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ABSTRACT

We study manipulative actions, especially bribery and control, un-

der “voting-rule uncertainty,” which means that there are two or

more rules that may be used to determine the election’s outcome.

Among our highlights are that we show a new case in which “ties

matter,” we link manipulation and bribery in a way that shows many

cases of single-bribery to be in polynomial time, we explore the re-

lations between the bribery and control complexities of the underly-

ing systems and their “uncertain” combination, and we obtain many

results about the complexity of natural voting rules under voting-

rule uncertainty, most notably regarding control by adding voters

under election families of the form {k1-Approval, . . . ,kℓ-Approval,

k̂1-Veto, . . . , k̂
ℓ̂
-Veto}.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial

Intelligence—Multiagent systems

General Terms

Algorithms, Theory

Keywords

computational social choice, voting rules

1. INTRODUCTION, BACKGROUND, AND

RELATED WORK
Voting rules and elections have been in use for a long time in

many different areas such as political science, economics, and op-

erations research. During the last few decades, voting has become

more and more important to various areas of computer science,

most notably in multiagent systems where voting has found uses in

planning [9], similarity search [11], and the design of recommender

systems [17] and ranking algorithms [7], just to name a few real-

world examples. In many cases—especially in computer-science

applications—the elections may be huge.
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The study of the computational complexity of problems—such

as manipulation and procedural control—related to voting rules

was initiated by Bartholdi, Tovey, and Trick [2, 3]. Since manipula-

tive attacks can now be conducted using great computational power,

it is quite important to understand the computational complexity of

manipulation problems. The present paper contributes to the study

of several types of manipulative actions, such as manipulation [2],

where a voter may cast an insincere vote, bribery [12], where an

external agent may change some voters’ votes, and control [3],

where again an external agent—traditionally called the chair—may

change the structure of an election in order to affect the outcome of

the election.

Traditionally, the complexity of manipulative actions in elections

is studied under the full information assumption, i.e., it is assumed

that all relevant information is known to the manipulative agent(s).

Recently, several papers have addressed models where some kind

of uncertainty is introduced, e.g., [20, 1, 6, 4]. Our paper studies

a model where there is uncertainty regarding the voting rule. As

motivation regarding voting-rule uncertainty, we mention that we

certainly have seen CS department chairs solicit preference-order

votes from faculty members over hiring candidates, without in-

forming the faculty of what rule will be used to select the winner(s).

And one can easily imagine local or online elections in which it is

known that k-approval will be used, but the exact value of k is de-

cided only later.

In particular, this paper is in a model in which the manipulative

agent does not know which voting rule will be used, but knows that

it will be chosen from a family of voting rules, and the manipulative

actor even while blind to which voting rule will be used wants to

ensure that a given candidate will win. As far as we know, there is

only one previous paper studying this model, namely the interesting

paper of Elkind and Erdélyi [8] that introduced the model. (This

model captures the voting rule being chosen after the manipulative

action and adversarially. See, e.g., [4] for the collaborative case.)

The Elkind-Erdélyi paper studied only manipulation. In con-

trast, the present paper also studies bribery and, especially, control.

For manipulation, we prove the first case within this model where

“ties matter.” For bribery and constructive control by adding vot-

ers, we show that every possible combination of easy/hard com-

plexities can be realized (Table 1). Most importantly, as Classifi-

cation 6.9 we broadly classify the constructive-control-by-adding-

voters complexity of families of k-Approval and k-Veto rules un-

der voting-rule uncertainty. The individual voting rules from this

family, without any uncertainty present, were previously stud-

ied, most notably by Lin [22]. Our results study such families

under voting-rule uncertainty, and range from polynomial-time

algorithms established by interesting use of network-flow tech-

niques and edge covering/matching algorithms to NP-hardness re-
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sults based on set matching and covering. The differences be-

tween easiness and hardness might be hard to have guessed ahead

of time, e.g., {1-Approval,1-Veto}-CCAV is in P by a network-

flow proof (that precisely captures the nature of this problem) and

{1-Veto,2-Veto}-CCAV is in P by an interesting use of edge cover,

but {2-Approval,1-Veto}-CCAV is NP-complete (even though

2-Approval-CCAV and 1-Veto-CCAV are each in P; uncertainty

extracts a complexity-theoretic cost here). Network flows are a

powerful technique and have been used in the study of manipula-

tive actions on elections, e.g., [12, 5, 8]; surprisingly, the first such

use was, to the best of our knowledge, quite recent [12].

2. PRELIMINARIES
An election is given by a pair E =(C,V ), where C = {c1, . . . ,cm}

is a finite set of candidates and V = {v1, . . . ,vn} is a finite collection

of voters. We’ll represent preferences over candidate sets by tie-

free linear orders, e.g., a > b > c denotes a is strictly preferred to b

who is strictly preferred to c. Each voter will have such a preference

over the set of candidates. In our constructions, we sometimes as a

shorthand will write a set in a preference order, in cases where the

order within the set is irrelevant. For example, if we say a vote is

a > Z, where Z = {b,c}, then it means that any vote in which a is

preferred to b and c can be used in the construction; if the reader

wants specificity, he or she can assume that such sets are written

out using lexicographic order. We’ll also sometimes use “· · ·” in

a preference order, always in ways that will be clear from context.

A voting rule is a function f that takes as its input an election,

E = (C,V ), and outputs a set W , W ⊆C. If c ∈W , c is said to be a

winner of the election E (under voting rule f ).

