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ABSTRACT
Coverage of known environments is a task involved in several
applications of autonomous mobile robots, like patrolling,
search and rescue, and cleaning. The (single robot) cover-
age problem can be formulated as that of finding the optimal
tour that, when followed, allows a robot to cover with its tool
(e.g., a sensor or a brush) all the points of the free space of a
given environment. Most of the current methods for cover-
age discretize the environment in cells, possibly of different
shapes. In this paper, we consider a setting in which the
environment is represented as a grid of equal square cells
and in which a robot has a tool with limited range and an-
gular field of view, able to cover a set of cells from a given
pose. We propose an efficient covering method based on a on
Greedy Randomized Adaptive Search Procedure (GRASP)
metaheuristic approach that iteratively constructs a feasi-
ble solution and tries to improve it through local search.
Results of experimental activities show that the proposed
method produces solutions of better quality than those of a
state-of-the-art method, in an efficient way.

Keywords
Robotic coverage, Greedy randomized adaptive search pro-
cedure, Grid environments

1. INTRODUCTION
In the field of autonomous mobile robotics, the problem of

coverage is encountered in many applications, like search and
rescue [4], patrolling [6], target detection [17], and plough-
ing [16]. A general formulation of the coverage problem in
a given planar environment involves a robot (or multiple
robots) equipped with a covering tool, whose footprint over-
lays a finite area, that has to sweep the entire area of the en-
vironment, optimizing an objective function, usually related
to distance travelled or time taken [8]. Examples of cover-
ing tools include the brush of a vacuum cleaner, the blade
of a lawnmower, and the laser range scanner of an exploring
robot. Mainstream approaches discretize the environment
in some way, for example decomposing it in cells with dif-
ferent shapes (e.g., according to the presence of obstacles
and to the covering tool) or with regular shapes [15]. The
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approaches that consider regular discretizations of the envi-
ronment in grids of squared cells are suitable for modelling
long-range perception tools like laser range scanners and re-
mote gas sensors. In this case, the tool can cover several cells
when the robot is at a given pose. Although these settings
are typically considered in autonomous mobile robotics, the
corresponding coverage problem is not much studied, the
main results being in [3, 21]. In both formulations, with ir-
regular and regular cell decompositions, the coverage prob-
lem is NP-hard for general environments [7, 10]. In the at-
tempt to find (suboptimal but) good solutions, most meth-
ods [3,9,11,12] independently address two subproblems: (a)
finding a set of poses that, when visited, allow the tool to
cover all the environment and (b) finding the optimal tour
through these poses. Clearly, the optimization of the two
subproblems is not guaranteed to produce a high-quality so-
lution for the coverage method.

In this paper we propose a novel method for an autonomous
mobile robot that has to cover a grid environment, which ex-
ploits the metaheuristic approach based on Greedy Random-
ized Adaptive Search Procedure (GRASP) [19] to address
the two above subproblems at the same time. GRASP meth-
ods have been successfully used to solve related problems,
like the Travelling Salesman Problem (TSP) and the orien-
teering problem. Here, we originally apply it to the coverage
problem in the attempt to overcome the two-subproblem op-
timization performed by most of the current methods. More
precisely, we assume to know a planar environment repre-
sented as a grid and to have a robot equipped with a covering
tool characterized by a limited range r and a limited angular
field of view θ. Our goal is to find a closed sequence of poses
(a tour) in the grid such that the union of the areas covered
at these poses completely covers the environment and that
the tour is the fastest one. In our model, the time required to
complete a tour is composed of the time required for moving
and of the time required for sensing. This second quantity
accounts for situations in which the acquisition of data is not
almost-instantaneous (as in the case of laser range scanners)
but requires some time. For instance, a remote gas sensor
like that used in [3] can take dozens of seconds to sweep an
area bounded by r = 5 meters and θ = 45 degrees. In tak-
ing into account the sensing time, our approach differs from
many methods proposed in the literature (e.g., [21]).

Our approach works in two phases. First, an initial cover-
ing tour is calculated, using a random greedy procedure.
Then, this tour is improved by local search. These two
phases are iterated until a termination criterion is satis-
fied. Experimental results show that our proposed GRASP
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method consistently outperforms the method in [3], suggest-
ing that tackling together subproblems (a) and (b) can be
more efficient.

