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ABSTRACT

Affective computing is the study and development of sys-
tems and devices that can recognise, interpret, process, and
simulate human affects. In this context, computational mo-
delling of emotion is a major challenge in order to design
believable virtual humans. This factor has an impact on
both the individual behaviour and the collective one. Re-
cently, researchers have shown an increased interest in the
emotion contagion phenomenon in order to model emerging
group behaviour.

Stemming from works on multi-agent systems environ-
ments, we propose an architecture to manage both internal
and external emotion dynamics. Emotions evolve in func-
tion of three influences: punctual events, temporal dynamics
and external influences. In an embodied agent approach, the
first is the responsibility of the agent’s mind, the second of
the agent’s body, and the third of the environment. This
functional architecture is then adapted to a multi-agent ar-
chitecture, adding a control responsibility to the agent body.
Finally, we show the results of several experiments to exam-
ine the properties of the architecture and its efficiency by
comparing it to a full agent approach.

Categories and Subject Descriptors

Computing Methodologies [Artificial intelligence]: Dis-
tributed artificial intelligence, Multi-agent systems

Keywords

Multi-agent Systems, Embodied agent, Emotional conta-
gion, Architecture

1. INTRODUCTION

Human behaviour simulation has to take into account the
role of emotions in the decision process [11]. Emotions
have an impact on the whole cycle of the agent: percep-
tion, decision and action are driven by the agent’s emo-
tional state. Emotions are also used as a metaphor of social
constructs in agent learning, trust, norm following and text
analysis. In this article, we focus on the agents emotion
computation, specifically the different influences generating
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their emotional state and the underlying MultiAgent System
(MAS) architecture.

The emotional contagion theme has recently emerged to
explain a number of collective phenomena such as crowd
behaviour [4] or effectiveness in performing group tasks [1].
Collective behaviour is not a simple aggregation of indivi-
dual independent behaviours, especially due to the human
ability to synchronise their emotional state with the one
of their peers. This phenomenon takes place through two
mechanisms: empathy and emotional contagion [1]. Empa-
thy is a high-level cognitive phenomenon, while emotional
contagion is a reactive phenomenon described as ”a process
by which a person or group of people influence the emo-
tions or behaviour of another person or another group by
the conscious or unconscious induction of emotional states
and behavioural attitudes” [21], encountered for example in
crowds.

The computation of the emotional state of an agent de-
pending on its perceptions has been studied extensively in
the literature, but emotional contagion has not received the
same attention. Furthermore, the literature on emotional
contagion [2-5, 8,23, 24] generally does not explain the un-
derlying MAS architecture, leaving open the question of
which multi-agent architecture has to be used to allow the
introduction of massive simulations with sensory emotional
agents.

In this article, we propose an hybrid architecture where
a part of the emotional dynamics is delegated to the multi-
agent environment, in accordance with the actual underly-
ing mechanisms. This allows to alleviate a part of the agent
complexity in terms of modelling and a part of the computa-
tion cost. Considering the latter, this hypothesis is based on
the fact that a part of the calculus are repeated similarly in
several agents, using at least partly the same data. Hence,
using the environment enables the designer to reuse a part
of the computation and reduce data duplication and trans-
mission, since only the result is transmitted to the agents.

In Section 2, we detail the motivations for our emotional
dynamics management architecture and discuss its impact
on the autonomy of the agent. In Section 3, we introduce the
architecture, MA /SDEC (Mized Agent/Social Dynamics for
Emotion Computation), and the corresponding formulas for
emotion computation to illustrate our approach. In Section
4, we give the results of experiments to verify the proper-
ties of our model. In Section 5, we compare the efficiency
of our MA/SDEC architecture to that of a full agent ap-
proach. Finally we discuss our approach and propose some
perspectives in Section 6.