A voting rule is said to be resolute if whenever there is at least

one candidate there is exactly one winner. In the following we

will specify some voting rules considered in this paper. (All these

definitions are given for the case of unweighted votes. We refer

to weighted voting regarding weighted types of bribery, and for all

the systems below it is standard and self-apparent how to extend

the notion to the weighted case.)

Condorcet A candidate c who is preferred to each other candidate

by a strict majority of the voters is said to be a Condorcet winner.

If there is no such candidate then there is no Condorcet winner.

Scoring Rules An (m-candidate) scoring rule is specified by a

scoring vector α = (α1, . . . ,αm) of integers α1 ≥ α2 ≥ ·· · ≥ αm ≥
0. Each voter gives his or her ith-ranked candidate αi points. The

score of a candidate is the sum of points he or she gets from the

voters. The candidate(s) with the maximum score are the win-

ner(s) of the election. Typical scoring rules include m-candidate

k-Approval, with scoring vector α = (1, . . . ,1
︸ ︷︷ ︸

k

,0, . . . ,0
︸ ︷︷ ︸

m−k

), and m-

candidate k-Veto, with scoring vector α = (1, . . . ,1
︸ ︷︷ ︸

m−k

,0, . . . ,0
︸ ︷︷ ︸

k

), i.e.,

it is (m− k)-Approval. To build a scoring system that can handle

any number of candidates, which is what a voting rule is supposed

to do, families of scoring rules are used. The most important such

families are defined as follows. For each k, k-Approval (k-Veto)

is the election system that on inputs with m candidates employs

the m-candidate k-Approval (k-Veto) system. 1-Approval is also

known as Plurality. Let scorek
V (c) denote the k-Approval score of

candidate c under the voter set V and let vetoesk
V (c) be the num-

ber of k-vetoes that c receives from voters in V , i.e., the number

of voters in V that rank c in one of the last k positions. Note that

the k-Veto score of candidate c under the voter set V is exactly

‖V‖− vetoesk
V (c).

Majority and MAJORITY In Majority voting, the candidate (if

any) who is the top choice in the preference orders of a strict major-

ity of the voters is the winner, and otherwise nobody wins. Elkind

and Erdélyi [8] use a different notion of Majority, which we will

distinguish from Majority by writing it in small caps, namely as

MAJORITY. In MAJORITY voting, the candidate (if any) who is

the top choice in the preference orders of a strict majority of the

voters is the winner, and otherwise everyone wins. We’ll discuss

both notions in our manipulation section since our results there are

making a point that intertwines with and contrasts with a result of

Elkind and Erdélyi [8], and we’ll use just Majority everywhere else.

Bucklin In Bucklin voting, for i equals one, then two, then..., we

see if at least one candidate is among the first i choices of a strict

majority of the voters. And at the first i for which there are any such

candidates, the candidate(s) who occur within the first i places on

the most votes are the winner(s).

Approval and ResoluteApproval These voting systems differ

from what we have discussed so far, in that each voter votes not

with a preference order but with a 0-1 vector indicating disapproval

or approval of each candidate. The approval score of a candidate

c is the number of voters who approve of c. The candidate(s) with

the maximum approval score are the winner(s) of the election under

Approval. In ResoluteApproval, the winner is the lexicographically

largest among the Approval winners (and so of course there are

never tied winners under ResoluteApproval). We will use the fol-

lowing artificial rules only in Table 1. ResoluteApproval′ is the vot-

ing rule where the winner of the election is the first candidate in the

lexicographic ordering of all candidates if the ResoluteApproval

winner is the last candidate in the lexicographic ordering, other-

wise, the winner is the lexicographic successor of the winner un-

der ResoluteApproval. In Approvaleven, if no candidate is named

dummy everyone loses. If there is a dummy candidate who has

an even number of approvals, every candidate is a winner. Other-

wise, we conduct Approval over all candidates except the dummy

candidate. Approvalodd is defined analogously with the difference

that we check whether the dummy candidate has an odd number of

approvals.

3. PROBLEM STATEMENT
Given a collection F of voting rules, we consider the complex-

ity of manipulative actions—manipulation, bribery, and control—

in elections where it is at the point of the manipulative action un-

known which of the voting rules in F will be used, and the ma-

nipulative actor wants to make a given candidate win regardless of

which system is ultimately employed. For manipulation this was

defined by Elkind and Erdélyi [8], and the study in this model of

bribery and control is new to this paper. Except in Section 4 when

contrasting with Elkind and Erdélyi (who worked in the so-called

unique-winner model, where one must make a given candidate the

one and only winner), our entire paper is in the nonunique win-

ner model, i.e., we speak of whether a candidate can be made “a

winner.” The nonunique-winner model avoids merging issues of

tie-breaking with issues of winning, and so we find this the more

natural model to use.

Manipulation under voting-rule uncertainty is formally defined

as follows.

F -SINGLE MANIPULATION (F -SM)

Given: A candidate set C, a collection V1 of voters with prefer-
ences over C, and a candidate p ∈C.

Question: Is there a vote v such that when v is added to V1 p is a
winner of the resulting election under each voting rule in
F ?

Single manipulation is sometimes referred to simply as “manip-
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ulation” in the literature. Note that our above definition requires a

vote v that succeeds under all the voting rules in F—not separate

votes v for each voting rule in F . As usual, this paper treats the

vote sets as coming in as a list of ballots.

Our second problem is bribery. Here, an external agent changes

some voters’ votes in order to reach his or her goal.

