1000 respectively. Experiments on
these games were conducted for ε ∈ 0.05, 0.2, 0.5, as differ-
ent settings of ε lead to a different distribution of Eq and
Not-Eq instances, and potentially change the difficulty of
correct labeling. For all experiments presented here, the al-
gorithm is parameterized with γ = 0.95. As the algorithm
uses a two-sided γ-confidence interval and the final decision
only depends on one of the boundaries of the interval, the
algorithm terminates with a confidence level of 0.975.

Table 2 presents selected findings from these experiments.
With the exception CredNet instances which use simula-
tion data, all experiments reported here used normally dis-
tributed noise, with standard deviation given by σ in the
table, to generate payoff observations. As in the prior exper-
iments, for synthetic games σ ∈ {0.1, 1, 10, 100} were eval-
uated, but only σ = 1 and σ = 100 are presented due to
the similarity of the results. “Inst. Type” specifies whether
the row refers to instances where the ground truth is Eq or
Not-Eq. “#” specifies the number of instances out of the
1000 trials that were of the named type, while “Und. #”
gives the number of trails for that type where the algorithm
was undecided after reaching the observation cap imposed
in the experiment. “Accuracy” lists first the fraction of la-
belings that were correct for the trials where the algorithm
terminated with a confident decision, and second the frac-
tion correct when the algorithm was forced to decide at the
observation cap. “Agg. Acc.” specifies the the fraction of
labelings that were correct across all 1000 trials, including
both Eq and Not-Eq instances.

Despite our specific choice of instances that were difficult
to correctly label, CIBSR using the bootstrap method to
construct confidence intervals delivered high levels of accu-
racy across all game types and parameter settings, with the
lowest accuracy observed over a full set of trials being 0.922.
On synthetic data, CIBSR delivered accuracy of at least 0.97
across all games and instance types. The credit network data
proved more difficult, and despite overall high levels of accu-
racy, accuracy varied considerably between experiments and
instance types. In particular, low regret thresholds made the
algorithm less likely to label candidates as equilibria; this is
reflected in the high accuracy for Non-Eq, low accuracy for
Eq instances, and higher incidence of inconclusive results

4Since each aggregated observation averages 20 observa-
tions, the candidate profiles for both experiments are con-
structed after the same number of simulations.

Game ε Inst. # Und. Acc- Agg.
Type # uracy Acc.

uSym .05 Eq 624 22 .99, .77 .978
σ = 1 Not 376 21 .98, .76
uSym .05 Eq 240 7 .97, 1 .972
σ = 100 Not 760 11 .98 .36

Cgst .05 Eq 911 6 1, .67 .995
σ = 1 Not 89 1 .98, 1
Cgst .05 Eq 610 4 .99, .25 .984

σ = 100 Not 390 6 .98, .83
CredNet .05 Eq 96 84 0, .83 .974

Not 904 250 1, 1
CredNet .2 Eq 642 558 .75, .90 .922

Not 358 152 1, .99
CredNet .5 Eq 910 512 .99, .99 .985

Not 90 56 .91, 1
CredNet, .05 Eq 428 122 .86, .98 .953

agg. Not 572 64 .99, 1
CredNet, .2 Eq 774 156 .96, .95 .965

agg. Not 226 18 .98, 1
CredNet, .5 Eq 997 128 .98, 1 .983

agg. Not 3 1 1, 1

Table 2: Sequential classification performance.

for Eq instances. The observation that the entire data set
for the credit network game was frequently insufficient to
have high confidence in declaring that a candidate profile
was an ε-equilibrium reaffirms the difficulty of working with
the CredNet data set.

4.2.2 Sequential Equilibria Finding
The previous experiment demonstrated that the bootstrap

method of constructing confidence intervals can successfully
be used as terminating condition for a sequential statistical
experiment without drastically biasing inferences drawn at
the conclusion of the experiment. In contrast to the rules
of thumb typically used to terminate iterative applications
of EGTA, using a confidence-interval-based stopping rule
yields statements about the likely values of the underly-
ing regret; however, nothing precludes using the bootstrap
method to estimate the regret distribution at the conclu-
sion of an application of EGTA that used a rule of thumb
to determine when to terminate sampling. In this section
we conduct an experiment to evaluate the accuracy of the
bootstrap method applied to the conclusion of sampling us-
ing two common rules of thumb, as well as CIBEF. Further-
more, we compare the performance of these rules in terms
of average regret and number of observations requested.

