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ABSTRACT
We consider the problem of adaptive home heating in the smart
grid, assuming that real-time electricity prices are being exposed to
end-users with the goal of realizing demand-side management. To
lower the burden on the end-users, our goal is the design of a smart
thermostat that automatically heats the home, optimally trading off

the user’s comfort and cost. This is a challenging problem due
to two sources of uncertainty: future weather conditions and fu-
ture electricity prices. Our main technical contribution is a general
technique that uses predictive distributions obtained from Gaussian
Process (GP) regressions to compute the state transition probabili-
ties of an MDP, such that the solution to the resulting MDP consti-
tutes a sequentially optimal policy. We apply this general approach
to the home-heating problem, where we use the predictive distribu-
tions of the GPs for the day-ahead external temperatures and elec-
tricity prices. The solution to the home-heating MDP constitutes an
optimal heating policy that maximizes the user’s utility given the
probability information gathered by the Gaussian process model.
Via simulations we show that our MDP-based approach outper-
forms various benchmarks, especially for cost-sensitive users.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Plan execution, formation, and generation
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1. INTRODUCTION
The electricity grid is undergoing big changes as many coun-

tries are now moving from fossil fuel burning power stations to
renewable energies (solar, wind, tidal). This creates a number of
challenges because energy from renewable sources is very volatile,
energy is inherently difficult to store, and the classic model in en-
ergy markets is one where supply follows demand. Until now,
end-users have generally faced fixed energy prices and were not
aware of changes in supply and demand of energy. But with more
and more renewable energy sources, this inelastic demand side be-
comes an increasingly severe problem [2]. For this reason, govern-
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ments around the world are investing billions in the development of
the next generation of the electricity grid, the so-called smart grid.

One important part of the smart grid vision is to create a
paradigm shift that enables demand-side management. This means
that in times when energy is scarce (and expensive), the demand
for energy should adjust and go down, and when energy is plenti-
ful (and cheap), the demand for energy should go up. One way to
achieve demand-side management is by exposing real-time prices
to end-users. While currently the biggest potential for demand-
side management still lies in the industrial sector, this will change
very soon, with more and more people driving electric vehicles and
heating their homes with electricity instead of oil or gas.

1.1 Home Heating in the Smart Grid
The energy used for heating homes is a major part of many coun-

tries’ energy consumption and consequently also accounts for a
substantial part of their CO2 emissions. In the US, approximately
40% of household energy is used for heating [15], and in the UK it
even accounts for 66% of household energy usage [7]. Thus, if the
international community wants to meet its goal of reducing CO2
emissions as stated in the Kyoto protocol [14], reducing the energy
used for heating must be part of the agenda. Of course, individual
home owners also have an interest in this, given that home heating
accounts for the majority of their household energy costs. Thus, the
optimization of energy usage for home heating is an important lever
to reduce CO2 emissions, to enable demand-side management, and
to reduce individual home owners’ energy costs.

There are two main avenues for improving the energy efficiency
of homes. One is better insulations, which reduces the leakage of
heat to the outside. However, this is often very expensive or not
even worth it, especially for old buildings. The other avenue, which
we consider here, is the optimization of the home heating control
process. We assume that the heating device is a heat pump that
works with electricity (an assumption that will be true for many
households once renewable energy makes up the majority of the
energy mix). Heat pumps offer the advantage of higher energy effi-
ciency and lower CO2 emissions compared to conventional forms
of heating, in particular when renewable energy sources are used
to produce the electricity. When heat pumps are powered by elec-
tricity, home heating is obviously directly connected to the elec-
tricity market. Thus, for demand-side management to be effective,
the home heating controller must be responsive to price changes,
which adds a new complication to this problem.

1.2 Coping with Weather & Price Uncertainty
Our goal is to design a smart thermostat that has a model of

the user’s preferences and automatically adjusts the temperature as
the environmental conditions affecting the heating (such as external
temperature and electricity prices) change. To optimize the heating



strategy, the smart thermostat must “plan ahead,” e.g., if electricity
prices are about to rise, then the current cheap electricity should
be used to heat up the house, such that it is already warm during
times of high energy costs. Therefore, the smart thermostat first
needs to predict the future development of the electricity price and
the external temperature, and then use this information to compute
a heating strategy that is optimal for the user.

Our work is motivated by earlier research on home heating by
Rogers et al. [10], who developed an adaptive heating algorithm
that first predicts future external temperatures using Gaussian Pro-
cesses (GPs), and then computes a heating plan using mixed-integer
programming. However, their algorithm implicitly assumes that the
weather predictions are correct. Consequently, the home heating
policy they compute might be sub-optimal because it does not ac-
count for the uncertainty inherent to weather forecasts. This issue
is exacerbated when prices are dynamic and therefore not known
perfectly in advance. In our approach, we also use GPs to pre-
dict future outside temperatures, as well as future electricity prices.
However, we use Markov Decision Processes (MDPs) to explicitly
account for the uncertainty of these predictions.