F -BRIBERY

Given: An election E = (C,V ), a candidate p ∈ C, and a non-
negative integer k.

Question: Is it possible to change up to k voters’ votes in such a
way that p is a winner of the resulting election under
each voting rule in F ?

The above definition is of unweighted, unpriced bribery, which

is the most basic case. However, we mention in passing that the

examples in the bribery column of Table 1, which achieve all six

possible easy/hard relationships, are chosen so as to also work for

weighted bribery, priced bribery, and weighted priced bribery (as

standardly defined [12]).

If we alter the above definition to omit k and simply treat k = 1

as the limit on the number of bribes, we call the resulting problem

F -SINGLE BRIBERY, or F -SB for short.

There are many types of control specified in the literature.

Hemaspaandra, Hemaspaandra, and Rothe [19] present the stan-

dard ones, and explain the motivations for each. However, in the

present paper we focus solely on arguably the most important type

of control, namely, constructive control by adding voters (CCAV,

for short). In CCAV, the manipulative actor (the “chair”) seeks to

make his or her favorite candidate win the election by adding to the

election some new voters from a set of unregistered voters. This is

an (abstract) model that is inspired by such real-world activities as

highly targeted phone banks, get-out-the-vote drives, offering se-

nior citizens rides to the polling place, and so on. (The “∪” in the

definition below is of course a multiset union; different voters may

vote in the same way.)

F -CCAV

Given: An election E = (C,V ), a collection W of unregistered
voters with preferences over C, a candidate p ∈C, and a
nonnegative integer k.

Question: Is there a subcollection W ′ ⊆ W , ‖W ′‖ ≤ k, such that p

is a winner of the election (C,V ∪W ′) under each voting
rule in F ?

4. MANIPULATION
This paper uses the nonunique-winner model (a.k.a. the co-

winner model), which asks whether a given candidate can be made,

or can be prevented from being, a winner of the election. As men-

tioned earlier, we prefer this model, as it avoids merging issues

of tie-breaking with issues of winning. However, the literature also

has papers studying the so-called unique-winner model, which asks

about making a candidate be, or not be, a sole winner (i.e., having

the candidate win and having no other candidate also win).

For a long time, these two models seemed to always give

the same results, and papers—in retrospect perhaps somewhat

naively—commented that tie-breaking details seemed not to mat-

ter. However, Faliszewski, Hemaspaandra, and Schnoor [14] then

showed a context, regarding Copeland elections, in which these two

models produced dramatically different complexity results (and see

also the tie-related work in [18, Footnote 11] and [23]). Nonethe-

less, it remains the case that these two winner models have very,

very few examples where they produce different complexities.

We provide a new case where the two models differ dramat-

ically. One of the results of Elkind and Erdélyi [8] is that

{MAJORITY,STV}-SM is in P, in the unique-winner model

(which is the model of their paper). STV stands for single-

transferable vote, and is an important election system (due to space,

please see [8] for the definition).

However, we claim that in the nonunique-winner model, the

same problem jumps up to being NP-complete. (The reason

for this contrast is that {MAJORITY,STV}-SM is the same as

MAJORITY-SM in the unique-winner model but is the same as

STV-SM in the nonunique-winner model.)

THEOREM 4.1.

1. [8] {MAJORITY,STV}-SM is in P in the unique-winner

model.

2. {MAJORITY,STV}-SM is NP-complete (in the nonunique-

winner model, which is our standard model in this paper).

So this is a new case where “ties matter,” i.e., the winner model

makes a dramatic complexity difference (unless P = NP).

On the other hand, we note that in both the unique-winner and the

nonunique-winner models, {Majority,STV}-SM coincides with

Majority-SM, and so is in P, and so for “traditional” majority the

above “ties matter” contrast disappears. Perhaps one should also

say that this is a case where “(the definition of) Majority matters”!

5. BRIBERY
Elkind and Erdélyi [8] showed that for manipulation (in their

paper’s model), when combining two rules any combination of

easy or hard rules can yield easiness or hardness under voting-

rule uncertainty. Can we establish the same for bribery? Yes;

Theorem 5.1 below states that for bribery every combination of

easiness and hardness can be realized when one combines two rules

under voting-rule uncertainty.

THEOREM 5.1. For bribery of each of the four standard types

(unpriced, unweighted bribery; priced, unweighted bribery; un-

priced, weighted bribery; and priced, weighted bribery), for each

of the eight cases (six cases if one ignore symmetric duplicates) as

to whether f1 bribery is in P or is NP-complete, whether f2 bribery

is in P or is NP-complete, and whether { f1, f2} bribery is in P or

is NP-complete, there are rules f1 and f2 realizing the given case.

(The theorem is certainly not asserting that for all rules the

bribery complexity is in P or NP-complete. Rather, it is explor-

ing what can be realized using rules from these two most impor-

tant complexity classes.) Due to space and since our main focus

is on control, where we study in detail natural systems, we omit

the proof of this theorem, although in Table 1 we provide examples

of systems that realize each of the cases (the systems mentioned

in the table are chosen to each establish their table line’s result for

all four types of bribery simultaneously). (Regarding the table, the

voting rule AllWinner sets W = C and the voting rule NoWinner

sets W = /0.)

Single bribery is in effect doing a logical “or” over a number of

1-manipulator manipulation problems. This was noted by [12], and

we note that this holds even in the case of voting-rule uncertainty.