The first rule of thumb considered is to cease sampling
when all relevant payoff estimates demonstrate low variabil-
ity; specifically, the stopping rule labeled SEM will request
x further observations be made of each profile in each step
until the estimated standard error in mean of each payoff
is below a specified threshold ξ. The intuition behind this
stopping rule is that reliable estimates of payoffs should lead
to reliable inferences about the true game. The second rule
we consider ceases sampling when the set of equilibria of
the empirical game does not change with additional obser-
vations. This stopping rule, labeled EQC (for equilibrium
comparison), will request x further observations be made
for each profile until the sets of empirical game equilibria
found in successive steps are equivalent. Distributions used
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Game Rule Mean Mean Median .95
Obs. Regret Regret Frac.

uSym EQC 17.07 .0807 .0107 .94
σ = 1 SEM 5.02 .0073 .0014 .90

CIBEF 5.08 .0081 .0018 .90
uSym EQC 78.66 2.641 .6669 .96
σ = 100 SEM 1000.0 .5176 .1168 .96

CIBEF 94.10 .9257 1.98e–6 .90
Cgst EQC 10.04 .0006 1.15e–7 .92
σ = 1 SEM 5.01 .009 2.26e–7 .89

CIBEF 5.01 .008 2.31e–7 .90
Cgst EQC 20.06 .89 1.44e–6 .98

σ = 100 SEM 1000.00 .0771 2.71e–6 .94
CIBEF 26.94 .1703 1.58e–6 .97

CredNet, EQC 66.71 .0468 1.03e–7 .98
agg. SEM 116.05 .0386 1.96e–7 .95

CIBEF 11.10 .0295 1.70e–7 .99

Table 3: Stopping rule performance.

in mixed-strategy equilibria are considered to be equivalent
if their Euclidean distance is below some threshold ∆. Both
rules of thumb prescribe a stopping point at which equilibria
of the empirical game are considered approximate equilibria
of the true game, but provide no guarantee that the profiles
that they identify are ε-equilibria for any particular ε.

In this experiment, a trial consists of the specified algo-
rithm requesting observations from a synthetic or simulation-
based game model until its stopping condition is triggered
or an observation cap is reached, at which point it returns
one or more equilibrium candidates. If the observation cap
is reached, CIBEF returns the equilibrium of the empiri-
cal game with the lowest right-hand one-sided confidence
bound, while SEM and EQC return all equilibria of the em-
pirical game. For each candidate we record the regret of each
candidate profile in the true game, as well as the number of
observations taken of each profile prior to terminating the
sampling procedure.5 For each game model and algorithm,
we ran 1000 trials, with each trial corresponding to a new
random game for the synthetic game data, and new random
reordering of the data for the simulated game data. In addi-
tion to metrics about the number of observations and regret
of the selected profiles, we measure the average fraction of
regret of the true games captured by the 95th-percentiles of
bootstrapped regret distributions calculated at the termi-
nation of each trial, similar to Section 4.1. This measure
gives an indication of the accuracy of using the bootstrap
approach to give a confidence interval at the termination of
sampling, when sampling is guided by these sample control
algorithms.

Table 3 shows selected results from these experiments.
“Mean Obs.” refers to the average number of observations
taken of each profile when the algorithm terminated. All
trials were conducted with the same step sizes and observa-
tion caps as in Section 4.2.1. For the SEM stopping rule,
the threshold ξ was set to 1.0, while for the EQC rule, a
distance less than ∆ = 0.01 was considered sufficient to call
two equilibrium candidates identical. For all experiments
conducted with the CIBEF stopping rule, ε was set to 0.5
and γ was set to 0.95.

These results emphasize the general applicability of the

5All algorithms considered here sample evenly from all pro-
files in a game’s profile space, so “10 observations” refers to
10 observations taken of every value in the payoff matrix.

bootstrap method of generating confidence intervals, even
for sequential sampling experiments. The only experiments
that resulted in substantial overconfidence on average, that
is experiments in which the fraction of true game regrets
captured by 95th percentile of the bootstrap regret distribu-
tion is less than 95%, were those settings in which sampling
typically halted at the first opportunity. This outcome mir-
rors the results from Section 4.1, where we noted that for
very small numbers of observations, the bootstrap method
could be poorly calibrated. In contrast, some combinations
of game models and stopping rules led to overly large confi-
dence intervals, with greater than 95% of true game regrets
being captured by the confidence interval method. In such
cases the bootstrap method may be conservative in declar-
ing candidates as equilibria, occasionally ruling out more
profile candidates than is warranted by the expressed confi-
dence level; however, using CIBEF an equilibrium meeting
the confidence requirements will eventually be found.