1.3 Overview of Contributions
Our main technical contribution in this paper is a general tech-

nique that uses the probabilistic predictions obtained from Gaus-
sian Process regressions to define the state transitions for an MDP,
such that a solution to the resulting MDP constitutes a sequentially
optimal policy for the problem. This approach can be applied to
any problem that requires a stochastic policy that is contingent on
the future values of certain state variables.

We illustrate this general technique by applying it to the problem
of computing a sequentially optimal home heating policy. Using
the predictive distributions of the GPs for the day-ahead external
temperature and electricity prices, the solution to the MDP consti-
tutes a heating policy that maximizes the user’s total utility. Our
MDP formulation is very general, and can easily be extended to
incorporate other sources of uncertainty (e.g., home occupancy).

We use simulations based on real-world weather data to com-
pare our MDP-based algorithm against multiple benchmarks from
the literature (including MIPs and MPCs). We demonstrate that our
approach achieves the same or higher performance, and is particu-
larly effective for cost-sensitive users.

2. RELATED WORK
Rogers et al. [11] provide an introduction to the smart grid from

a multi-agent systems perspective, and Ramchurn et al. [8] describe
the opportunities for AI research in this field. Vytelingum et al. [16]
study autonomous agents for micro-storage in the smart grid that
automatically react to price changes. However, their approach does
not explicitly account for the uncertainty in the domain.

In our own prior work on home heating, we have studied how to
automatically learn the user’s preferences (trading off comfort with
costs) with minimal interactions [13]. In this paper, we assume
that the thermostat already has a good model of the user’s prefer-
ences, and focus on computing a sequentially optimal heating pol-
icy. However, our MDP-based approach naturally lends itself to-
wards incorporating preference elicitation techniques as presented
in our prior work, which is subject to our ongoing research.

Various researchers have studied the problem of energy efficient
heating control. A notable approach involves predicting the occu-
pancy of the building with the goal of reducing the inside tempera-
ture when the building is unoccupied. For example, Scott et al. [12]
use motion sensing, and find patterns in user behavior to heat adap-
tively. Occupancy prediction is complementary to weather and

price prediction, but our MDP-based approach can easily be ex-
tended to also include an occupancy prediction component.

In the control community, the state-of-the-art method for home
heating is model predictive control (MPC). For example, Opti-
Control is a project aiming at energy efficient heating of office
buildings [5]. They consider weather forecasts and occupancy pre-
dictions, and use MPCs to compute a heating policy. A similar
approach is followed by Yu et al. [4]. MDPs and MPCs share some
commonalities, but there are also important differences. In Section
6.2, we provide a detailed comparison of the two methods.

3. THE MODEL
We consider the problem of computing a sequentially optimal

home heating policy that reacts to changing environmental condi-
tions.1 We discretize every day into T intervals, each consisting of
∆t = 24h/T (a typical interval length is 10 minutes). Each time
step, we consider three environmental variables: the internal tem-
perature T int

t , the external temperature T ext
t , and the price of elec-

tricity pt. The heat pump is controlled via a decision variable ht.
Depending on how well the heat pump can be controlled, this vari-
able is either binary, ht ∈ {0, 1}, corresponding to the heating being
turned off or on; or the variable is continuous, ht ∈ [0, 1], corre-
sponding to the pump operating at a certain level between zero and
maximum power. To compute the optimal heating policy, we need
the following four components:

1. A thermal model of the house,

2. a model of the user’s preferences,

3. a prediction of future environmental conditions, and

4. an optimization method that, given the thermal model and
the predictive information, computes an optimal heating plan
according to some criterion of optimality.

We now explain each of these components in detail.

3.1 Thermal Model of the House
To model the thermal properties of the house, we adopt an ap-

proach that is widely used in the home heating literature [4, 10]. In
this model, the internal temperature of the home, T int

t , is affected by
two antagonistic effects. On the one hand, the heat pump delivers
heat at a certain rate that is the product of the electrical power of
the pump, rh, times its thermal efficiency, called coefficient of per-
formance (COP). Mathematically, the heat delivered by the pump
is rh · COP, measured in Watt (W). On the other hand, heat leaks
from inside the house to the environment at a rate that is propor-
tional to the difference between the internal and external tempera-
tures. The heat loss per time unit depends on the insulation of the
house, which is quantified by the leakage rate λ (in W/K). Given
this, the instantaneous gain (or loss) of energy in the home at time
step t is computed as

Qt = htrh ·COP − λ · (T int
t − T ext

t ) + εt, (1)

where εt is a random variable denoting fluctuations in the heat flow
due to random effects not accounted for in the model (e.g., open-
ing doors or windows). Note that Equation (1) is stochastic due to
the random effect εt. However, the thermal properties of the home
(i.e. the variables rh, COP, and λ) can be learned, as demonstrated
in [10], assuming that ε is independently distributed. Therefore it
is sufficient to consider a deterministic version of Equation (1).
1Note that all models and techniques presented in this paper can
also be applied in a straightforward way to compute an optimal
cooling strategy (i.e., to control an air conditioner). However, we
restrict ourselves to heating in this paper to simplify the exposition.



