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Abstract

This paper focuses on the multi-agent credit assignment
problem. We propose a novel multi-agent reinforcement
learning algorithm called meta imitation counterfactual
regret advantage (MICRA) and a three-phase framework
for training, adaptation, and execution of MICRA. The
key features are: (1) a counterfactual regret advantage
is proposed to optimize the target agents’ policy; (2) a
meta-imitator is designed to infer the external agents’
policies. Results show that MICRA outperforms
state-of-the-art algorithms.

Background: Stochastic Game

A stochastic game is defined as a 7-tuple
G=(5N,A T, R, O,Q), where:

» S is a set of states. s’ is the state at time t:

» N ={1,...,n} is a set of n agents;

» A= A; X ... X A, is a set of joint actions, where A; is the agent i's
action set. a* = [aj, ..., a}] is the joint action at time t;

» T:5x AxS —[0,1] is the transition probability function;

» O = 0; X...x 0,is a set of joint observations, where O; is the agent
i's observation set. Joint observation at time t is 0" = [o1, ..., O/ ];

» 2:S5 x A— O is the observation function:

» R={Ry,...,R,} is the reward function set, where R; : S x A — R is
the reward function for agent /. L

Background: Meta Learning

The objective of meta learning can be described as
follows:

H;
minEr 7  Li(x'a")] )
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0

where x' ~ Pi(-[xf, af), at ~ F(-|x°, x, . x5 6)
Meta-learning has been widely used in supervised
learning, and single-agent reinforcement learning.
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Framework

The proposed three-phase framework integrates
the CTDE (Lowe,17) paradigm with the
meta-learning process (Finn,17).
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Algorithm: Counterfactual Regret Advantage

(1) A centralized critic evaluates a regret value
for an agent with the assumption that other
agents follow the current policies; (2) Multiple
actors independently update their individual
policies minimizing the regret value.

Immediate counterfactual regret advantage:
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CRA based policy gradient:
H
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Algorithm: Meta Imitation Learning Evaluation

The objective of Ml is: d“ﬁ“aﬁ‘}“ . Biviael [ e
min > L7 (5(:07))
~ Ti~p(T) (4) ér
S.t. (9; —0; — ozadeQiL%((S(-; (9,))
where p(7) is the distribution of all external
agents’ policies. 6, is the meta parameters
which will be used as initial parameters in o redator
online adaptation phase. m ey
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Algorithm: Network Structures
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» State feature extractor, which extracts the high-level
feature from the raw data. — MICRA —— COMA —— DPIGN —— ARM

D
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» Meta-imitator, which monitors the external agents’
observation-action pairs, and learns an inference model
to predict their behaviors with meta-imitation learning.
The module’s output layer is softmax, which generates
the probability of all available actions to the external
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Actor, which trains the individual policy for each
targeted agent using the CRA policy gradient.
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Figure: Offline training: the learning curves on different tasks (red line

o S C o is ours).
Critic, which trains a joint Q-function using temporal

difference learning and computes CRA for instructing
each actor to update its policy correctly.
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