2. RELATED WORK
The problem of finding the optimal path for covering the

area of a planar environment with an autonomous mobile
robot equipped with a covering tool has been addressed by
several approaches that can be classified in different ways
[8,15]. A first broad classification concerns the nature of the
problem state space, namely the model of the environment,
which can be continuous or discrete.

The continuous problem formulation, usually called Watch-
man Route Problem (WRP), has been extensively studied
from a geometrical point of view, modeling the environment
as a polygon (with holes). In the general case, the WRP is
a NP-hard problem (see [10] for the proof), and cannot be
approximated in polynomial time within a factor of c logn,
where n is the number of vertices of the environment poly-
gon and c > 0, unless P=NP [18]. Efforts to tackle the
WRP usually rely on strong assumptions, which are often
far from practical robot implementations, especially when
the covering tool is a sensor. They include time-continuous
perception and unlimited range of the covering tool. Some-
times, also a perception angle of 360 degrees is assumed,
considering that the robot perceives the surrounding envi-
ronment in an omnidirectional fashion, which is not the case
for most cameras, laser range scanners, and remote gas sen-
sors (unless multiple perceptions are merged).

In the discrete formulation of the coverage problem, the
environment is modeled as a graph or a grid. In these set-
tings, the range of the covering tool of the robot can ei-
ther just cover a single vertex (grid cell) or cover sets of
graph vertices (grid cells) with a single perception. Both
problems are NP-hard, since they generalize the TSP on
grids. As a consequence, suboptimal approaches have been
developed. In the literature, the former sensing model has
been largely adopted and studied over the past decades (e.g.,
in [1,14,23]), while, only recently the latter model has been
considered and analyzed to solve problems such as camera
surveillance [21] and gas detection [3].

In [21], the authors consider a grid environment on which
they build an observation graph, enriching each free cell with
a discrete set of possible orientations of the robot. On this
graph, a Mixed Integer-Linear Program (MILP) is formu-
lated and solved. The covering tool the authors consider is
a camera, even though their approach works for any arbi-
trary covering function (i.e., for any way to decide whether
a robot from a given pose covers a grid cell or not). To
tackle large problem instances, the authors propose to clus-
ter groups of free cells. Their approach is experimentally
assessed on strongly-structured rectilinear environments and
seems to scale well until instances of medium sizes (the pa-
per reports that the algorithm takes 382, 833 seconds to find
a solution on a grid with 314 cells).

In [3], the problem setting is the same of [21] (and the
same of this paper). The coverage problem is decomposed
in two subproblems, as discussed in the previous section.
In this case: (a) finding a minimum set of vertices (on the
observation graph) from which the perceptions cover the en-
vironment and (b) finding of the shortest tour among those
locations (i.e., a TSP). In order to tackle large problem in-
stances, the authors propose a convex relaxation “cSPP”,
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Figure 1: An example of movement graph on a 9 × 9 grid,
with α ∈ {0, π

2
, π, 3

2
π} (left). An example of covering func-

tion with r = 5 and θ = π
2

. In this case, the covering tool
does not cover free cells behind obstacle cells (right). (Figure
drawn by authors, after [3].)

which is able to quickly find solutions to (a). The proposed
approach is shown to work in realistic-size environments and
will constitute a benchmark for our method.

A well-studied variant of the coverage problem involves
multiple robots. For example, in [20], a multirobot version
of the method presented in [21] is proposed.

In [22], an adversarial formulation of the coverage prob-
lem for grid environments is presented. The robot covers
the cell in which it is currently located and each grid cell
has a known probability to block (or destroy) the robot. In-
stead of minimizing the traveled distance, the objective is
to maximize the probability to survive, while covering the
environment.

Against the state-of-the-art depicted above, in this paper
we originally propose to use a GRASP method [19] for the
single robot coverage problem in grid environments with an
arbitrary covering function between robot poses and grid
cells.

3. PROBLEM STATEMENT
We consider a finite planar environment discretized as a

grid of identical squared cells, which can be either free cells
F or cells occupied by obstacles O that are not traversable
by the robot.