The internal temperature at a new time step is then computed as
the sum of the previous internal temperature and the heat delivered
to (or lost from) the home:

T int
t+1 = T int

t +
Qt

cair · mair
∆t, (2)

where we let cair (unit: J/kg K) and mair (unit: kg) denote the heat
capacity and the mass of the air inside the building, respectively.

3.2 The User’s Utility Function
Inherent to the home heating problem is the need for the user to

trade off comfort (i.e., coziness) with the costs of heating. There-
fore, the optimization has to take both aspects into account. In
contrast to most of the prior work in the home heating domain, we
follow a decision-theoretic approach and formalize this trade-off

with the help of a utility function. In this paper, we use the follow-
ing class of utility functions:

u(T int
t , pt) =

(
a − b(T int

t − T ∗)2︸               ︷︷               ︸
value

− c(pt)︸︷︷︸
cost

)
∆t, (3)

where T ∗ is the user’s most preferred temperature, and pt the price
of electricity. The term a − b(T int − T ∗)2 is the value function. The
parameter a is the user’s willingness to pay for his most preferred
temperature (per unit of time), and b(T int − T ∗)2 is a quadratic loss
function, quantifying the amount of discomfort experienced (per
unit of time) due to temperatures deviating from T ∗.2 The parame-
ter b measures the user’s sensitivity to temperature deviations.

The cost function c(p) quantifies how much it costs to let the
heater run per unit of time. It is given by:

c(pt) = htrh pt, (4)

and is determined by the state of the heater, ht, the heater’s electric-
ity consumption, rh, and the electricity price, pt (in Cents/kWh).

4. TEMPERATURE & PRICE PREDICTION
We use GPs to predict future external temperatures as well as

electricity prices because GPs are a powerful and flexible frame-
work and have been successfully used to predict external temper-
atures [10, 6] as well as electricity prices [3]. Our approach is
adapted from [10] and [6]. Due to space constraints, we only give
a brief overview of GPs. For a more detailed treatment see [9].

4.1 The Prediction Task
Consider a time series S = (S (t1), . . . S (tN)), e.g., for the ex-

ternal temperature. We use the vector notation t = (t1, . . . , tN)
for past time steps, and t̂ = (t̂1, . . . , t̂T ) for future time steps for
which we want to make predictions. We assume that our training
data y = (yt1 , . . . , ytN ) is distorted by additive i.i.d. Gaussian noise:
yti = S (ti) + ε, where ε ∼ N(0, σ2

n). Given historical data y, we
want to make a (probabilistic) prediction of our time series for the
next T time steps: Ŝ = (Ŝ (t̂1), . . . Ŝ (t̂T )).

4.2 Gaussian Process Predictions
A Gaussian process approximates the time series Ŝ via a mul-

tivariate normal distribution. It is specified by its mean m(ti) and
covariance function k(ti, t j). The prior distribution for Ŝ is given by

Pr(̂S) ∼ N
(
0,K(t̂, t̂)

)
, (5)

where K(t̂, t̂) is the covariance matrix of the input points, i.e. Ki, j =

k(t̂i, t̂ j). The posterior distribution after having learned data points
2Note that we adopted this approach towards modeling discomfort
from Rogers et. al [10].

Figure 1: Three days of historical weather data from Zurich.

D = {(t, y)} is computed as

Pr(̂S|D) ∼ N(mpost,Kpost), where

mpost = K(t̂, t)
(
K(t, t) + σ2

nI
)−1

y, and

Kpost = K(t̂, t̂) −K(t̂, t)
(
K(t, t) + σ2

nI
)

K(t, t̂).

4.3 External Temperature Prediction
The main idea for the prediction of the external temperature is

to train a GP using historical temperature measurements from the
actual house as well as weather forecast data from a nearby mete-
orological service. Obviously, the local weather and the forecast
should be highly correlated. In our data, provided by the Swiss na-
tional meteorological service MeteoSwiss, the correlation between
forecasts and actual temperatures is approximately 0.9. Figure 1
shows a small sample of historical temperature data from Zurich.
The green line is the temperature forecast for Zurich from the me-
teorological service, and the blue line is the actual temperature that
was measured in one specific location. As we can see, the two time
series are highly (but not perfectly) correlated.

Formally, we consider two temperature time series, one for the
local measurements, which we denote as T L(t), and one for the
forecasts, denoted T F(t). For both, we have historical data (i.e.,
one data point for every hour), but additionally we have a forecast
for the next 24 hours. To use the GPs, we have to specify a model
(via the covariance function of the GP) that captures the features of
the external temperature sufficiently well. The four features that we
model are: (i) daily rise and fall, (ii) rise and fall over longer periods
of time (i.e. several days), (iii) erratic movements, and (iv) the
correlation between the two time series. The covariance function
ktemp for two data points (l, t) and (l′, t′) (l ∈ {Local, Forecast} is
the label of the series) is then given by

ktemp ((l, t), (l′, t′)) = k1(l, l′) (k2(t, t′) + k3(t, t′)) (6)
+ k4(t, t′) + k5(t, t′).