(The ≤
p
dtt

below is just a technical way of capturing this; it denotes

polynomial-time disjunctive truth-table reductions [21].)

PROPOSITION 5.2. For each F , F -SB ≤
p
dtt

F -SM.

This connection lets us carry results for manipulation over to

results for bribery.
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BRIBERY CONSTRUCTIVE CONTROL BY ADDING VOTERS

easy + easy = easy {AllWinner,NoWinner} {1-Approval,1-Veto} [Thm. 6.2]

easy + easy = hard {Approvaleven,Approvalodd} {2-Approval,1-Veto} [Thm. 6.3]

easy + hard = easy {NoWinner,Approval} {Majority,Bucklin} [Thm. 6.4]

easy + hard = hard {AllWinner,Approval} {1-Approval,3-Veto} [Thm. 6.6]

hard + hard = easy {ResoluteApproval,ResoluteApproval′} {Condorcet1,Condorcet2} [Thm. 6.5]

hard + hard = hard {Approval,Approval} {4-Approval,3-Veto} [Thm. 6.6]

Table 1: Results instantiating each easy-or-hard + easy-or-hard = easy-or-hard case. Easy refers to polynomial time and hard refers to

NP-completeness. For each control example, we give the theorem establishing it.

THEOREM 5.3. Let F be a finite set of voting rules such that

every f ∈ F satisfies the following three conditions.

1. f is monotone,

2. f has the property that the score of a candidate c ∈ C is

polynomial-time computable if we know which candidates

are ranked above and below c in each vote, and

3. the winners under f are the candidates with the highest

score.

Then F -SB is solvable in polynomial time.

Theorem 5.3 follows immediately using Proposition 5.2, the

downward closure of P under ≤
p
dtt

reductions, and the first

theorem—changed to the nonunique-winner model, for which it

does still hold—of Section 4 of [8] (a theorem that itself is drawing

on a famous greedy-algorithm result of [2]).

6. CONTROL
In this section, we establish the results from the “Constructive

Control by Adding Voters” column of Table 1. In addition, we

classify the complexity of CCAV under voting-rule uncertainty for

almost all finite families of k-Approval and k-Veto rules (see Clas-

sification 6.9).

By simple greedy algorithms (see, for example, [22]), construc-

tive control by adding voters can be seen to be in P for the voting

rules 1-Approval, 2-Approval, and 1-Veto. Unfortunately, we nei-

ther know of nor could we construct a greedy algorithm to handle

the family {1-Approval, 2-Approval} or the family {1-Approval,

1-Veto}. Nonetheless, as Theorems 6.1 and 6.2 we resolve these

cases, using the powerful modeling machinery provided by flow

networks.

THEOREM 6.1. {1-Approval,2-Approval}-CCAV is in P.

Proof. Consider an election E = (C,V ∪ W ) with C =
{p,c1, . . . ,cm}, distinguished candidate p, the collection V of reg-

istered voters, the collection W of unregistered voters, and a non-

negative integer k as the addition limit. Furthermore, let W1 =
{w ∈ W | p is first in w} and let W2 = {w ∈ W | p is second in w}.

W.l.o.g., we will add only voters from W1 ∪W2. We also assume

that we have at least two candidates.

We will loop over all k1,k2 ≥ 0 such that k1 + k2 ≤ k and will

see whether p can be made a winner by adding k1 voters from W1

and k2 voters from W2. Note that k1 and k2 fix the score of p both

under 1-Approval and 2-Approval. For each pair of k1 and k2 we

construct a flow network as displayed in Figure 1. We will define

the remaining edge capacities below so that an (integral) flow of

value k1 + k2 from s to t corresponds to a successful addition of

voters and vice versa.

Our intention is that the value of the flow from p1 to ci,2 corre-

sponds to the number of added voters with preference p > ci > · · ·

s

p

p

c

c

c t

k

k

i,2

i

i,1

1

1

2

^

2

Figure 1: Network in the proof of Theorem 6.1

and that the value of the flow from p2 to ci,1 corresponds to the

number of added voters with preference ci > p > · · · . If that is the

case, the value of the flow from ĉi to t corresponds to the number

of added voters that 2-approve of ci. In order to ensure that a flow

of value k1 + k2 corresponds to a successful addition of voters, we

set the capacities as follows.

For each i, 1 ≤ i ≤ m, the edge from p1 to ci,2 has as its capacity

the number of voters in W voting p > ci > · · · and the edge from

p2 to ci,1 has as its capacity the number of voters in W voting ci >

p > · · · . This ensures that a flow of value k1 + k2 corresponds to

an addition of k1 voters from W1 and k2 voters from W2. We still

must ensure that this addition makes p a winner, i.e., for every i,

1 ≤ i ≤ m, ci does not have more 1-approvals than p and ci does not

have more 2-approvals than p. Note that the number of 1-approvals

of p is score1
V (p)+ k1 and that the number of 2-approvals of p is

score2
V (p)+ k1 + k2.

To handle the 1-approvals, we let the capacity of the edge from

ci,1 to ĉi be score1
V (p)+k1−score1

V (ci). To handle the 2-approvals,

we let the capacity of the edge from ĉi to t be score2
V (p) + k1 +

k2 − score2
V (ci). (If any capacity is negative, there is no solution.

We allow capacities to be 0.) The remaining edges do not have

capacity restrictions. If we want to be explicit, we can set their

capacities to k1 + k2.

