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Introduction

In this paper, we propose solid admissibility that is a strengthened version of
Dung’s admissibility [4] to obtain the most acceptable set of arguments. Besides,
other solid extensions based on solid admissibility are defined. Such extensions
not only include all defenders of its elements but also exclude all arguments indi-
rectly attacked and indirectly defended by some argument(s). We also aggregate
solid extensions by using approaches from judgment aggregation. Especially, al-
though no quota rule preserves Dung’s admissibility for any argumentation frame-
work [2], we show that there exist quota rules preserve solid admissibility for any
argumentation framework.

Basic Definitions

Argumentation Framework. An argumentation framework AF is a pair 〈Arg,⇀〉,
where Arg is a finite and non-empty set of arguments, and ⇀ is a binary relation
on Arg. For any A,B ∈ Arg, A ⇀ B (or A attacks B) denotes that (A,B) ∈⇀.

Indirect attack and defense. An argument A indirectly defends an argument B
iff there exists a finite sequence A0, . . . , A2n such that (i) B = A0 and A = A2n,
and (ii) for each i, 0 6 i < 2n, Ai+1 ⇀ Ai. An argument A is controversial w.r.t.
an argument B iff A indirectly attacks and indirectly defends B. Note that direct
attackers (resp. defenders) are also indirect attackers (resp. defenders).

Defense Function and Neutrality Function. Given AF = 〈Arg,⇀〉. The defense
function d : 2Arg→ 2Arg of AF is defined as:

d(∆) = {C ∈ Arg | ∆ defends C}. (1)

The neutrality function n : 2Arg→ 2Arg of AF is defined as:

n(∆) = {B ∈ Arg | NOT ∆ ⇀ B}. (2)

Dung’s Semantics. Given AF = 〈Arg,⇀〉. For any ∆ ⊆ Arg, (i) ∆ is a conflict-
free extension iff ∆ ⊆ n(∆); (ii) ∆ is a self-defending extension iff ∆ ⊆ d(∆); (iii)
∆ is an admissible extension iff ∆ ⊆ n(∆) and ∆ ⊆ d(∆); (iv) ∆ is a complete
extension iff ∆ ⊆ n(∆) and ∆ = d(∆); (v) ∆ is a preferred extension iff ∆ is a
maximal admissible extension; (vi) ∆ is a stable extension iff ∆ = n(∆); (vii) ∆
is the grounded extension iff ∆ is the least fixed point of the defense function d.

Aggregation Model. A property σ of extensions can be regarded as a subset
of 2Arg, namely, σ ⊆ 2Arg. Then the set of the extensions under a semantics is
a property, e.g., completeness is the set of the complete extensions of AF. For
any formula ϕ in LAF, we let Mod(ϕ) = {∆ ⊆ Arg | ∆ � ϕ}, namely, Mod(ϕ)
denotes the set of all models of ϕ. Obviously, σ = Mod(ϕ) is a property. When
using a formula ϕ to characterize such a property, ϕ is referred to as an integrity
constraint.

Given AF = 〈Arg,⇀〉. Let N = {1, · · · , n} be a finite set of agents. Suppose
that each agent i ∈ N reports an extension ∆i ⊆ Arg. Then ∆ = (∆1, · · · ,∆n)
is referred to as a profile of extensions. An aggregation rule is a function
F : (2Arg)n→Arg, mapping any given profile of extensions to a subset of Arg.

Quota rules. Let N be a finite set of n agents, and let q ∈ {1, · · · , n}. The quota
rule with quota q is defined as the aggregation rule mapping any given profile
∆ = (∆1, · · · ,∆1) ∈ (2Arg)n of extensions to the set including exactly those
arguments accepted by at least q agents:

Fq(∆) = {A ∈ Arg | #{i ∈ N | A ∈ ∆i} > q}. (3)

Preservation. Let σ ⊆ 2Arg be a property of extensions of AF. Then an aggre-
gation rule F : (2Arg)n → 2Arg for n agents is said to preserve σ if F (∆) ∈ σ for
every profile ∆ = (∆1, · · · ,∆n) ∈ σn.

Solid Semantics

To obtain the most acceptable arguments, we formally introduce solid admissibility in this
section. We argue that the most acceptable arguments should satisfy two criteria: (i) they
should have defenders as many as possible, and (ii) they should avoid the undesirable
interference of some arguments. We will show that arguments in admissible extensions
satisfy the criteria. Firstly, we strengthen Dung’s defense. A set of arguments solidly
defends an argument iff this set defends (in Dung’s sense) this argument and contains all
the defenders of each element of this set.