Here, k1 is a function that measures the cross-correlation between
the time series, which is equal to one if the data points are from the
same time series, and otherwise equal to θ1:

k1(l, l′) =

1 if l = l′,
θ1 otherwise.

(7)

The covariance function k2 encodes the daily rise and fall in tem-
peratures. This is modeled using a periodic covariance function



with period one day. However, the actual periodicity of weather is
only approximately, but not exactly one day. To account for this,
we multiply the periodic function with a squared exponential co-
variance function to allow for more complicated patterns:

k2(t, t′) = θ2
2 exp

(
−

(t − t′)2

2θ2
3

−
2 sin2 (π(t − t′))

θ2
4

)
. (8)

The rise and fall of the temperature over longer periods of time is
modeled via a squared exponential covariance function:

k4(t, t′) = θ2
5 exp

(
−

(t − t′)2

2θ2
6

)
. (9)

The fourth covariance function in Equation (6), k4, models erratic
movements that are uncorrelated between the two time series (e.g.
due to specific conditions at the measurement site). For this, we
use a Matern class kernel as it is able reproduce such fluctuating
temperature movements:

k4(t, t′) = δl,l′θ
2
7

1 +

√
3(t − t′)
θ8

 exp
− √3(t − t′)

θ9

 . (10)

To account for measurement noise, which we assume to be i.i.d
additive Gaussian, we use the following noise covariance function:

k5(t, t′) = θ2
10δt,t′ , (11)

where δt,t′ is the Kronecker delta between time points. Note that
θ1, . . . , θ10 are hyper-parameters of the GP whose values must be
determined using maximum likelihood estimation.

4.4 Electricity Price Prediction
We model our price function according to characteristics found

in spot market prices. According to Weron [17], a salient feature
of daily prices is the periodicity: an increase in the morning (when
people wake up), a decrease in the afternoon, and another increase
in the evening (when people return home). We model this using
a periodic covariance function with period half a day. As before,
we allow for deviations from exact periodicity by multiplying the
periodic covariance function with a squared exponential:

k6(t, t′) = θ2
11 exp

(
−

(t − t′)2

2θ2
12

−
2 sin2(π(t − t′)

θ2
13

)
. (12)

The second feature of price movements are the erratic price fluctu-
ations, which we model by a Matern class kernel:

k7(t, t′) = σ2
6

1 +

√
3(t − t′)
θ14

 exp
− √3(t − t′)

θ15

 . (13)

The covariance function for the price is the sum of k3 and k4 plus a
noise term k8(t, t′) = θ2

16δt,t′ :

kprice(t, t′) = k6(t, t′) + k7(t, t′) + k8(t, t′). (14)

Again, θ11, . . . , θ15 are hyper-parameters of the GP whose values
must be determined using maximum likelihood estimation.

5. HOME HEATING MDP
We now formalize the home heating problem as an MDP. An

MDP is defined by a tuple (S , A,T,R), where S is the state space,
A is the action space, T : S × S × A → R+ is the state transition
function, and R : S × A → R the reward function. We consider an
MDP with a finite horizon of one day.3 Defining the states, actions
3We use a finite-horizon MDP for two reasons. First, the ther-
mal effects of heating and heat leakage manifest themselves within
minutes to hours. Therefore, optimizing the heating now will not

and the reward function is quite straightforward. The difficulty lies
in computing the state transition probabilities, which is where the
information obtained from the GPs is used.

States: The state space consists of the Cartesian product S =

T int × T ext × P × TIME, where T int and T ext are the sets of in-
ternal and external temperatures, respectively, P the set of prices,
and TIME the set of time steps for one day. Both, the prices and the
temperatures are discretized, which is quite natural for the prices
(in Cents), and also for the temperatures, since humans cannot no-
tice the difference between two temperatures given a small enough
level of granularity (e.g., between 22.0 and 22.5 degrees Celsius).
To simplify the exposition, we denote the state s = (T int,T ext, p, t)
as st = (T int

t ,T ext
t , pt).

Actions: The action space is A = {0, 1/(NA − 1), 2/(NA − 1), . . . , 1},
where NA is the number of actions available. For example, if NA =

2, then A = {0, 1}, which corresponds to the heater being off or on,
respectively, i.e., setting ht = 0 or ht = 1.