From the discussion above, it is immediate that if there ex-

ists a flow of value k1 + k2, then we can make p a winner under

1-Approval and 2-Approval. It is also easy to see that making p a

winner by adding k1 voters from W1 and k2 voters from W2 corre-

sponds to a flow of value k1 + k2 in the network described above.

Since computing the maximum flow in a network is in poly-

nomial time and the number of networks and their sizes are also

bounded by a polynomial, we have solved our problem in polyno-

mial time. ❑

THEOREM 6.2. {1-Approval,1-Veto}-CCAV is in P.
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Figure 2: Network in the proof of Theorem 6.2

Proof. Consider an election E = (C,V ∪W ) with C = {p,c1, . . . ,

cm}, distinguished candidate p, the collection V of registered vot-

ers, the collection W of unregistered voters, and a nonnegative in-

teger k as the addition limit. W.l.o.g., we assume that we will never

add voters that veto p. We also assume that we have at least two

candidates. For every k1,k2 ≥ 0 such that k1+k2 ≤ k, we will check

whether we can make p a winner by adding k1 voters that rank p

first and k2 voters that rank p neither first nor last. Note that k1

and k2 fix the 1-Approval and 1-Veto scores of p. Similarly to the

proof of Theorem 6.1, for each k1 and k2, we construct a flow net-

work as displayed in Figure 2. We will define the edge capacities

below such that an (integral) flow of value k1 +k2 from s to t in the

network corresponds to a successful addition of voters.

Our intention is that the value of the flow from p to ĉ j corre-

sponds to the number of added voters that rank p first and c j last

and that the value of the flow from ci to ĉ j corresponds to the num-

ber of added voters that rank ci first and c j last. In order to ensure

that a flow of value k1+k2 corresponds to a successful addition, we

set the capacities as follows.

For each j, 1 ≤ j ≤ m, the edge from p to ĉ j has as its capacity

the number of voters in W that rank p first and c j last. For each i, j,

1 ≤ i, j ≤ m, the edge from ci to ĉ j has as its capacity the number

of voters in W that rank ci first and c j last. This ensures that a

flow of value k1 + k2 corresponds to an addition of k1 voters that

rank p first and k2 voters that rank p neither first nor last. We still

must ensure that this addition makes p a winner, i.e., for every i,

1 ≤ i ≤ m, ci does not have more 1-approvals than p and for every

j, 1 ≤ j ≤ m, c j has at least as many 1-vetoes as p. Note that the

number of 1-approvals of p is score1
V (p)+ k1 and the number of

1-vetoes of p is vetoes1
V (p).

To handle the approvals, we simply let the capacity of the edge

from y to ci be score1
V (p)+ k1 − score1

V (ci). (If there are negative

capacities, there is no solution.) To handle the vetoes, we let the

capacity of the edge from ĉ j to t be the number of 1-vetoes that

c j needs to get from the added voters, i.e., max(0,vetoes1
V (p)−

vetoes1
V (c j)). In order to make p a 1-Veto winner, all these edges

from ĉ j to t must be saturated. Of course, it is possible that c j

receives more vetoes. We capture these excess vetoes with vertex

e. If the flow in the network has value k1 + k2, then the number

of excess vetoes is exactly k1 + k2 −∑1≤ j≤m max(0,vetoes1
V (p)−

vetoes1
V (c j)). We set the capacity of the edge from e to t to that

value. This implies that if we have a flow of value k1 + k2, then all

edges from ĉ j to t are saturated.

From the discussion above, it is immediate that if there ex-

ists a flow of value k1 + k2, then we can make p a winner under

1-Approval and 1-Veto. It is also easy to see that making p a win-

ner by adding k1 voters that rank p first and k2 voters that rank p

neither first nor last corresponds to a flow of value k1 + k2 in the

network described above.

Since computing the maximum flow in a network is in poly-

nomial time and the number of networks and their sizes are also

bounded by a polynomial, we have solved our problem in polyno-

mial time. ❑

Theorem 6.3 provides the case used in Table 1 to show an ex-

ample where combining two easy-to-control rules yields a compu-

tationally hard case. And as part of our broader classification of

cases, Theorem 6.7 provides other such cases.

THEOREM 6.3. {2-Approval,1-Veto}-CCAV is NP-complete.

Proof. We now define the NP-complete problem 3-

DIMENSIONAL MATCHING [16].

3-DIMENSIONAL MATCHING (3DM)

Given: Set M ⊆W ×X ×Y , where W , X , and Y are disjoint sets
having the same number k of elements.

Question: Does M contain a matching, i.e., a subset M̂ ⊆ M such

that ‖M̂‖ = k and no two elements in M̂ agree in any
coordinate?

We will construct a (many-one polynomial-time) reduction from

3DM to {2-Approval,1-Veto}-CCAV. Let M be a 3DM instance.

M ⊆ W × X ×Y , W = {w1, . . . ,wk}, X = {x1, . . . ,xk}, and Y =
{y1, . . . ,yk}. Construct the following CCAV instance. The can-

didate set is C =W ∪X ∪Y ∪{p}. p is the distinguished candidate.

The addition limit is k. The unregistered voter collection consists

of the following votes: For each (w,x,y) ∈ M, there is one vote of

the form w > x > p > · · · > y. The registered voter collection V

consists of the following 2k+1 votes:

1. For each i, 1 ≤ i ≤ k−1, there is one vote of the form

wi > yi > p > · · ·> xi.

2. For each i, 1 ≤ i ≤ k−1, there is one vote of the form

xi > yi > p > · · ·> wi.