Given a grid, the robot state space is discretized in a set
of poses V . Each pose v ∈ V is a pair (c, α), where c ∈ F
is a free cell (we assume that the robot is always located at
the center of the cell) and α is the orientation angle of the
robot (according to some global reference frame) taken from
a finite set of values. For sake of simplicity, let us assume
that α ∈ {0, π

2
, π, 3

2
π}, but the approach can be generalized

for any angle discretization.
The robot state space is then conveniently described by a

graph, as shown in Figure 1. Formally, the movement graph
G = (V,E) is a directed weighted graph, where V is a set of
vertices (coinciding with the set of poses) and E is a set of
edges that represent the movements the robot can perform.
More precisely, let α(1), ..., α(h) be the discretized values of
the robot orientation angle, with α(1) < ... < α(h). Then
E contains a rotation edge from a vertex v = (c, α(i)) to a

vertex v′ = (c, α(i+1)) and a dual one from v′ to v. Moreover,
E contains a translation edge from a vertex v = (c, α) to
a vertex v′ = (c′, α) if c and c′ are neighbors on the 4-
connected grid and α points along the direction from the
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Algorithm 1 GRASP(L)

1: while stopping criterion not satisfied do
2: Sinit ← GreedyRandomizedSolution(L)
3: Slocal ← LocalSearch(Sinit)
4: Sincumbent ← UpdateIncumbent(Slocal)

5: return Sincumbent

center of c to the center of c′. The weight associated to
each edge is the time needed by the robot to rotate or move
straight, which depends on the locomotion capabilities of
the robot.

We define a covering function C : V → 2F that returns
the set of covered cells C(v) from a given pose v ∈ V . Even
though our approach can be applied to arbitrary covering
functions, for simplicity in the following we consider a sens-
ing tool with limited range r and limited angle θ. Hence,
the covering function C is defined as follows: the robot in a
pose v = (c, α) covers a cell c′ if the line segment connecting
the centers of c and c′ is in the circular sector of radius r and
angle θ, centered in c and around α, and does not cross any
occupied cell. Figure 1 shows an example of this covering
function. A perception performed from a pose v thus covers
the cells in C(v) and we assume it takes T (v) time, which
depends on the sensing capabilities of the robot.

A tour is a closed path on the movement graph G (the
robot is required to come back to the starting point) and
is represented as an ordered sequence of vertices (or poses)
S = [v1, ..., vk], such that vi ∈ V , i = 1, ..., k. The idea is
that the robot makes a perception from each vi.

The cost of a tour S is the sum of the traveling times and
the sensing times:

k∑
i=1

d(vi, vi+1) +

k∑
i=1

T (vi) (1)

where d(v, v′) is the least cost for moving from v to v′ on
G and vk+1 corresponds to v1. A solution to the coverage
problem is a tour S = [v1, ..., vk], such that ∪ki=1C(vi) = F .
The objective is to find the optimal solution, namely the
solution with minimum cost.

4. A GRASP METHOD
In this section, we define our GRASP method for the cov-

erage problem formulated above. A GRASP is a simple and
effective metaheuristic approach [19] designed to find good
solutions to NP-hard problems in a limited amount of time,
that can be tuned through a stopping criterion, as shown in
Algorithm 1.

A GRASP iteration starts with creating a greedy random-
ized solution from scratch in the following way. The func-
tion GreedyRandomizedSolution(·) iteratively computes the
cost of each local choice, according to a greedy and problem-
dependent criterion. At each iteration the solution is built
by selecting one of the best L choices at random (where L is
a parameter). The solution so created is then improved by
a local search, which applies a set of possible local moves to
reach a local optimum, following a best-improvement policy.
Along this pipeline, a GRASP produces a (possibly differ-
ent) solution to the problem at each iteration, which can
be discarded or become the incumbent solution, that is, the
current best solution found over all the previous iterations.

Algorithm 2 GreedyRandomizedSolution(L)

1: Sinit = [ ]
2: while Sinit does not cover F do
3: Q← best L vertices 6∈ Sinit w.r.t. Criterion (2)
4: v ← pick at random one vertex from Q
5: Sinit ← push back v

6: return Sinit

Algorithm 3 LocalSearch(Sinit)

1: S′init ← 2-OPT(Sinit)
2: Sl1 ← ExchangeProcedure(S′init)
3: Sl2 ← EliminationProcedure(Sl1)
4: S′l2 ← 2-OPT(Sl2)
5: return S′l2

It is worth to point out that each iteration is largely in-
dependent from the others and the algorithm can be easily
parallelized, achieving a linear speed up, as discussed in [13].