Reward Function: The reward function is simply the user’s utility
function, i.e., the user’s value for a certain internal temperature T int

t
minus the cost of heating:

R(st, ht) =
(
a − b(T ∗ − T int

t )2 − htrh pt

)
· ∆t. (15)

State Transition Function: The state transition function is a func-
tion that specifies, for every triple (st, st+1, a) ∈ S × S × A, the prob-
ability of arriving at state st+1 if action ht is taken in state st:

T (st+1, st, ht) = Pr
(
(T int

t+1,T
ext
t+1, pt+1)|(T int

t ,T ext
t , pt), ht

)
. (16)

Although computing these probabilities might seem daunting at
first, we can greatly simplify this task by making a few observa-
tions. First, note that T ext

t+1 and pt+1 are independent of T int
t and ht;

and also of pt and T ext
t , respectively.4 Furthermore, T int

t+1 does not
depend on pt. Exploiting these independencies, we can write:

T (st+1, st, ht)= Pr
(
T int

t+1|T
int
t ,T ext

t , ht

)
Pr

(
T ext

t+1|T
ext
t

)
Pr (pt+1|pt) . (17)

Note that the state transition for the internal temperature is de-
terministic by assumption and can be derived via Equation (2).
However, the evolution of the external temperature and the price
is stochastic. Therefore, we derive the transition probabilities
Pr

(
T ext

t+1|T
ext
t

)
and Pr

(
pt+1|pt

)
using the probabilistic information

gathered from the GPs.

5.1 Transition Probabilities for External
Temperatures and Prices

We now describe how to derive the transition probabilities for
the external temperatures. The approach is completely analogous
for the electricity prices.

Recall that the GP gives us a predictive distribution for T̂ext =(
T̂ ext(t̂1), . . . , T̂ ext(t̂|TIME|)

)
that is a multivariate normal distribution

Pr
(
T̂ext |D) ∼ N(m,K

)
. (18)

greatly affect the heating for tomorrow or even further away. Sec-
ond, an infinite horizon MDP would assume a stationary model of
the external temperature and electricity prices. However, it is much
better to predict the external temperature and electricity prices us-
ing day-ahead forecasts, thus dropping the stationarity assumption.
4Of course, the price may in practice also depend on the external
temperature because weather conditions influence demand for en-
ergy and therefore, if many people have to heat a lot at the same
time, prices may increase. However, we ignore this dependency to
simplify the exposition.



Algorithm 1: Home Heating Algorithm
Input: utility function u
Variables: internal temperature T int

t , external temperature T ext
t ,

price pt, optimal heating policy π∗

begin
foreach day do

P̂← GP.predictPrices()
T̂ ← GP.predictExternalTemperature()
M ← new MDP(u, P̂, T̂ )
M.computeTransitionProbabilities()
π∗ ← M.computeOptimalPolicy()
for t=1 to # of time steps per day do

(T int
t ,T ext

t , pt)← M.updateEnvironment()
M.heatOptimally(π∗,T int

t ,T ext
t , pt)

For the state transition function we need to compute conditional
probability distributions of the form

Pr
(
T̂ ext(t̂i) = T |T̂ ext(t̂i−1) = T̃ ,D

)
(19)

for all i = 2, . . . , |TIME| and T, T̃ ∈ T ext. We perform these compu-
tations in two steps: First, we compute the conditional distribution
of T̂ ext(t̂i) given T̂ ext(t̂i−1). Second, we integrate the conditional dis-
tribution to obtain a discrete conditional probability distribution.

Step 1: The conditional distribution can be computed as follows:

Pr
(
T̂ ext(t̂i)|T̂ ext(t̂i−1) = T̃ ,D

)
∼ N(mcond, σcond), with (20)

mcond = mi +
Ki,i−1

Ki−1,i−1
· (T̃ − mi−1), and

σcond = Ki,i −
(Ki,i−1)2

Ki−1,i−1
.

Step 2: We then integrate the conditional distribution over the
interval [T − α,T + α], where α is half of the discretization size
in the temperature space, to obtain our final discretized transition
function for the external temperature:

Pr
(
T ext

t∗i
= T |T ext

t∗i−1
= T̃

)
=

∫ T+α

T−α
Pr

(
T ext

t∗i
= y|T ext

t∗i−1
= T̃ ,D

)
dy. (21)

For example, if the discretization is T ext = {0, 1, 2, . . .} and we
would like to compute the probability that the external temperature
is 6◦C after being 5◦C, then

Pr
(
T̂ ext(t̂i) = 6|T̂ ext(t̂i−1) = 5

)
=

∫ 6.5

5.5
Pr

(
T̂ ext(t̂i) = y|T̂ ext(t̂i−1) = 5,D

)
dy.

Finally, we normalize all probabilities computed this way to obtain
a correct conditional probability distribution.

5.2 Computing an Optimal Policy
Now that we have constructed all components of the MDP, we

can compute an optimal policy using dynamic programming (DP).
Note, that at every iteration of the DP algorithm, one must take care
to only include the reachable states in the time dimension (i.e., only
consider states that are one time step earlier). The resulting optimal
policy π∗ corresponds to the optimal value function V∗ that solves
the Bellman optimality equation:

V∗(s) = max
a

R(s, a) +
∑

s′
Pr(s′|s, a)V∗(s′)

 . (22)

Thus, the optimal policy prescribes the action that maximizes the
sum of the one-step reward and the expected utility going forward,
assuming that the optimal policy is followed in the future. A sum-
mary of the whole heating algorithm is provided in Algorithm 1.

6. EXPERIMENTS
We evaluate our MDP-based heating algorithm via two simula-

tion experiments. In Experiment I, we consider a simple heater that
is either switched on or off. In Experiment II, we consider a heater
that can work at any level between zero and maximum power.