3. There is one vote of the form p > yk > · · ·> xk.

4. There is one vote of the form p > yk > · · ·> wk.

5. There is one vote of the form xk > wk > · · ·> p.

Note that for every y∈Y , y is not vetoed by the registered voters and

the distinguished candidate p is vetoed exactly once. Furthermore,

in (C,V ) the 2-Approval score of each candidate in X and W is one,

and the score of p and each candidate in Y is two. It is easy to show

that there exists a 3-dimensional matching if and only if p can be

made a winner of the election under both voting rules by adding at

most k voters. ❑

Constructive control by adding voters is NP-complete for Buck-

lin elections [10]. Nonetheless, we have the following result, which

holds not only for Bucklin but also for any voting rule f for which

every Majority winner is also an f winner.

THEOREM 6.4. {Majority,Bucklin}-CCAV is in P.

Proof. It is immediately clear that constructive control by adding

voters is in P for Majority. Since every Majority winner is also a

Bucklin winner, the problem simplifies to constructive control by

adding voters in Majority. ❑
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THEOREM 6.5. There are voting rules f1 and f2 such that f1-

CCAV and f2-CCAV are NP-complete, but { f1, f2}-CCAV is

in P.

Proof. Let f1 = Condorcet1 be the voting rule that if ‖C‖ ≡
0 (mod 3) simulates Plurality; if ‖C‖ ≡ 1 (mod 3) simulates

Condorcet; and if ‖C‖ ≡ 2 (mod 3) all candidates lose. Let f2 =
Condorcet2 be the voting rule that if ‖C‖ ≡ 0 (mod 3) simulates

Plurality; if ‖C‖ ≡ 1 (mod 3) all candidates lose; and if ‖C‖ ≡ 2

(mod 3) it masks the lexicographically smallest candidate out of

each of the votes and then simulates Condorcet among the remain-

ing candidates.

It is not hard to see that Condorcet1-CCAV is NP-complete

(for example, by noting that in the NP-hardness proof of [3]

for Condorcet-CCAV the image of the reduction always satisfies

‖C‖ ≡ 1 (mod 3); that paper is in the unique-winner model rather

than the nonunique-winner model, but for Condorcet, this makes no

difference). It is also not hard to see that Condorcet2-CCAV is NP-

complete. However the election system in which each candidate c

wins exactly if c is both a Condorcet1 winner and a Condorcet2
winner has the property that c wins exactly if ‖C‖ ≡ 0 (mod 3)
and c is a Plurality winner. And constructive control by adding

voters is easily seen to be in P for this system, e.g., as a conse-

quence of Plurality-CCAV belonging to P (in both the nonunique-

and the unique-winner models in fact, though we need just the for-

mer). ❑

As mentioned previously, we are particularly interested in fam-

ilies of k-Approval and k-Veto elections (see Classification 6.9 for

a summary of our results). Constructive control by adding voters

for k-Approval is NP-complete for all k ≥ 4 and is in P for k < 4,

and constructive control by adding voters for k-Veto is NP-hard for

all k ≥ 3 and is in P for k < 3 [22]. We generalize this result as

follows.

THEOREM 6.6. For any sets {k1, . . . ,kℓ} ⊆ N, with k1 < k2 <

· · · < kℓ, and {k̂1, . . . , k̂ℓ̂} ⊆ N, with k̂1 < k̂2 < · · · < k̂
ℓ̂

the prob-

lem {k1-Approval, . . . ,kℓ-Approval, k̂1-Veto, . . . , k̂
ℓ̂
-Veto}-CCAV

is NP-complete if kℓ ≥ 4 or k̂
ℓ̂
≥ 3.

This theorem gives plenty of examples of natural systems for

which “easy + hard = hard” (e.g., {1-Approval,3-Veto} from Ta-

ble 1) and “hard + hard = hard” (e.g., {4-Approval,3-Veto} from

Table 1).

The only families of the general form {k1-Approval, . . . ,

kℓ-Approval, k̂1-Veto, . . . , k̂
ℓ̂
-Veto} (with ℓ = 0 and ℓ̂ = 0 being

acceptable possibilities) that are not already proven NP-hard by

Theorem 6.6 are families that consist of some or all of these sys-

tems: {1-Approval,2-Approval,3-Approval,1-Veto,2-Veto}. Of

course, all such families with exactly one system from that list are

already known to be in P, and earlier theorems in this section have

already proven certain of the two-rule subsets of this list to be in P

or to be NP-complete. Let us continue our exploration of families

built from this list.

The proof of Theorem 6.7 is similar to the proof of Theorem 6.3.

THEOREM 6.7. Let F ⊆ {1-Approval, 2-Approval,

3-Approval,1-Veto,2-Veto}.

1. If {2-Approval,3-Approval}∩F 6= /0 and {1-Veto,2-Veto}∩
F 6= /0, the problem F -CCAV is NP-complete.

2. If {1-Approval,2-Veto} ⊆ F , the problem F -CCAV is NP-

complete.

THEOREM 6.8. {1-Veto,2-Veto}-CCAV is in P.

Proof Sketch. Let us first explain why we did not handle this

case earlier, when we were talking about network-flow algorithms

at the start of this section. The reason is that even 2-Veto-CCAV

is already too hard to handle with a basic network-flow algorithm.

