Approximating Spatial Evolutionary Games using Bayesian Networks
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Background

Evolutionary Game Theory (EGT)

e Application of game theory to evolving populations

Spatial Evolutionary Game

e EGT model on structured population (e.g. grid)
e Spatial EGT=(A,S,U,G, F, v, M)
o A-setof Magents, S - set of strategies

o U - payoff matrix 51 %2
o G - graph of population structure U = S;pa b
m N(i) - neighborhood of agent i - s, ¢ d

o F - replicator rule (e.g. Fermi rule)

Interaction Phase
e Each agentA can play some strategy s. € S and

receive payoff 1r T = Z Uls;. SjJ
JEN (i)
Update Phase
e Percentage of agents y use rule F to update their
strategies based on the payoffs received and
neighbor’s payoffs
1

(1+e~slm'—7))
e Small probability y of mutating to a random strategy

Pre(o, ') =

T iterations: interaction phase, update phase

Problem Statement

Current Approach

o Difficult to validate
o Need to be repeated many times

e Alternative methods such as pair approximation
o Not very accurate

Proposed Approach

e Model using Dynamic Bayesian Networks (DBN)
e Approximate the spatial evolutionary game through
the DBN truncation by exploiting symmetry
o Better accuracy than pair approximation with
respect to stochastic simulations.

Spatial EGT Model

e Evaluate using agent-based Monte-Carlo simulations
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Dynamic Bayesian Network Model

Exact Model

We define a Dynamic Bayesian Network (DBN) that fully

captures our spatial evolutionary game.

Given a spatial EGT = (A, S, U, G, F, vy, y), the DBN
(X(t), D(t), P(t)) is defined as follows:

The variable set X(t) = A(t) U Pay(t):
o A(t): S(t), the strategy of agent A at each iteration t

e Pay (t): the payoff received by the agent A. during the

interaction phase at time t.

The probability functions P(t) are defined:
For a payoff variable

Pr(Pay;(t) | Ai(t), N(Ai(t)))

1 if Payi(t) = 2 jen(i) U(Ai(1), Aj(1))
0 otherwise

For a strategy variable

e Pr(A(t+1)|parents) can be expressed as a decision
tree. For example, with the Fermi rule:
o update: did an update happen?
o mut: did mutation happen?

o rand: which neighbor was chosen?

e Example: if (update = 1) and (mut = 0):
Pr(A(t +1); = sg+1 | Ai(t) = s¢, other parents) =

Z EI—)I'/~(1-)CZHI" I-)Qyj )I)l'(s( 1 = Pl'@) . PI‘@
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where

Prs = 14;(t+1)=A;(t), PTo = La;(t+1)=4;(¢)
Evaluation
e (Can use DBN tools to evaluate
o Message passing inference
e Exact inference can be computationally expensive
o Solution: we can exploit symmetry
e Proposal: approximate by truncation
o Convert from DBN to iterative 2-timestep BNs

Exact DBN Model

Truncation Approximation

Truncation Neighborhood

e Choose subset of agent nodes as input neighborhood
e Construct a 2-timestep Bayesian Network (BN) that
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Experimental Setup

on a 50 x 50 grid

e Compare with average of 20 agent-based simulations

Strategies

takes nodes in input neighborhood to target
neighborhood using CPTs from exact model

e TJarget neighborhood may consist of only one or two

nodes

Exact Model ;
Probability Functions

Input (t-1) Target (t)

Output query

e Query a selection of lower order distributions from

target neighborhood

Input definition
e 2-timestep BNs are not connected like DBN

o Joint distribution of input neighborhood at next
timestep is unknown

e \We use a probability tree approximating the input

neighborhood using distributions from previous output

v

Approximate BN Model

T-3 T-2 P T-2 T-1 P T-1 T

e Four different levels of approximation:
o BN-MF: 8 nodes (without tree approximation)
o BN-PA: 8 nodes
o BN-Medium: 13 nodes
o BN-Large: 25 nodes

Prisoner’s Dilemma
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e |arger approximation neighborhoods reduce error

e Erroris reduced even in cases such as snowdrift
where pair approximation does not have good
guantitative agreement with simulation results

Future Research

e Tune approximation parameters to balance accuracy
and complexity

e EXxplore impact of approximate inference algorithms
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