We consider two different pricing scenarios: times-of-use pric-
ing and real-time pricing. Times-of-use pricing models a situation
in which the electricity provider sets fixed prices for certain spec-
ified (and fixed) periods of the day. Under real-time pricing the
electricity price changes according to real-time market conditions.
Because the actual demand and supply of energy depends on many
factors (e.g., available utilities and weather conditions), real-time
prices can only be predicted with a high level of uncertainty.

6.1 Experiment I: MDP vs. MIP
For Experiment I, we consider a heat pump that can only be

switched on or off. We compare our MDP-based algorithm against
three benchmark algorithms: a conventional thermostat that imple-
ments a simple rule-based heating policy, and a mixed integer pro-
gram (MIP) that comes in two versions: one that aims to minimize
heating costs, and another one that maximizes the user’s utility.

Conventional Thermostat. A conventional thermostat tries to
keep the room temperature around a set temperature Tset by im-
plementing the following rule:

hthermostat
t =


0 if T int

t−1 > T set + ∆T
1 if T int

t−1 < T set − ∆T
hthermostat

t−1 otherwise
(23)

Mixed-Integer Program. Our second benchmark algorithm is a
MIP, introduced by Rogers et. al [10].5 The MIP minimizes the
heating costs, subject to the constraint that the cumulative discom-
fort does not exceed a maximum discomfort level. Discomfort is
measured as a quadratic loss function as in the utility function de-
fined in Equation (3). We let ht ∈ {0, 1} denote the decision vari-
ables, ct the cost of heating, dt the discomfort, and Dmax the maxi-
mum discomfort level.6 The whole MIP can be stated as:

min
∑

t

htct (24)

s.t. Qt = htrhCOP − λ · (T int
t − T ext

t )

T int
t+1 = T int

t +
Qt

cair · mair
∆t

dt = (T ∗ − T int
t )2∑

t

dt ≤ Dmax

Note that this approach implicitly assumes that prices and external
temperatures are known in advance. In particular, only the mean
predictions from the GP are used instead of the whole distribution.

We also consider a modified version of this MIP, where the
objective function is changed to now maximize the user’s utility,
which is defined analogously to the reward function of the MDP
(see Equation (15)). Additionally, we drop the constraint that the
discomfort should not fall below a certain target discomfort level.
5We thank the authors of [10] for providing their CPLEX code.
6Dmax is set to the level of discomfort the user would experience if
a conventional thermostat were run instead of the MIP.



Figure 2: Results for real-time pricing. The bars denote (from left
to right): the thermostat, the MIP that minimizes cost, the MIP that
maximizes utility, and the MDP. Performance is measured as the
mean cumulative utility, averaged over the month of January 2013.

6.1.1 Experimental Set-up
We let every algorithm heat sequentially for 31 days (i.e., for one

month). Each day consists of 144 time steps, which corresponds to
10 minute time intervals. We use weather data for Zurich from De-
cember 2012 to January 2013, provided by the Swiss national me-
teorological service MeteoSwiss, which contains hourly forecasts
for Zurich as well as actual measurements for one specific location
in Zurich. We use the data from December to train the GPs, and the
one from January for the actual experiment.7

In the times-of-use pricing scenario, there are three tariffs: 10,
20, and 40 cents/kWh. The prices are known a priori to all algo-
rithms. In the real-time pricing scenario, the prices are generated
using a GP that has the same model as described in section 4.4
to produce synthetic, but realistic pricing data. The GPs used for
prediction are trained on the (synthetic) price data from December.

For the user’s utility function, we set the parameters a = 8/∆t
and b = 1/∆t. These values are chosen such that values and costs
in the reward function of the MDP (see Equation (15)) are approx-
imately of the same size, corresponding to a user for whom, at typ-
ical prices, comfort and costs have comparable magnitudes.

The dimensions of the house are 1, 000 m3, the mass of air in
the house mair = 1, 205 kg, the leakage rate λ = 90 W/kg, the heat
capacity cair = 1, 000 J/kg/K. The power of the heater is rh =

1, 500 W with a COP = 2.5. The values are adopted from [10] and
correspond to a small, well insulated home.

For the MDP, we discretize the temperature in steps of 0.5◦C and
the prices in steps of 5 cents. This set-up results in an MDP with
approximately 1 million states that can be solved optimally in a
few seconds on a standard PC. We use IBM ILOG CPLEX to solve
the MIP and adopt the same approach as in [10] restricting CPLEX
to run for 5 minutes per problem instance. The solver produces
iteratively improving solutions. Thus, if the MIP does not terminate
within the 5 minutes, it returns the best solution found so far.

6.1.2 Results and Discussion
Figure 2 shows the results for the real-time pricing scenario (the

results for the times-of-use scenario are qualitatively the same). We
report the average cumulative utility (and standard errors) achieved
by the different algorithms. We see that the MDP-based algorithm
provides significantly higher average utility compared to all other
approaches, improving the utility by more than 15%.