4.1 Randomized Greedy Solution
To construct an initial randomized greedy solution Sinit

for our problem, we first define a greedy strategy for cover-
age. Greedy strategies have been largely studied and eval-
uated in the field of on-line coverage (i.e., exploration and
mapping [2]), where the state-of-the-art methods use greedy
criteria based on combinations of distance and expected cov-
ered area, in order to select the next pose to visit in a par-
tially explored environment. Taking inspiration from these
works, we define a greedy strategy for our problem that, at
each iteration, creates an elite set from which the next ver-
tex v ∈ V is chosen. More precisely, given a (partial) tour
Sinit = [v1, ..., vi] and the set of already-covered vertices
Ci = ∪ij=1C(vj), the next vertex vi+1 added to Sinit is se-
lected randomly from the best L vertices, ordered according
to:

arg max
v 6∈Sinit

|C(v) \ Ci|
d(vi, v)

(2)

where d(vi, v) is the distance between the vertex v and the
last vertex vi of Sinit on the movement graph G and |C(v)\
Ci| is the number of newly covered vertices if the robot
moves to v (note that, differently from on-line problems,
we know the exact amount of new covered vertices). In the
selection of the first vertex of Sinit, the distance d(·, ·) is
neglected and put equal to 1. As shown in Algorithm 2, at
each iteration, a vertex vi+1 = v is chosen randomly from
the L best vertices stored in an elite set Q, obtaining a new
partial solution Sinit = [v1, ..., vi+1].

The GreedyRandomizedSolution(·) procedure stops when
Sinit = [v1, ..., vk] covers all the free cells, namely when
∪ki=1C(vi) = F . When this happens, Sinit is returned.

4.2 Local Search
The local search procedure consists of an exchange phase

and a removal phase. Both work on feasible solutions and, at
each step, they check whether a certain move can be applied
or not.

The local search first runs the exchange phase, which tries
to substitute a vertex in Sinit with a vertex in V but not
in the tour Sinit. Among all the possible substitutions, the
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one that produces the maximum decrease of the tour cost is
selected. Once the solution cannot be further improved by
this move (that is, a local optimum is reached) the solution
obtained Sl1 is returned and the second phase is run.

In the second phase, called removal phase, the algorithm
tries to remove vertices from Sl1. If, excluding a vertex
vi from Sl1, the solution is still feasible (i.e., it covers all
the free cells in F ), vi is removed from the tour and its
preceding and following vertices are directly linked, obtain-
ing Sl2 = [v1, ..., vi−1, vi+1, ..., vk]. Also in this case, among
all the possible removals, the one that maximally decreases
the cost of the solution is selected, until a local optimum is
reached. The idea behind this second phase is that, espe-
cially in the initial steps of the greedy solution, some unnec-
essary vertices could be selected. This redundancy provides
a certain degree of freedom in the exchange phase, which,
however, cannot modify the number of vertices in the tour.
For this reason, once the exchange phase finds a local op-
timum, we try to simplify as much as possible this tour,
removing unnecessary vertices to improve the tour cost.

Before and after running the local search, a simple 2-
OPT procedure [5] is applied to Sinit and Sl2, respectively.
This local optimization, originally designed for the TSP, re-
verts some parts of the tour, aiming at improving the over-
all cost. More precisely, for each pair of vertices in the
tour, the 2-OPT procedure reverts the order of the vertices,
i.e., given vi, vj ∈ V with i < j, the portion of the tour
[vi, vi+1, ..., vj−1, vj ] becomes [vj , vj−1, ..., vi+1, vi]. If the
overall cost is reduced, the changing is accepted, discarded
otherwise. The reason behind this further local optimiza-
tion is twofold: not only the final solution cost is lowered
in many cases, but improving the solution Sinit also reduces
the computational cost of the exchange phase, which, in gen-
eral, may take a while to reach a local optimum (as we will
see in Section 4.3).