2. RELATED WORKS AND MOTIVATION

There are two main architectural approaches for emo-
tional contagion: agent-only approaches, and state-sharing
approaches. Most of the articles describing the whole archi-
tecture (e.g. [14]) use an agent-only solution, transmitting
the state of all agents to their neighbours and then calcu-
lating the emotional contagion in each agent. This solution
has two limits: firstly, each agent has to display its emo-
tional state and have the knowledge of contagion moderators
to successfully compute the contagion result, and secondly
similar calculus are done in every agent.

Broekens et al. [5] have compared several architecture for
group emotions. In this work, the computational model of
emotion is separated in three steps (appraisal, emotional
state maintenance and emotional behaviour), and the au-
thors show how the choice of which part of the computation
is shared impacts both computation time and simulation
quality. In the same way, mental states may be spread to ob-
tain shared beliefs, emotions and group decision-making [4].
This approach enables to share efficiently computation costs
and obtain consistent behaviour. However, this modelling
requires sharing an important part of the agents’ private
states. Furthermore, in the case of explicit groups, group
management adds several difficulties such as leader choice
and group membership although it enables to determine
which agents perceive which pieces of information.

Emotions evolve according to three influences [7]: one-off
events, temporal dynamics and emotional contagion. Tradi-
tionally in agent modelling, all processes are integrated into
the architecture of the agent, see e.g. [9]. If the evaluation of
the impact of one-off events is necessarily managed by the
cognitive process of the agent, we propose to decentralise
the other processes in the software body of the agent and in
the environment.

Although there is no consensus on the way emotions are
processed in biological systems, many computational models
have been proposed. In the following, we base our model-
ling on the thesis whereby the computation of emotions is
the result of an intuitive (appraisal) and cognitive dual pro-
cess [20]. The first is semi-automatic and often unconscious.
It represents the change resulting from an immediate emo-
tional percept and concerns the so-called primary emotions
(such as joy). The second is a cognitive evaluation deriving
from the consistency between beliefs, goals, and percepts
of the agent and the emotions he feels, with emotions both
primary and secondary (such as shame). As we mentioned
in the introduction, the emergence of consistent collective
behaviour requires the modelling of empathy and emotional
contagion. If empathy requires a symbolic representation of
the other, Hatfield et al. [10] showed that emotional conta-
gion takes place at a significantly lower level of consciousness
than empathy, via uncontrolled automatic processes.

In order to propose an adequate architecture for emotional
contagion, we rely on two concepts: the active environment
and the body/mind separation. The notion of explicit en-
vironment has long been associated with the reactive agent
paradigm, but recent works [25] have shown the benefits
of the use of this abstraction in the general framework of
MAS. These studies highlight the interest to delegate some
responsibilities of agents to the environment. In particular,
the environment may be in charge of accessing and spreading
a part of the agent states. In the context of emotion mo-
delling, the environment can get the agents emotional states
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and compute the emotional contagion in their stead.

In the same logical way, we consider that the agent con-
sists of two parts: its mind and its body (which may possibly
be a software body) [18]. In this embodied agent framework,
the mind contains the decision process of the agent and is
autonomous, and the body is influenced by the mind, but
controlled by the environment. This corresponds to human
functioning: although the mind may take any arbitrary de-
cision, the limits to the realisation of these decisions are
imposed by both the body capacities and its environment
rules. In practice, our proposal implies that the body states
of the agent are observable and that their access is controlled
by the environment, including for the agent itself. For the
calculation of emotions, we propose that the perception of
events is the responsibility of the mind of the agent, the
temporal dynamics managed by the body and the emotional
contagion by the environment.

Such modelling can be considered as violating the prin-
ciple of agent autonomy. Quite the opposite, we believe it
provides a clearer separation between the responsibilities of
each of the system components, based on the mechanisms
involved in the real world. Any agent is always situated in
an environment (that can be software, real or simulated),
and therefore an agent is never independent of it. One ob-
jective of the body/mind separation is to clearly delineate
the agent autonomy between its mind (full autonomy) and
the rest of the MAS (including actions and actions results).