7The root mean squared errors of the GP and the meteorologi-
cal service are RMS EGP = 1.29 and RMS EMF = 1.61, respec-
tively. The approximately 20% improvement in accuracy makes
sense since the GP can adapt to the peculiar climatic conditions
(e.g., trees that provide shade) at the specific location whereas the
forecast does not include this information.

(a)

(b)

Figure 3: (a) Temperature profile over the course of one day, when
running the MDP. (b) The corresponding times-of-use tariff.

There are several observations to discuss. First, we see that the
conventional thermostat performs worst. This makes sense, be-
cause it completely neglects the cost component of the user’s utility
function. Second, the cost-minimizing MIP performs slightly better
than the thermostat. Recall that it computes cost-minimizing heat-
ing plans that do not to exceed a certain level of discomfort. Third,
we see that the utility-maximizing MIP performs better than the
cost-minimizing MIP, which demonstrates that cost-minimization
subject to comfort constraints only imperfectly approximates the
maximization of the user’s utility. However, even the utility-based
MIP is still significantly worse than the MDP. This is because the
MIP implicitly assumes that the predictions for the external temper-
atures and for the prices are perfectly accurate. If this assumption
is not correct, then the MIP leads to sub-optimal decisions, e.g., not
pre-heating when prices are low, or not saving energy when the out-
side temperature is about to rise, which leads to significantly higher
discomfort or costs, compared to our MDP-based algorithm.

To illustrate the MDP-based approach, Figure 3(a) provides an
example of the internal temperature profile that results from execut-
ing the MDP-based heating policy, while the corresponding times-
of-use prices are shown in Figure 3(b).8 By tracing the temperature
curve over the course of the day, we gain insights into how the
MDP optimizes the trade-off between comfort and costs. We see
that just before the price goes up at the 6-hour mark, the MDP pre-
heats a little bit, exploiting the low prices. It then uses less energy
than before, consequently leading to a slightly lower temperature.
Just before the next price increase at the 14-hour mark, it pre-heats
again, exploiting the 20 cents/KWh price. Over the next six hours
it uses even less energy than in the previous eight hours, leading to
an even lower temperature. Just before the price goes back to 10
cents/KWh, the MDP essentially stops heating (to conserve costs
in the high price regime), which leads to a momentary drop in tem-
perature. Once the low price regime is reached, normal heating
resumes, and the temperature goes back to the original level.

8Note that to produce the graph in Figure 3(a), we considered the
scenario from Experiment II where the heater can be set to different
levels between zero and maximum power. In particular, we used an
MDP with 25 actions instead of just on/off, because the resulting
temperature curve more cleanly illustrates the MDP policy.



(a) b = 2 (b) b = 1 (c) b = 0.1

Figure 4: A comparison between MDPs and MPCs. The graphs show the mean cumulative utilities for the MDP (solid blue line) and the
MPC (dotted green line), for different values of the sensitivity parameter b (a smaller b corresponds to a more cost-sensitive user).

6.2 Experiment II: MDP vs.MPC
For Experiment II, we assume that the heater can work at any

level between zero and maximum power. We compare our MDP-
based algorithm (now with more than two actions) to an approach
that uses model predictive control [18], which has proven success-
ful in the heating domain [4, 5].

Model Predictive Control. MPCs are online algorithms that iter-
atively solve an optimization problem for a given time horizon to
find the best sequence of (continuous) control actions, but only ap-
ply the first action to the system. After each time step, the system
state is observed and a new optimization problem is solved given
the new state. Thus, the time horizon is shifted one time step into
the future. Applied to the home heating problem, this means that at
every time step, we solve the following optimization problem:

max
ht

∑
t

(
a − b(T ∗ − T int

t )2 − htrh pt

)
· ∆t, s.t. (25)

Qt = htrhCOP − λ · (T int
t − T ext

t )

T int
t+1 = T int

t +
Qt

cair · mair
∆t

ht ∈ [0, 1].

This optimization problem is a quadratic program, which can be
solved very efficiently. As in Experiment I, the time horizon is set
to 24 hours. The predictions for the external temperature and prices
are computed via GPs, in the same manner as was done for the
MIPs. However, in contrast to the MIP-based approach, the GPs are
updated using the new measurements of the external temperature
and the current price made available at the end of each time step.

This particular version of an MPC is called certainty equivalent
MPC (CE MPC), because the external temperature and the electric-
ity prices are set to the values predicted by the GPs, ignoring prob-
abilistic effects. However, this loss of information is countered by
the fact that the MPC works in an online fashion.