The local search procedure is summarized in Algorithm 3.

4.3 Convergence and Complexity
We now analyze the complexity of the GRASP method

defined above, from a worst-case point of view, with re-
spect to the total number of vertices in the movement graph,
n = |V | and to the size k of the tour initially found by
GreedyRandomizedSolution(·). Such a complexity analysis
has to take into account the convergence of the local search
to a local optimum.

First, note that the creation of the initial greedy solution
and all the local search procedures are in sequence. This
means that the complexity of the whole GRASP is the sum
of each single procedure complexity, times the number of it-
erations (which we assume to be a constant number). Hence,
the asymptotical GRASP complexity is the complexity of
the procedure with the highest computational cost.

Let us start analyzing GreedyRandomizedSolution(·). The
complexity of a single iteration is the complexity of evaluat-
ing all the vertices not yet in the tour, plus the complexity
of picking at random a vertex from the best L ones. When
evaluating the function in (2), the distance can be computed
in O(n2) by using Dijkstra’s algorithm, while the number of
newly covered vertices can be obtained in O(n2) by incre-
mentally storing those already covered. The set of L-best
vertices can be created in O(n) and random picking a vertex
and appending it to the partial tour are both constant-time

operations. Since the number of iterations is, by definition,
equal to k, the whole procedure complexity is O(kn2).

The 2-OPT(·) procedure can be computed in O(k3) for a
straightforward implementation.

Let us leave aside the exchange phase for a moment and
focus on the removal phase. For each vertex vi in the tour,
the EliminationProcedure(·) computes the improvement in
removing vi, by simply subtracting the new local cost of
d(vi−1, vi+1), to the old one, d(vi−1, vi) + d(vi, vi+1) (taking
into account also the sensing cost of vi). Each elimination
move must be feasible (that is, the new tour has to still cover
all the free cells). A feasibility check can be done by check-
ing whether all the cells covered by vi (whose number is a
constant depending on r and θ) are covered by at least one
other vertex in the tour. If the covering function is imple-
mented through a sparse matrix, the feasibility check can be
done in O(k) (note that no other procedure modifies the tour
size before the removal phase). The removal of a vertex that
produces the largest improvement without harming tour fea-
sibility can be computed in O(k2) for a single elimination
move. Since the maximum number of vertices that can be
removed is bounded by k, the removal phase converges to a
local optimum in O(k). Thus, the EliminationProcedure(·)
complexity is O(k3).

We now focus on the complexity of a single move in the
exchange phase. ExchangeProcedure(·) tries to exchange a
vertex not in the tour with a vertex in the tour. All the
possible combinations are O(kn) and a feasibility check can
be done in O(k), following a reasoning similar to the one
of the removal phase. Also in this case, the maximum im-
provement exchange can be identified during the computa-
tion of the values for all possible exchanges, giving a single
move complexity of O(k2n). Let us now bound the conver-
gence complexity. Let γ be the cost of the input solution for
ExchangeProcedure(·), γ∗k be the minimum cost for a tour of
size k, δ be the smallest sensing time minv∈V T (v) plus the
smallest edge weight in the movement graph G, and ∆ be
the largest sensing time maxv∈V T (v) plus the largest edge
weight in the movement graph G. It is easy to check that
δ is the least improvement an exchange move can attain.
Hence, the maximum number of moves needed to converge
to a local optimum is

γ − γ∗k
δ

, (3)

where γ is bounded by the worst-case tour, that is, a tour
traversing all the n vertices in the graph every time the
robot moves from a pose to another. Being k the length of
the tour, we have the following bound on the convergence
complexity:

γ − γ∗k
δ

≤ ∆kn− γ∗k
δ

≤ ∆

δ
kn. (4)

Consequently, assuming ∆ and δ as constants, the complex-
ity to converge for ExchangeProcedure(·) is O(kn), which,
along with the complexity of a single move, leads to an over-
all complexity of O(k3n2).

As a consequence, the complexity of our GRASP method
is also O(k3n2), being ExchangeProcedure(·) the procedure
with the highest complexity. Despite this worst-case com-
plexity, in the next section we show that the GRASP method
we propose is efficient in finding good quality solutions (that
is, solutions whose cost is low) in randomly generated and
in realistic grids.
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Figure 2: Two examples of randomly-generated grids. The
density of free cells in the grids is about 90%.