3. MA/SDEC ARCHITECTURE

The Mixed Agent/Social Dynamics for Emotion Com-
putation model is a high-level model which defines global
mechanisms for emotion calculus and their dependencies.
Emotions evolve in function of three influences [7]: punc-
tual events, temporal dynamics and external influences. The
first is the responsibility of the agent’s mind, the second of
the agent’s body, and the third of the environment. The
MA /SDEC model describes the dynamics and responsibili-
ties of each MAS component, but does not rely on a partic-
ular representation of emotions and personality.

For each emotion e, the update formula is composed of
three terms:

€t+1 = €t + \I/(b7 i7p7 et) + ®(p7 et) + Q(p, 61)
with
e b, i, p: beliefs, intentions and personality of the agent,

e U(b,i,p,er) the event dynamics: emotions evolve in
function of the stimuli (stored in the belief set) and of
its internal state,

e O(p,e;) the internal dynamics: emotions tend to decay
in function of the agents’ personality traits towards an
equilibrium,

e Q(p, e+) the external dynamics: emotions vary in func-
tion of the other agents and of the sensitivity of the
agent.

In Figure 1, we give an overview of the architecture and
how it relates to the associated model. The emotions are
stored in the body of the agent. The events dynamics ¥
are an influence of the mind on the body. The internal
dynamics ® are managed by the body itself. The emotional
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Figure 1: MA/SDEC model and architecture

contagion ) is managed by the environment. In the multi-
agent system, the agents are used to implement only the
mind of the agents, while both the body and the virtual
environment are managed by the MAS environment.

3.1 Agent’s mind: Event Dynamics

Figure 2 shows a generic agent architecture with emotion
support, such as [12] and [13]. The agent gets new informa-
tion (perception, message and body) from the environment.
This new information generates instant emotions through a
primary emotion update function, and the agent changes its
beliefs in function of its emotions.
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Figure 2: Agent Architecture

The selection of desires and intentions is similar to the
classical BDI scheme except for the emotion and personality
influence. Once intentions are selected, the agent updates
its emotions through a secondary emotion update function.

If this update modifies its emotions, it updates again its
beliefs, desires and intentions. Finally, it plans its actions
and executes its new plan.

The general function for emotion update is defined as:

UV:BxIxPxFE—FE

with B the set of beliefs, I the set of intentions, P the set
of personalities and F the set of emotions.

We have proposed an agent architecture that illustrates
this BDI scheme and manages emotions in [13]. In this work,
the perception and emotion computation are processed thanks
to fuzzy rules.

3.2 Agent’s body: Internal Dynamics

Internal temporal dynamics (Figure 3) are managed by the
agent itself or by the environment via the body of the agent.
It represents the tendency of emotions to stabilise over time.
A second module inside the body allows the temporal control
of emotions dynamics. It limits emotions variation in order
to make smoother state modification for the agent. This
module limits the oscillation risk in case of contrary stimuli.

Agent's Mind

Agent's Body

Emotion

Q

Control T

Figure 3: Temporal dynamics




Several authors have observed that emotions tend to decay
over time, either towards a neutral state [6,24], or towards a
baseline [20] which depends on the personality of the agent.
Since the equation depends on the emotion representation,
it has rarely been made explicit in the literature. In [7],
emotions are tri-modal ({—1,0,1}) and the emotion decay
parameter represents the number of time steps before re-
turning to a neutral state if no event impacting this emotion
occurs in the meantime. However, this discrete representa-
tion does not fit fine-grained emotion simulation.

For emotions represented as values in [—1, 1], the emotion
variation is calculated as:

]
CI)(p7 et)

with epqse the personality-based emotion baseline, e; the
emotion level and a. the decay speed parameter for emo-
tion e. The same formula manages the internal dynamics of
all emotions, parameters are set for each agent according to
their personality traits.