And the reason for this is that, as observed in [22], 2-Veto-CCAV

is basically b-edge cover for multigraphs (and thus also basically

b-edge matching for multigraphs) and these problems have compli-

cated polynomial-time algorithms [15].

b-EDGE COVER FOR MULTIGRAPHS

Given: A multigraph G= (V,E), a function b that assigns a non-
negative integer to every vertex, denoting the number of
times that vertex needs to be covered, and a nonnegative
integer k.

Question: Does G have a b-edge cover of size k, i.e., a size-k sub-
multiset E ′ of E such that every vertex v is incident to at
least b(v) edges in E ′?

It is easy to see how to turn a 2-Veto-CCAV instance into an

instance of b-edge cover for multigraphs. W.l.o.g. assume we add

only voters that do not 2-veto p. That determines how many 2-

vetoes we need to add for every candidate c 6= p. Define G as fol-

lows. Every candidate c 6= p is a vertex, and b(c) is the number of

2-vetoes for c that need to be added. For every voter whose last two

candidates are {c,d}, we have an edge from c to d. It is immediate

that p can be made a winner by adding k voters if and only if G has

a b-edge cover of size k.

But {1-Veto,2-Veto}-CCAV is a more difficult problem than

2-Veto-CCAV (much like {1-Approval,2-Approval}-CCAV was

more difficult than 2-Approval-CCAV) and does not correspond

as nicely and directly to any edge-cover problem that we know of.

Since the b-edge-cover algorithm is complicated, we have elected

to not modify this algorithm directly, but instead to use it as a sub-

routine.

So, let C be the set of candidates, V the collection of regis-

tered voters, W the collection of unregistered voters, and p the

distinguished candidate in our {1-Veto,2-Veto}-CCAV instance.

W.l.o.g., we assume that none of the voters in W ranks p last. The

first difference with 2-Veto-CCAV is that we may need to add vot-

ers of the form · · ·> p > c. We will handle these voters first. Note

that adding a voter of the form · · ·> p > c is not very desirable. It

is always better to add a voter of the form · · · > d > c with d 6= p,

if one exists. Since we never add voters that rank p last, we know

for every c 6= p how many voters v1(c) ≥ 0 we need to add that

rank c last. Now compute the number ℓ of voters in W that rank

c last and that do not rank p second to last. If ℓ < v1(c), we need

to add v1(c)− ℓ voters voting · · · > p > c. We do this for every

c 6= p. We add these voters to V and decrease the addition limit, k,

accordingly. Now we have added all voters that rank p second to

last that we need, and we delete all remaining such voters from W .

W.l.o.g., assume that k ≤ ‖W‖. None of the voters in W has p

ranked in one of the last two positions, so we may without loss of

generality assume that we add exactly k voters. For every c 6= p,

let v1(c) ≥ 0 be the number of 1-vetoes for c we need to add, i.e.,

v1(c) = max(0,vetoes1
V (p)− vetoes1

V (c)) and let v2(c) ≥ 0 be the

number of 2-vetoes for c we need to add.1 We define v2(c) as

max(v1(c),vetoes2
V (p)− vetoes2

V (c)), so that v2(c) ≥ v1(c). Note

that p is a 1-Veto and 2-Veto winner in (C,V ∪Ŵ ) if and only if for

all c ∈C−{p}, vetoes1

Ŵ
(c)≥ v1(c) and vetoes2

Ŵ
(c)≥ v2(c).

1We can not combine these two numbers into one and turn this
basically into a weighted version of 2-Veto-CCAV, since that is
NP-complete, even if we use only weights 1 and 2 [13].
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To encode our problem into a graph, we start in the following

way. For every candidate c 6= p, we have vertices c1 and c2. For

every voter in W voting · · · > d > c, we have an edge between

c1 and d2. This encodes W . Our intention is that added voters

correspond to edges in the edge cover. If 1-vetoes and 2-vetoes

were independent of each other, that would be easy. But if for

example v1(c) = 3 and v2(c) = 5, the edge cover could contain

5 edges incident to c1 (i.e., 5 voters ranking c last), or 4 edges

incident to c1 and 1 edge incident to c2 (i.e., 4 voters ranking c last

and 1 voter ranking c second to last), or 3 edges incident to c1 and

2 edges incident to c2. We set b(c1) = 5 and b(c2) = 2. Note that

the three edge covers described above are exactly the edge covers

that contain an edge cover of size 5 that has the property that c1

and c2 together still need to be covered two times. We add an extra

vertex ĉ with b(ĉ) = 2, two edges between ĉ and c1, and two edges

between ĉ and c2. It is easy to see (if we restrict our attention to

candidate c) that a successful addition of 5 voters corresponds to

a b-edge cover of size 5 + 2: if we add 5 voters that rank c last,

we add 2 edges between ĉ and c2; if we add 4 voters ranking c last

and 1 voter ranking c second to last, we add 1 edge between ĉ and

c1 and 1 edge between ĉ and c2; and if we add 3 voters ranking c

last and 2 voters ranking c second to last, we add 2 edges between

ĉ and c1. If there are at least 5 voters in W that 2-veto c (and if

there are fewer, control is not possible), a b-edge cover of size 5 +

2 can be transformed into a b-edge cover of size 5 + 2 that covers

ĉ exactly twice (simply replace extra edges between ĉ and ci by

edges incident to ci and not to ĉ), which in turn corresponds to a

successful addition of 5 voters.

The complete construction of G works as follows.

1. First check that p is a winner if we add all of W (recall that

W does not contain any voters that 2-veto p). If this is not

the case, control is impossible, and we reject.