Note that, as we discussed in the previous section, ap-
plying 2-OPT before ExchangeProcedure(·) (see Algorithm
3) has the effect to improve γ, and thus to reduce the gap
γ − γ∗k , mitigating the worst case complexity for the most
critical phase of our GRASP method.

4.4 Global Optimum
One could wonder whether our GRASP method has a non-

zero probability to reach a global optimum. It is easy to
show that there always exists a value of the parameter L
such that the GRASP we defined has a non-zero probability
to find an optimal solution. This is equivalent to say that,
for some value of L, GreedyRandomizedSolution(L) creates
a solution that, passing through LocalSearch(·), becomes an
optimal solution S∗. To show that this is always possible,
let us proceed backward, starting from S∗ and undoing the
moves of LocalSearch(·): if the solution obtained S∗init (the
one given as input to the local search) can be generated with
non-zero probability by GreedyRandomizedSolution(L), for
some value of L, we proved the statement. This is always
true, since, for L = |V |, the GreedyRandomizedSolution(L)
can generate any possible (feasible) solution.

However, this result does not say anything about the min-
imum value of L such that a globally optimal solution can
be found with non-zero probability. It turns out that such a
value of L is strictly related to the specific problem instance.
In Section 5 we discuss the tuning of L.

5. EXPERIMENTS
In this section we present the experimental results ob-

tained on different environments. To validate our meta-
heuristic approach, we compare the costs of the solutions
(time taken to complete the tour, composed of travelling
and perception time) found by our GRASP method with
those of the solutions obtained by the state-of-the-art algo-
rithm presented in [3] and here called “cSPP+TSP” that, as
discussed in Section 2, solves two independent subproblems.
We implement our method in C++1 (using uniform pseudo-
random generation and samping) and we use the cSPP im-
plementation in Matlab/Gurobi, as kindly provided by the
authors of [3], along with a shelf TSP solver implementation.
An unbiased comparison between computing times of our
approach and those of cSPP+TSP is not straightforward,
since, even leaving aside the Matlab wrapping, a significant
part of the computational burden is delegated to commer-

1Code is available upon request.

θ = π

r = 10 r = 15

grid size cSPP+TSP GRASP cSPP+TSP GRASP

10×10 30.3 (3.9) 20.4 (3.6) 35.7 (2.6) 19.9 (1.7)

20×20 97.2 (4.6) 75.4 (4.6) 91.9 (5.3) 58.9 (3.6)

30×30 189.7 (8.2) 160.3 (5.4) 179.4 (7.8) 140.1 (4.0)

40×40 331.6 (7.7) 289.2 (6.9) 299.6 (6.5) 241.8 (8.9)

θ = π
2

r = 10 r = 15

grid size cSPP+TSP GRASP cSPP+TSP GRASP

10×10 39.4 (3.2) 24.9 (2.3) 42.5 (2.7) 24.9 (2.1)

20×20 110.1 (4.6) 96.0 (3.2) 104.7 (5.2) 77.9 (3.2)

30×30 235.9 (7.8) 219.4 (4.9) 214.7 (5.8) 177.2 (5.2)

40×40 403.8 (10.3) 378.3 (9.9) 346.8 (12.3) 312.2 (7.3)

Table 1: Average costs (and 95%-confidence values) of the
solutions found by our GRASP method and cSPP+TSP, for
different grid sizes and values of r and θ. Bold indicates the
best results.

cial and fully-optimized solvers (i.e., Gurobi and Concorde).
For this reason the comparison will mostly address the cost
of the solutions found and only limitedly the effort spent to
find them. Both approaches are compared on random grids
of various sizes and on the grid discretization of a real indoor
environment, taken from a public repository. In both cases,
we consider different covering tool parameters (range r and
angle θ). Moreover, we provide the computational times ob-
tained by running our software on realistic-size instances.
All the algorithms are run on a computer equipped with an
Intel Core i7@2.70 GHz CPU and 16 GB RAM. In the ex-
periments, we set the costs (time) for rotation movements

(from α(i) to α(i+1) or vice versa), for straight movements
(between adjacent cells), and for perception (function T (·))
to 0.5, 1, and 1, respectively.