The control module limits emotional fluctuations from one
step to another. It allows emotions stabilisation and smooth
transitions. The I' function of the control module is:

PxFE—FE
(1 — cte)evase + (e — 1)ex

r + E—=FE
() = de if |0e| < o .
sgn(de) o otherwise

Function sgn gives the sign of a real number. If the modi-
fication of the emotional state d. = e¢41 — e; is greater than
a threshold o, then, this modification is limited by o.

3.3 Environment: Emotional Contagion

Emotional contagion allows agents to be influenced by
other agents states. Spatial and/or psychological proximity
is mandatory for emotional contagion. The emotion propa-
gation manager is a module of the MAS environment (Figure
4). It updates cyclically agent’s bodies states. It gets (1)
the current state of the agent, here a1. It updates (2) ac-
cordingly its state of the world. The state of the world con-
tains the body properties of all the agents. Then, the emo-
tion propagation manager calculates the effects of emotion
propagation on the agents’ neighbours in function of their
previous state and of their tendency to empathy. Finally,
the MAS environment spreads (3) these into the concerned
agents’ bodies, a2 in our example.

The emotion contagion calculus is inspired from several
works in the modelling of agents influences on each other.
A majority of contagion models derive from [1], considering
the following factors as impacting the contagion strength
[3,4,14]: the level of the sender’s emotion, the sender’s emo-
tion expression, the receiver’s openness for received emotion
and the strength of the channel from sender to receiver. We
simplify this approach by using the physical distance to qua-
lify the strength of the emotion contagion:

Q:PxE — FE

Q(p, et)

with dr the receiver agent openness and yr the influence
of the other agents on agent R. The agent openness can

be derived from personality traits (Agreeableness, Openness
and Extraversion) of the Big Five model [14].

O0r X YR
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Figure 4: Environment emotion propagation module
and agents’ interactions

The influence g is defined as inversely proportional to
the distance between the agents:

B
" dist(A, R)

(ea —er)

VA#R|dist(A,R)<T

TR

with e4 the emotion level of agent A and dist(A, R) the Eu-
clidean distance between A and R. 7 and 8 are parameters
used to define respectively the maximum emotion percep-
tion distance and the influence strength. Using a circle of
influence centred on the agent is a simplification : an agent
perceives the emotions of all agents situated in this circle,
including agents it may not be able to see (e.g. behind it).

Let us notice that in case of sequential computation of the
emotional contagion, the order of computation impacts the
result. In practice, it implies that we update simultaneously
all the states based on the previous states, in order not to
introduces biases in the results.

4. EXPERIMENTAL PROPERTIES

In this article, our goal is not to validate the formulas,
but to examine the properties of our architecture, and the
effect of each module. Hence, we have chosen to separate the
validation of the mechanism from the study of its properties.
The first experiment aims at verifying the mechanism by
comparing it to data published in a social psychology study
on little groups. In the following section, the second set of
experiments is designed to show the properties of the model
in terms of run time.

4.1 Reference Data and Parameters

Computational models of emotional contagion are all based
on the seminal work of Barsade [1]. In this work, the author
did a series of experiments on groups of 3 to 5 students, who
do not know each other beforehand, and have to achieve a
semi-cooperative task. Omne of the students was an actor
who had to act constantly during the exercise a particu-
lar emotional state (joyful/high energy, joyful/low energy,
sad/high energy, and sad/low energy). The emotional state
of the other individuals of the group was then scored in two
ways: a questionnaire answered by the participants, and
video analysis of their behaviour. We propose to verify our
model thanks to the qualitative and quantitative data given
by Barsade in his article.



In Barsade’s experiments, the students do not know each
other, and the distance is not relevant. Hence, we initialise
the distance between all agents as a constant which is static
throughout the experiment. The parameters are initialised
as shown in Table 1. We consider that the emotional level of
the actor does not change during the experience. We have
run experiments using the MadKit! general-purpose multi-
agent system platform.

