

Online Learning of Shaping Reward with Subgoal Knowledge

Takato Okudo*1, Seiji Yamada*2*1

*1 The Graduate University for Advanced Studies(SOKENDAI), *2 National Institute of Informatics(NII)

Introduction

To accelerate learning in Reinforcement Learning
 SARSA-RS needs aggregation of states to an abstract state.

? Aggregation of the SARSA-RS is often very difficult because the designer access to all the state is required.

 \checkmark Our method accesses to only subgoals.

Background

Potential-based Reward Shaping

A reward transformation using the potential-based reward shaping remains the optimal policy. Formally,

$$F(s,s') = \gamma \Phi(s') - \Phi(s)$$

An agent update its policy with a environmental reward r and shaping reward F.

SARSA-RS

SARSA-RS used a state value V as the potential $\Phi.$ The state value was defined over an abstract state Z.

 $F(z, z') = \gamma V(z') - V(z)$

The aggregation $S \mapsto Z$ was required.

Mehod

Traditional Aggregation

The aggregation explicitly maps all the states S into abstract states Z.

In particular, this aggregation is difficult for a designer to be provided in an environment with continuous states such as pinball domain.

Dynamic Trajectory Aggregation

This method aggregates the visited states until a subgoal achievement, and shaping them by a value over an abstract state Z_i . This aggregation is generated from only subgoal.

Dynamic trajectory aggregation makes it easy to expand applications of SARSA-RS.

Experiment

User study

We recruited 10 participants. Two subgoals are provided by each participant and the total number of subgoals is 20.

Evaluation

The navigation task in pinball, which has a reward on the goal. A state is continuous and an action is discrete.

Result

HRS: Our method with participants' subgoals
RRS: Our method with random subgoals
AC: Actor-critic as basis RL method.
NRS: Naïve reward shaping which generate positive potential only when subgoal achievement.

HRS outperforms the other four methods.

Participants'

Random * Two subgoals are used in each learning.

Subgoal