Solid defense. Given AF = 〈Arg,⇀〉. ∆ ⊆ Arg solidly defends (or s-defends) C ∈ Arg iff
for any B ∈ Arg, if B ⇀ C, then ∆ ⇀ B and B ⊆ ∆.

Solid defense function. Given AF = 〈Arg,⇀〉. The solid defense function ds : 2Arg −→
2Arg of AF is defined as follows. For any ∆ ⊆ Arg:

ds(∆) =
{
C ∈ Arg | ∆ s-defends C

}
(4)

Dung’s Fundamental Lemma has a counterpart in solid semantics. The following lemma
states that when we have a s-admissible extension, if we put into this extension an argument
that is s-defended by this extension, then the new set is still a s-admissible extension.

S-Fundamental Lemma. Given AF = 〈Arg,⇀〉, a s-admissible extension ∆ ⊆ Arg, and
two arguments C, C ′ ∈ Arg which are s-defended by ∆. Then (i) ∆′ = ∆ ∪ {C} is
s-admissible and (ii) ∆′ s-defends C ′.

Solid admissibility. Given AF = 〈Arg,⇀〉. ∆ ⊆ Arg is a s-admissible extension iff
∆ ⊆ n(∆) and ∆ ⊆ ds(∆).

The definition above states that a set of arguments is a s-admissible extension iff the set is
conflict-free and s-defends each of its elements.

We develop some solid semantics based on solid admissibility. These semantics strengthen
Dung’s semantics in the sense that for a solid extension ∆, there exists a Dung’s extension
Γ such that ∆ is a subset of Γ.

Solid semantics. Given AF = 〈Arg,⇀〉. For any ∆ ⊆ Arg:
• (i) ∆ is a s-complete extension iff ∆ ⊆ n(∆) and ∆ = ds(∆);

• (ii) ∆ is a s-preferred extension iff ∆ is a maximal s-admissible extension;

• (iii) ∆ is a s-stable extension iff ∆ = n(∆) and for any argument A /∈ ∆, A ⊆ ∆;

• (iv) ∆ is the s-grounded extension iff ∆ is the least fixed point of ds.

Characterization for Solid Semantics

We can capture solid semantics by using propositional formulas with the techniques in [1].
These formula are used for aggregation in the next section. Given AF = 〈Arg,⇀〉. For any
∆ ⊆ Arg,

• ∆ is s-self-defending iff ∆ � ICSSwhere ICSS ≡
∧
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∧
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;

• ∆ is s-reinstating iff ∆ � ICSR where ICSR ≡
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;

• ∆ is s-admissible iff ∆ � ICSA where ICSA ≡ ICCF ∧ ICSS;

• ∆ is s-complete iff ∆ � ICSC where ICSC ≡ ICSA ∧ ICSR;

• ∆ is s-preferred iff ∆ is a maximal model of ICSA;

• ∆ is s-grounded iff ∆ is the least model of ICSC.

Main Results

From a skeptical view, it is not cautious to accept an argument that is indirectly
attacked and indirectly defended by some argument. But such arguments may
be acceptable in Dung’s semantics. Theorem 1 states that they never occur in
s-admissible extensions. Interestingly, this theorem also guarantees that any
argument in any odd-length cycle never occur in s-admissible extensions.

Theorem 1. Given AF = 〈Arg,⇀〉 and a s-admissible extension ∆ ⊆ Arg.
If an argument A ∈ Arg is controversial w.r.t. an argument B ∈ Arg, then B /∈ ∆.

Although no quota rule preserves Dung’s admissibility for any argumentation
framework [2], we show that there exist quota rules (e.g. the strict majority rule)
preserve solid admissibility for any argumentation framework.

Theorem 2. Given AF = 〈Arg,⇀〉. Any quota rule Fq for n agents with q > n
2

preserves solid admissibility for AF.

Comparison

Fig. 1: An overview of solid semantics and Dung’s semantics

We can tune the parameters for attackers and defenders to obtain defenses with
different levels of strength in graded semantics [5]. But It is impossible to char-
acterise solid semantics by tuning the parameters since different attackers may
have different numbers of counter-attackers. In prudent semantics [3], whenever
an argument A is controversial w.r.t. an argument B, both prudent semantics
and solid semantics can prevent A and B from occurring in the same extension.
But there is a difference between these two types of semantics. Both A and B
can occur in a prudent extension separately. However, B is excluded from any
s-admissible extension, while A might occur in some s-admissible extension.
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