Parameter | Domain Default value
oRr [0.75,1.25] | Random uniform
e (—1,1] Random uniform
Chase (—1,1] Random uniform
Qe [0, 1] 0.9
B R+ 1
o [0,1] 1

Table 1: Simulation parameters

4.2 Verification

In this first experiment, we study the emotion evolution
pattern over time. The simulated actor is an attractor, since
it stimulates constantly the other agents. Figure 5 illustrates
this experiment with a group of 5 agents. The emotional
level is normalised on a 1-9 scale (instead of [-1,1]), in or-
der to be consistent with Barsade. We observe that the
emotional levels of the agents change toward equilibriums
around the actor’s state. The states of the agents do not
converge to the same equilibrium, since these depend on the
epase parameter, which are respectively 5.8, 6.6, 1 and 1.8
for the agents 1, 2, 3 and 4.

9
s — Agent 1
— Agent 2
7 Agent 3
— Agent 4
2 6 w— ActOr
pa’
z 5
8
g 4
w 7
3
2
1
0 10 20 30 40 50
Time step

Figure 5: Emotional convergence in a group of 5
agents.

With respect to the previous studies of Bosse et al. [3],
Lhommet et al. [14] and Coenen and Broekens [6], we find
the same pattern, with the difference of the internal dynam-
ics, which implies that these authors find a convergence in
one equilibrium state of all the agents perceiving the emo-
tions. Let us study the extremums. For o = 1 the tempo-
ral dynamics is cancelled, hence the curves converge. For
a = 0 the temporal dynamics modifies the emotion level
to its baseline in one step, so that the other stimuli (events
and/or contagion) have to be constant to modify this level.

"http://www.madkit.org

649

Our pattern is consistent with the results of Barsade, who
found both emotional convergence and a high disparity of
individual emotions (the standard deviation of the question-
naire results varies between 0.99 and 1.16 on 5-points scale).
It implies in our model the equilibrium of external and in-
ternal dynamics.

The I' function modifies the emotional states variations.
Hence, lowering o causes a lengthening of the convergence
period, but doesn’t impact the curve shape. It allows the
representation of emotional changes that take into account
emotional contagion but are not immediate. This behaviour,
which exists even if I' function is removed, is a phenomenon
of hysteresis, i.e. a dynamic lag between cause and effect.

To illustrate this phenomenon, we conducted an exper-
iment in which the stimulus is not constant. An agent
changes state between two modalities (—0.5 and 0.5) at a
rate of 0.05 per time step, then waits for the stabilisation of
the other agents before changing modality again.

The corresponding hysteresis loops are plotted in Figure 6.
The studied causal relationship is the effect of the gap (the
difference between the emotional state of the stimulating
agent and the emotional state of the agent studied) on the
emotional state. Both equilibriums shown for the agent 3
are stable states, when the stimulating agent is respectively
at —0.5 and 0.5. The parts of the curves that are outside the
loops are those corresponding to the initial situation, when
the agents first join their stable state. The direction of the
transitions between the two stable states is noted in the fig-
ure.The gradient of the loop increases as the stimulus (here
represented by the gap) is stronger, taking a more and more
significant delay. The gradient then reaches the o limit given
by the I' function. Then, when the emotional state of the
agent causing the stimulation ceases to decrease, the state of
the stimulated agents joins the stable state, which depends
on each agent’s personality and on the external dynamics.

0,6
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0,2
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£
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Agent 2
04 Agent 3
Agent 4
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-1 -08 -06 -04 -02 0 02 04 06 08

Emotional gap

Figure 6: Hysteresis loops in a group of 5 agents
with ¢ =0.1.

5. EFFICIENCY OF THE MA/SDEC ARCHI-
TECTURE

In this section, we compare the cost in computation time
of our MA /SDEC architecture with a purely agent solution.
For this purpose, we implemented a C++ simulator, allow-



ing a better memory use control than Java (MadKit). This
agent-based simulator is pseudo-parallel (hence sequential)
and centralised in order to compare the total execution time
without taking into account thread management and com-
munication costs.

