
Anytime Multi-Agent Path Finding via Large Neighborhood Search: Extended Abstract
Jiaoyang Li (jiaoyanl@usc.edu),1 Zhe Chen,2 Daniel Harabor,2 Peter J. Stuckey,2 Sven Koenig1

1University of Southern California, 2Monash University

Abstract
Multi-Agent Path Finding (MAPF) is the challenging
problem of computing collision-free paths for multiple
agents. MAPF algorithms can be categorized on a spec-
trum. At one end are (bounded-sub)optimal algorithms
that can find high-quality solutions for small problems.
At the other end are unbounded-suboptimal algorithms
that can solve very large practical problems but usually
find low-quality solutions. In this paper, we consider a
third approach that combines both advantages: anytime
algorithms that quickly find an initial solution, includ-
ing for large problems, and that subsequently improve
the solution to near-optimal as time progresses. To im-
prove the solution, we replan subsets of agents using
Large Neighborhood Search. Empirically, we compare
our algorithm MAPF-LNS to the state-of-the-art any-
time MAPF algorithm anytime BCBS and report signifi-
cant gains in scalability, runtime to the first solution, and
speed of improving solutions.

2 MAPF-LNS
Large Neighborhood Search (LNS)

LNS [2] combines the power of Con-
straint Programming (CP) (or Mixed Inte-
ger Programming) and Local Search (LS).

Neighborhood: Fix a subset of variables to
their values in the best solution found so far.

MAPF-LNS
MAPF-LNS is an anytime MAPF algorithm motivated by LNS.

• Initialize: Find a MAPF solution (by any non-optimal MAPF
solver).

• Destroy: Select a subset of agents As.

• Repair:

– Fix the paths for the agents not in As and plan collision-
free paths for the agents in As (by a modified MAPF
solver).

– Replace the old paths if the new ones result in a smaller
sum of the travel times.

Adaptive LNS (ALNS)
ALNS [1] makes use of multiple destroy heuristics by recording their relative success in improving solutions and
choosing the next neighborhood to explore guided by the most promising heuristic.

4 Empirical Evaluation

Warehouse

Game

m
Solution cost Subopti
Initial Final mality

250 13,199 635 ≤1.03
300 18,587 1,400 ≤1.06
350 25,539 3,979 ≤1.14

Results of MAPF-LNS on hard
instances

m
Solution cost Subopti

Initial Final mality
700 20,713 4,473 ≤1.04
800 25,885 7,408 ≤1.05
900 31,888 12,186 ≤1.08

Results of MAPF-LNS on hard
instances

Summary: On easy instances, that anytime BCBS can solve, MAPF-LNS has higher success rates, smaller runtimes to the first solution, and better final solutions than anytime
BCBS. On hard instances, that anytime BCBS cannot solve, MAPF-LNS can rapidly improve the costly initial solution and quickly converge to a near-optimal solution.

3 Neighborhood Selection
Agent-Based Neighborhood

Select the most delayed agent and the subset of agents
that block this agent.

Map-Based Neighborhood
Select the agents that visit the same “intersection” loca-
tion.

Select a subset of 3 agents
from the left figure:

Agent-based method selects
{1, 2, 3}, as agent 3 is de-
layed the most and blocked
by agents 1 and 2.

Map-based method selects
{2, 4, 5}, if the grey tile is
the selected intersection.

Acknowledgement
Jiaoyang Li performed the research during her visit to Monash University. The research at the University of Southern California was supported by the National Science Foundation (NSF) under grant numbers 1409987, 1724392, 1817189, 1837779, and 1935712 as well as a gift from Amazon. The
research at Monash University was supported by the Australian Research Council under Discovery Grant DP190100013 and DP200100025 as well as a gift from Amazon.

[1] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.
[2] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP), pages 417–431, 1998.

1 Background
Multi-Agent Path Finding (MAPF)

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

1755

[Picture credits: P. R. Wurman et al. Coordinating Hundreds of Cooperative,

Autonomous Vehicles in Warehouses. AI Magazine 29, 1 (2008), 9-20.]

Input:

• A graph G = (V,E).

• A set of agents {ai|i = 1, · · · ,m}, each with a
start location si ∈ V and a target location gi ∈ V .

Output:

• A set of collision-free path, one for each agent,
that minimizes the sum of the travel times.