In comparing the equilibrium-finding characteristics of the
three stopping rules, our experiments show that CIBEF is
typically comparable to and often an improvement over ex-
isting rules of thumb. For every game model considered,
the median regret of the profiles returned by CIBEF was
considerably below the approximation threshold of ε = 0.5.
Similarly, the mean regret was below the threshold for all
but the uniform symmetric game model with the highest
variance. Our data suggests that in most scenarios when
CIBEF misidentifies a profile as an approximate Nash equi-
librium it is still likely to have regret close to the thresh-
old, but for high noise settings, profiles that are incorrectly
returned may have significant regret. EQC nearly always
yielded higher regret profiles than CIBEF, and performed
particularly poorly in the synthetic game models with high
variance. SEM frequently performed at the same level or
better than CIBEF in terms of regret, but almost always
terminated either immediately or at the observation cap. In
terms of the number of observations taken prior to stopping,
CIBEF was similar to SEM for low noise settings, but re-
quired many fewer observations for high noise settings. In
contrast, CIBEF required fewer observations than EQC in
low noise settings, in part due to EQC requiring two sam-
pling steps prior to terminating, but required slightly more
samples in noisier settings.

CIBEF outperformed EQC and SEM in terms of mean
regret of returned candidates and the average number of ob-
servations taken prior to stopping on the aggregated credit
network data. All rules performed excellently in terms of
median regret, meaning that either CIBEF returned fewer
non-equilibrium candidates or that the non-equilibrium can-
didates that it returned were closer approximations to equi-
librium than the other two stopping rules. Here, CIBEF may
benefit from often returning one candidate that is highly
likely to be an equilibrium, rather than returning multiple
candidates that may vary greatly in how well they approxi-
mate equilibria, as in EQC or SEM. As such, CIBEF can de-
liver significant savings in terms of sampling costs when find-
ing only one equilibrium is acceptable. We were, however,
unable to present results for the credit network game with
unaggregated data, as this experiment proved too costly,
particularly for CIBEF, as it must find equilibria and cal-
culate confidence intervals for them in every sampling step.
Though a potential detriment to CIBEF, in real applica-
tions of EGTA the cost of sampling will typically outweigh
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the cost of calculating confidence intervals, thus making the
overhead of using CIBEF over EQC negligible.

5. CONCLUSION
Our experimental evidence demonstrates that the boot-

strap method of confidence interval generation is approxi-
mately accurate for bounding the true-game regret of can-
didate equilibria in empirical games. Despite possible re-
peated testing concerns, our bootstrap method also proves
approximately accurate in constructing confidence intervals
on regret at the conclusion of sequential sampling proce-
dures. Accuracy is lower in our experiments on credit net-
work games than on randomly-generated games, but we be-
lieve that our the random game experiments may be more
representative of EGTA in practice, due to limitations of
conducting experiments with costly simulation data. Be-
cause our experiments show bootstrap confidence intervals
to be accurate across multiple synthetic game classes, as
well as across noise distributions and magnitudes, we rec-
ommend that practitioners of empirical game theory employ
bootstrap methods to give regret bounds for reported equi-
libria. This recommendation stands even if bootstrap regret
estimates are used to determine when to conclude sampling.

In addition, we provide evidence that the Confidence-
Interval-Based Equilibrium Finding algorithm improves over
previous EGTA experiment designs. Relative to rules of
thumb for sample control, CIBEF can more consistently
identify low regret equilibrium candidates, and often re-
quires fewer observations. However, in games with particu-
larly noisy payoffs, where misclassifications can be particu-
larly egregious in terms of regret, we recommend that prac-
titioners err on the side of caution and collect extra obser-
vations. Given the savings in observations CIBEF demon-
strated, we believe that using bootstrapped confidence in-
tervals on regret is a promising tool for sample control in
this domain.

This work constitutes a first systematic effort to develop
practical statistical methods for EGTA; future work could
focus on developing theoretical foundations of applying the
bootstrap to empirical games, and characterizing games for
which the bootstrap approach is reliable. Additionally, there
are other measures of interest to EGTA practitioners, such
as social welfare, that may also benefit from using the boot-
strap for statistical analysis. Other avenues of research in-
clude evaluating different bootstrap designs, and using in-
formation obtained through the bootstrap to guide more
sophisticated sampling, such as profile exploration [13].
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