In the agent solution, in order to avoid systematic spread
of all information to all agents, the environment delivers
to each agent the emotion status of other agents located
in their perception distance. We consider the perception
distance and the propagation distance 7 to be the same,
i.e. the minimum to implement the emotional dynamics
while not creating undue overhead. The agents then use
this information to update their emotions using the same
formula of emotional contagion, once per time-step.

The initialisation of the simulation parameters are the
same as for the previous series. The agents are situated on a
two-dimensional discrete space and do not move throughout
the simulation. Simulation ends when the emotional state
of all agents is stable. Each simulation is run 100 times.
The same pseudo-random values generator seeds are used to
initialise the two simulations (computation by the environ-
ment and by the agents) in order to check the comparability
of situations. Since the information used to compute emo-
tional contagion is the same, the two solutions produce the
same result at each time step.

We compare the performance of these two architectures in
terms of run-time in function of the number of agents and
of the perception distance.

5.1 Number of agents

Figure 7 shows the execution time of the whole simulation
until stabilisation for a number of agents ranging from 25
to 1521. The computation time is always lower using the
environment than through the agents. The time savings
associated with the use of the environment is 52% for 144
agents and only 11% for 1521 agents.

625 1024 1521

5000
4500
4000
3500
3000
2500
2000
1500
1000
500

0 —

25 144

B Environment
H Agents

Execution time (ms)

sl
361

Number of agents

Figure 7: Total run-time in function of the number
of agents

In value terms, the gain increases with the size (36 ms for
144 agents to 503 ms for 1521 agents), but the portion of
this cost in the overall execution time is low compared to
the overload caused by the number of agents, regardless of
the emotional contagion method used.
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As noted in the introduction of this section, the number
of emotion contagion updates is the same in both solutions,
as is the internal dynamics calculus (once per time-step). To
explain our experimental result, the two main differences be-
tween the agent-based approach and the environment-based
approach are :

1. the amount of data transmitted between the environ-
ment and the agents. In the agent-only solution, all the
agents have to perceive the emotional states of each of
their neighbours to calculate their effect on its own
emotional state, while the environment gets once the
emotional state of each agent.

2. the emotional contagion calculus, specifically the neigh-
bours influence yr. In the agent-only solution, all the
agents calculate independently all their neighbours in-
fluences. The environment can reuse a part of the com-
putation in mutual influences, e.g. between agent A
and B, v4 from B to A is equal to —yp from A to B.

5.2 Perception distance

We then focus on the effect of the perception distance on
the execution time. The results are summarised in Figure 8.
Figure 8(a) shows two trends: up to 50, the execution time
lowers, then it increases sharply for 7 equal to 60. The gene-
ral shape of the curves corresponds to the mechanism itself:
at the beginning, the more 7 increases, the more the simula-
tion stabilises quickly. This is because the calculation is less
local, and the agents immediately take into account more
of their neighbours. This effect has an impact on the final
proportions of influenced agents (when 7 increases, the emo-
tional contagion is logarithmically stronger). Once above
a threshold, here 50, the execution time increases sharply.
This is explained by a bigger difficulty of stabilisation when
each agent is influenced by many other agents (about 25
agents for 7 = 50), which are themselves subject to other
influences.

Because the first curve does not allow an easy compari-
son between the two architectures, we generated a second
figure (Figure 8(b)) with standardised results (100% is the
execution time of the longest simulation). Regarding the
comparison between the environment computation and the
agents computation, we observe that the more 7 increases,
the more it is interesting to perform the calculations with the
environment. Predictably, the computation time is directly
related to the size of information exchanged and computed
between agents.

As for the experiments on the number of agents, it is al-
ways more efficient to make the computation performed by
the environment than by the agents. The gain ranges from
8.5% for 7 = 10 to 69% for T = 60.