5.1 Random Grids
Random grid environments are generated starting with a

grid only composed of free cells and then randomly adding
obstacle cells, guaranteeing the strong connection property
(namely, each free cell must be reachable from all the other
free cells considering 4-connectivity), until the percentage of
free cells in the grid is about 90% of the total amount of
cells. Figure 2 shows two examples of randomly generated
grids. For each grid size, we create 10 different random grids
and we compute the average cost of the solutions found. The
range r of the sensor tool is set to 10 or 15 (cells) and the
angle range θ can be π

2
or π.

After some preliminary experiments, we set the parameter
L = 16, randomizing over the 16 locally-best vertices (see
Section 4.1). An analysis of the impact of the parameter L
is reported later. In our experiments, we stop the GRASP
algorithm after 64 iterations (the stopping criterion of Algo-
rithm 1).

Table 1 reports the results obtained with our GRASP
method and with cSPP+TSP. The GRASP method always
outperforms cSPP+TSP, especially when the number of poses
needed to cover the environment tends to be small (r = 15
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Figure 3: Average computing times (bold line) and 95%-
confidence intervals (thin lines) of a single iteration of our
GRASP method. The average computing times has been
computed over 10 instances of each grid size in {5× 5, 10×
10, ..., 65× 65}.

and θ = π). To explain this result, first note that, if we call
A (one of) the minimum sets of perception poses needed to
cover a given environment (that is, an art gallery solution
found in step (a) of [3]), all the tours that visit less than |A|
poses violate the coverage constraint and thus cannot be so-
lutions for the coverage problem. Increasing r and θ, the size
of A decreases and the space of possible solution enlarges as
all tours visiting more than |A| poses are potential solutions
(note also that there are no guarantees that a tour with few
poses is shorter than a tour with more poses). This means
that problems with small r and θ values tend to be more
constrained and the TSP part of the cSPP+TSP tends to
become predominant. Hence, from a coverage point of view,
problem instances with large-range covering tools are intrin-
sically harder to solve with the two-step approach of [3].

The size, in terms of number k of poses, of the solution
tours produced by our GRASP method is usually larger
(about 50%) than that of the solution tours produced by
cSPP+TSP. This means that, in general, our tours are over-
all faster but make more perceptions (consequently, greatly
reducing the travel time). The reason is that, in solving the
first subproblem of cSPP+TSP, the number of poses is min-
imized. An interesting observation is that this minimiza-
tion is independent of the sensing time, namely the tours
produced by cSPP+TSP have the same number of poses re-
gardless of the sensing time. On the other hand, our method
produces tours with a number of poses that depend on the
time required to make a perception. If this time is small, as
we have considered in our experiments, then the number of
poses is relatively large. If the sensing time grows, then the
number of poses returned by our method decreases, eventu-
ally approaching that returned by cSPP+TSP for very large
sensing times.

Figure 3 shows the computing times for a single iteration
of our GRASP method. Notice that the x-axis is quadratic
w.r.t. the instance size n, so the curve looks much steeper
than what actually is. The growth exhibits a cubic shape in
the number of vertices of the movement graph and, although
our not fully-optimized and research-oriented implementa-
tion, the single iteration times seem compatible with many
practical applications (consider that paths are calculated of-

Figure 4: A real indoor environment map, from the Radish
repository.

fline). Also, the total time available to find a solution can
be easily set by the user, who can tune the number of the
GRASP iterations. One of the key aspects of GRASP is
that, differently from cSPP+TSP, the amount of computa-
tional resources and the time available to solve the problem
can be traded-off with the quality of the solution found. In-
deed, one can increase the number of iterations and the L pa-
rameter obtaining better incumbent solutions, at the cost of
an higher computing time. Moreover, GRASP can be easily
speeded up by running iterations in parallel. For instance,
using openMP in our C++ implementation, we computed
64 iterations for a 60×60, in less then 4 minutes, paralleliz-
ing over 8 cores. The time our method takes to perform 64
iterations is comparable with that required by cSPP+TSP,
as we found in our experiments and also reported in [3],
even though this not constitute a rigorous comparison of
the computational times, because of the different languages
and environments, as already discussed above.