Note that MPCs work similarly to MDPs in the sense that MDPs
solve the Bellman optimality equation (see Equation (22)) for a dis-
cretized version of the problem, and MPCs approximate the Bell-
man optimality equation for a continuous version of the problem.
However, it is also informative to consider in more detail how the
two methods differ. First, while the MDP computes an optimal pol-
icy that provides the optimal action for every state, the CE MPC
only yields a policy for the states it believes it will encounter, given
its model, the initial conditions, and the current predictions. Sec-
ond, the bulk of the MDP computations are performed offline (i.e.,
at the beginning of the day), while the computations for the MPC
(i.e. updating predictions, solving the optimization problem) must
be repeated every time step. Third, the run-time of the MDP (given
a fixed problem size) grows polynomially with the number of time

steps, actions, and states. Thus, if we increase the discretization
granularity for all three components simultaneously, then the run-
time grows cubically. For the MPC, the trade-off between run-time
and performance is less pronounced since only the time discretiza-
tion matters. Finally, MDPs offer a rich language to model sequen-
tial decision making under uncertainty, whereas MPCs only have
limited ability to model probabilistic environments.9

6.2.1 Experimental Setup
For both, the MDP and the MPC, we need to make a trade-off

between computational complexity and performance: the finer the
discretizations (time, actions, and states for the MPD; time for the
MPC), the better the performance, but also the higher the computa-
tional burden. In this section, we study this trade-off in detail.

The basic experimental setup is similar to the one used in the
real-time pricing scenario of Experiment I. We run every algorithm
for 18 days and report average cumulative utility. However, we use
different discretizations for the MDP and the MPC corresponding
to different run-times. For the MPC, we vary the number of time
steps from 24 to 192. For the MDP, we increase the number of time
steps from 24 to 192, and the number of actions from 2 to 20, and
report the highest utility achieved for a particular run-time.

We also vary the sensitivity parameter b of the utility function
(see Equation (15)). We consider three values for b that corre-
sponds to three different types of users: a value of b = 2 corre-
sponds to a comfort-sensitive user; a value of b = 1 corresponds to
an approximately equal weighting of comfort and cost; a value of
b = 0.1 corresponds to a cost-sensitive user.

6.2.2 Results and Discussion
Figure 4 shows the results of Experiment II. The solid blue line

and the dotted green line correspond to the MDP and the MPC,
respectively. The graphs plot the average cumulative utility per day
(on the y-axis) versus the average time spent to compute the optimal
heating policy for one day (on the x-axis).

First, we see that for b = 2 and b = 1, there is no statistically
significant difference between the expected utility achieved by the
MDP and the MPC, except at very low run-times (less than 10 sec-
onds), where the MPC outperforms the MDP. For cost-sensitive
users (b = 0.1), the MDP leads to higher expected utility than the
MPC, and this difference is statistically significant for run-times
larger than 150 seconds. This results makes sense: we expect the
9There also exist stochastic MPCs that can handle some forms
of uncertainty. At the same time, there also exist more sophisti-
cated methods for handling continuous state and/or action spaces
for MDPs that avoid some of the limitations of a discretized state
or action space. Furthermore, one could also consider online (roll-
out) methods for the MDP, which could speed up the computations
and which would also allow the MDP to update the GP predictions
based on the new information in each time step. All of these con-
siderations are left to future research.



MDP to be better at saving costs because its probabilistic model en-
ables it to better account for the stochastic prices and temperatures.

Overall, we see that the performance of both algorithms im-
proves a lot in the beginning as the computational complexity is in-
creased, but that the rate of improvement quickly diminishes. This
effect is particularly strong for the MDP, which makes sense, be-
cause the MDP is severely limited at very low run-times (with a
low level of discretization in three dimensions).

7. CONCLUSION AND FUTURE WORK
In this paper, we have studied the adaptive home heating prob-

lem under weather and price uncertainty. We have presented a gen-
eral technique that uses the predictive distributions obtained from
GP regressions to construct the state transition probabilities of a
corresponding MDP. Applied to the heating domain, the solution
to the resulting home heating MDP constitutes a sequentially opti-
mal heating policy that accounts for all available probabilistic infor-
mation. Via simulations, we have demonstrated that in a scenario
where the heater is limited to being switched on or off, our ap-
proach outperforms all benchmark algorithms from the literature.
For another scenario, where a heater can run at any level between
zero and maximum power, we have compared our MDP-based ap-
proach against an MPC-based approach. In particular, we have
studied the resulting trade-off between computational run-time and
performance for MDPs and MPCs. Our results indicate that both
algorithms lead to very similar performance, except at very low
run-times, where the MPC is slightly better. However, for price-
sensitive users, the MDP eventually leads to significantly higher
expected utility than the MPC, because it is better to able to account
for the stochastic nature of energy prices and outside temperatures.

One important advantage of our MDP-based solution is that it
naturally lends itself towards incorporating our prior work on pref-
erence elicitation in the home heating domain [13]. For this paper,
we have assumed that we already have a good model of the user’s
utility function. In practice, however, this model must be learned
over time, while the thermostat already optimizes the heating pol-
icy. Towards this end, our future work will involve extending our
MDP model to explicitly incorporate the preference elicitation de-
cisions. Because the user’s utility is never fully revealed to the ther-
mostat, this leads to a partially-observable MDP (i.e., POMDP) [1].
In our future research, we will work towards this vision of a smart
thermostat that acts optimally on the user’s behalf by carefully elic-
iting the user’s preferences while simultaneously computing an op-
timal heating policy that maximizes the user’s expected utility.
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