2. Define G as described above. Let b(c1) = v2(c), b(c2) =
v2(c)− v1(c), and b(ĉ) = v2(c)− v1(c).

It can be shown that a successful control action is possible if and

only if G has a b-edge cover of size k+∑c6=p b(ĉ). ❑

The following classification summarizes our results on the com-

plexity of CCAV under voting-rule uncertainty for families of

k-Approval and k-Veto elections.

CLASSIFICATION 6.9. Let F be a finite family of k-Approval

and k-Veto elections of size at least two. We are in one of the fol-

lowing cases.

1. F -CCAV is NP-complete by Theorems 6.6 or 6.7.

2. F = {1-Approval,2-Approval}. Then F -CCAV is in P by

Theorem 6.1.

3. F = {1-Approval,1-Veto}. Then F -CCAV is in P by

Theorem 6.2.

4. F = {1-Veto,2-Veto}. Then F -CCAV is in P by

Theorem 6.8.

5. F = {1-Approval,3-Approval} or F = {2-Approval,

3-Approval} or F = {1-Approval,2-Approval,

3-Approval}. These cases are still open.

One may wonder why the approach from Theorem 6.8 doesn’t

seem to work for, for example, {1-Approval,3-Approval}-CCAV.

The crucial difference is that in that case there are two types of

voters to consider, namely voters of the form p > {c,d}> · · · and

voters of the form c > {p,d} > · · · . And adding these different

types of voters has a different effect on the scores of p (and thus

also on the number of 1-approvals and 3-approvals that the other

candidates can get). This is in contrast to the {1-Veto,2-Veto}-

CCAV proof, where after some preprocessing, we had to consider

voters of only one type, namely voters of the form · · ·> c > d, with

p 6∈ {c,d}.

Finally, we briefly mention that control is sometimes analyzed

not just in hard/easy terms, but in a 3-part analysis whose options

are immune, vulnerable, and resistant [3]. Although we omit the

definitions and details, we mention in passing that we have com-

pletely analyzed, for CCAV which of these three possibilities can

be realized from each way of combining one of these three with

one of these three. (For example, when F consists of one vulner-

able rule and one resistant rule, we have examples realizing each

of immune, vulnerable, and resistant.) However, we consider this

far less interesting than the main analysis of this section (and the

corresponding right column of Table 1 and Classification 6.9) and

its stress is on natural systems.

7. DESTRUCTIVE ACTIONS
So far we investigated only constructive versions of our prob-

lems, i.e., our goal was to make a candidate win the election. We

now explain why that is so: The “destructive” case is not too in-

teresting to study, as it decomposes into its underlying single-rule

questions.

One natural notion of destruction would be to preclude construc-

tive success. So since constructive success for a family of rules

means winning in all of them, destructive success would mean en-

suring that the designated candidate is not a winner under at least

one rule in the family. That is, we have the following definition.

(For rest of this section, when speaking of actions A we do not

include constructive/destructive as part of that action, and so which

of constructive or destructive holds must be specified.)

DEFINITION 7.1. Let A be any standard type of bribery, con-

trol, or manipulation. Let F be a family of voting rules. F -

DESTRUCTIVE-A is defined as the set of all instances x such that

(∃ fi ∈ F )[x ∈ fi-DESTRUCTIVE-A ].

This definition is also precisely what one would get as one’s de-

structive notion if one thinks of the constructive cases as being

defined not in the way we defined them earlier in this paper, but

instead in the following equivalent way. We can view a con-

structive problem F -CONSTRUCTIVE-A as being the problem

f -CONSTRUCTIVE-A , where f is the election rule whose win-

ners on a given instance are precisely the candidates who on that

instance are winners under every election rule in F .

Under Definition 7.1, each destructive action on a family of

voting rules simply decomposes into the underlying single-rule

destructive-action cases. Basically, for a successful destructive ac-

tion we only have to be (destructively) successful under one voting

rule. It follows easily from this that P results for the underlying sys-

tems are inherited for the uncertain election case, as the following

results makes explicit.

THEOREM 7.2. Let A be any standard type of bribery, control,

or manipulation. Let F be a finite family of voting rules. F -

DESTRUCTIVE-A ∈ P if (∀ fi ∈ F )[ fi-DESTRUCTIVE-A ∈ P].

The sharp-eyed reader will note two surprises here. Unlike the

definition, this is an “if” rather than an “if and only if.” And we

have limited this claim to finite families. Both of these limitations

are needed. It is not hard to construct counterexamples to the “only
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if” version, and to the “infinite families” version, of the above re-

sult.2

Finally, as an open direction (in addition to the still-open Case 5

of Classification 6.9 and the direction of allowing the rule-chooser

independent preferences so as to make this an interesting game-

theoretic situation), we mention that another very interesting notion

of destruction to study would be to seek to ensure that a given can-

didate fails to win under all the rules in F . This alternate notion is

what one would frame if one’s goal were to utterly destroy a candi-

date’s chances no matter what system from F is employed, and so

is the right notion to use if the manipulative-action doer moves first

and hates the designated candidate and the election-system chooser

moves next and loves the designated candidate. And Definition 7.1

is what one should employ if one is studying the complexity of

destroying the goal of the constructive case (which is having the

candidate win in all systems), and is the right notion to use if the

manipulative-action doer moves first and hates the designated can-

didate and the election system chooser moves next and also hates

the designated candidate. Which is the right definition to study will

depend on the particular real-world dynamics that one is trying to

model.
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