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Bi-level optimization framework that leverages a portfolio of . Y
Learning coordination strategies with semantically meaningful local rewards to optimize team reward. fitﬁzr:s} ;
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High spatial and temporal coupling domain knowledge.
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3. Shared Replay Buffer: Enables sharing of information — EA
across evolutionary population and the skill learners. - o
- | Rover Concurrent learning of local skills and team reward optimization, © 06
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Search and Rescue Task: MADYS outperforms Prior methods 7 ;W B
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one robot to simultaneously lift a Time Steps (in millions)
person/ Object_ eg.- 2 agents need to CCEA: Operates directly on low level actions Training curves of MADyYS, MFL and CCEA
observe a POL. MFL: CCEA searches the most optimal skills, which are pre-trained
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separately in simple environment without access to team objective.

Temporal Coupling: Agents need to , .
sequentially complete different MADYS learns to solve long horizon task by solving subtasks, by ] fr.o?r(l) :"&’;‘YA [ }fl:ogrjr(l) i"(")":}’B

dynamically forming sub-teams.

components of task. First execute a
“search” policy in a team before Results demonstrate MADYS is more sample efficient than MFL.
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Conclusions and Future Work
POI A->POI-B->POI-C

MADYS leverages local skills to solve complex

An agent recelves reward When the COOrdInatlon tasksl o o

team finishes the task. Solves long horizon tasks with sparse rewards by £ 2
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Histograms showing distribution shift of local skills with time