5.2 Real Environment
To further assess our metaheuristic approach we compare

the costs of its solutions with those obtained by cSPP+TSP
on a real indoor environment (see Figure 4), taken from
the Radish repository2. A grid cell of our representation
corresponds to 15×15 pixels of the original map image. A
cell is free if all the corresponding pixels are white (clear),
it is an obstacle otherwise. All the other settings are equal
to those used for random grids.

The results shown in Figure 5 confirm those obtained on
random grids, highlighting the improvement in the solution
quality obtained by our approach, which becomes more ev-
ident as r and θ increase. Note that cSPP+TSP does not
always return better solutions when r increases. This rein-
forces the idea that optimizing independently the two sub-
problems (a) and (b) (see Section 2) does not necessarily
provide good solutions.

We use the real environment of Figure 4 as benchmark to
evaluate how the costs of the solutions found by our ap-
proach change with the parameter L. For this purpose,
we fix r = 15 and θ = π and we run 1000 iterations for

2http://cres.usc.edu/radishrepository/view-one.
php?name=sdr_site_b
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Figure 5: Costs of the solutions found by our GRASP
method and cSPP+TSP, for different values of r and θ.

L ∈ {4, 8, 16, 32}. From the solutions found by all the iter-
ations for a given L, we compute the empirical distribution
F̂1000(x) defined as the fraction of solutions found with cost
less than or equal to x. The empirical distribution is shown
in Figure 6 together with a zoomed version for small values
of x (namely, for the high-quality solutions). An intuitive
result is that, increasing the value of L, the average cost of
the solutions increases due to randomization. Indeed, the
mean costs we found for L ∈ {4, 8, 16, 32} are 433.5, 433.6,
435.8, and 441.7, respectively. However, the probability of
finding high-quality solutions can decrease with small and
large values of L, as shown in Figure 6. Specifically, for
L = 4, the GRASP method is too constrained by an almost-
deterministic initial solution, which traps the algorithm in
few local optima. On the contrary, for L = 32 the initial so-
lution created by GreedyRandomizedSolution(·) is “too ran-
dom” to quickly converge to good solutions. For this reason,
L = 8 and L = 16 are the values that perform better, pro-
viding a good compromise between the time to converge to
good solutions and the probability to find a high-quality so-
lution. In fact, they have found the two solutions with the
least cost in the environment of Figure 4. An open issue for
further investigation is to find relationships between values
of L and the problem setting (e.g., environment size and
density of obstacles).

Figure 6 shows also the cost of the solution found by
cSPP+TSP w.r.t. the cost distribution of the GRASP. It is
worth to point out that, at the first iteration of the GRASP,
the cost of the incumbent found is lower than that obtained
by cSPP+TSP with a probability of about 75%, for L = 8.
After only 5 iterations the same probability is 1 − 0.255 ∼
99.9%. This simple numerical example further highlights the
reliability of our GRASP in terms of the cost of the solutions
found.

6. CONCLUSIONS
In this paper, we presented a method based on the GRASP

methodology for solving a version of the coverage problem
in which an autonomous mobile robot has to sweep, with
a tool of limited range and limited angular field of view, a
grid environment. Our approach features two phases, which
are iteratively performed: one in which an initial feasible
covering tour is randomly created and another one in which
this tour is improved by local modifications. Experiments

Figure 6: Empirical distribution F̂1000(x) computed over
1000 samples (iterations) for L ∈ {4, 8, 16, 32} (top) and
a zoomed portion of the distribution in the region of high-
quality solutions (bottom).

in randomly generated grids and in a grid representing a
real environment show that the proposed method consis-
tently outperforms a state-of-the-art method for covering
grids with limited-footprint tools.

In the future, it would be interesting to extend our method
to environments that are discretized with non-regular pat-
terns, for example according to the footprint of the covering
tool and to the presence of obstacles. Moreover, a more
detailed analysis of the possible bounds on the difference
between the quality of the covering tour returned by our
method and that of the optimal covering tour (which is in
general unknown) could be carried out. Finally, incorporat-
ing uncertainty (e.g., of localization and locomotion) in the
method and extending it to multirobot settings represent
promising research directions.
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