6. DISCUSSION AND CONCLUSION

In this paper, we proposed to calculate the emotional dy-
namics within a multi-agent architecture. This mechanism
is based on three dynamics: event, temporal and external.
Events impact the emotions depending on the internal state
of the agent and its perception of the event. Temporal phe-
nomenon represents the dynamic stabilisation of emotions
over time. External dynamic is the emotional contagion be-
tween agents.

The calculation of a part of the internal state of the agent
based on its equivalent in the internal state of other agents
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has been used in other social simulations based on reactive
agents. For example, the model satisfaction/altruism [15] in
which the spread of agents’ state improves cooperation and
conflict resolution between agents. The IRM4S model [16] is
an adaptation of an influence-reaction model for simulation,
the body responsibilities being separated between the agent
and the environment.

Several other frameworks for improved environment and
body architectures have been proposed [17,18,25]. Platon et
al. [18] have introduced the concept of over-sensing: agents
have soft-bodies that have public states, which are medi-
ated (both for visibility and accessibility) by the environ-
ment. The information on modifications to the public states
is spread throughout the environment. Nevertheless, the
model does not explicitly take architectural issues into ac-
count, and even if the agents are observable, the body model
is in fact empty, relying on the environment for the calcu-
lus. Programmable tuple-spaces such as TuCSoN [17], or
artifacts [19] could be a way to implement the MA/SDEC
architecture, by programming the body and environment re-
sponsibilities as reactions.

About the MA/SDEC architecture, compared with a cal-
culation in each agent, this modelling of embodied agent
thanks to the environment has two advantages: first, the
agent architecture is focused on high-level decisions, while
the environment manages a part of the complexity of the
agent regarding the low-level mechanisms. Then, regard-
ing the computational cost, the encapsulation of this service
in the environment reduces the overall cost. It permits to
share part of the calculations, instead of recalculating them
in each agent.

Our simulations showed a gain in run-time execution (de-
pending on the parameters and the size of the MAS) of the
approach via the environment in comparison with purely
agent approach. However, using the environment can cre-
ate a bottleneck if the environment is not itself distributed.
It is important to note that delegating part of the compu-
tation to the environment (considered as an architectural
abstraction) does not necessarily imply a centralisation of
execution. In the case of the simulation of a physical space,
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it can be divided into areas distributed across multiple hosts
where synchronisation is facilitated by the introduction of a
distance perception.

The bodies of the agents can be controlled by the environ-
ment in which services are in the MAS platform. However,
some authors propose to create software body that are not
part of the environment, e.g. [22] in order to control the an-
imation of conversational agents. Such a component could
be used to manage the temporal dynamics of emotions, used
as an interface with the mechanism of emotional contagion
and emotional variations control mechanism. It would also
allow a looser coupling between agents and environment.

The MA/SDEC architecture describes the dynamics and
responsibilities of each MAS component, but does not rely
on a particular representation of emotion and personality.
Although we propose functions for the dynamics of the emo-
tions, those can be replaced for particular settings, for ex-
ample groups with known social topology. Hence any group
contagion model such as [3] can be used to manage external
dynamics. The performance gain of our architecture then
depends on whether parts of the computation can be reused
for several agents.

Further works include the study of the sensibility of the
model to other parameters. A recent review of psychological
studies [6] has shown the existence of moderating factors of
emotional contagion, such as social power or gender, which
were simplified in this article. From the architecture view-
point, these moderators should be included in the bodies (for
individual moderators) and environment (for social modera-
tors). Furthermore, we plan to replicate other psychological
phenomena such as the impact of emotional contagion on co-
operative decision-making, where the interplay with higher
cognitive functions is more complex.

Finally, the approach based on embodied agents, in which
the relationship between mind, body and environment are
strictly formalised, should facilitate the modelling of human
processes. In particular, the choice of removing from the
control module (i.e. from the mind / autonomous agent)
some low level calculations, such as emotional contagion or
the physical aspects, can help simplifying its design. More



research is needed to better understand how MAS designers
can apply this principle to all cases where the agents are
situated and can therefore interact with an environment,
and propose an adequate methodology.
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