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Introduction

In many risk-aware and multi-objective reinforcement
learning (MORL) settings the utility of a user is derived from
the single execution of a policy.

In such settings the expected return, or value, does not
provide sufficient critical information about the potential
positive or adverse effects a decision may have.

In this case, it is essential to replace the expected value with
a posterior distribution over the expected utility of the
returns (ESR).

We propose a novel algorithm, Distributional Monte Carlo
Tree Search (DMCTS), which learns a posterior distribution
over the expected utility of the returns.

We implement and demonstrate DMCTS for both risk-aware
and multi-objective problems under the ESR criterion.

A full version of the paper can be found at the following link: https://arxiv.org/abs/2102.00966.

Distributional Monte Carlo Tree Search

To compute the distribution we first calculate the accrued
returns, R−t . The accrued returns is the sum of rewards
received during the execution phase as far as timestep, t,
where rt is the reward received at each timestep,

R−t =
t−1∑

0
rt.

Secondly, we must calculate future returns, R+
t . The future

returns is the sum of the rewards received when traversing
the search tree during the learning phase and Monte Carlo
simulations from timestep, t, to a terminal node, tn,

R+
t =

tn∑
t
rt.

The cumulative returns, Rt, is the sum of the accrued returns,
R−t and the future returns, R+

t .

Algorithm 1:Update Bootstrap Distribution
1 Input: i← Node in the tree
2 Input: Rt ← Cumulative Returns
3 J← node.bootstrapDistribution
4 for j, ..., J bootstrap replicates do

5 Sample dj from Bernoulli(1/2)
6 if dj = 1 then

7 αij = αij + u(Rt)
8 βij = βij + 1
9 end

10 end

We use a bootstrap distribution to approximate the posterior
[2]. To update the bootstrap distribution at each node we use
Algorithm 1.

The agent then executes the action, a∗, which corresponds
to the following:

a∗ = arg max
i

αij

βij
.

Experiments

We evaluate DMCTS in a risk-aware problem domain [4]
under ESR using the following non-linear utility function:

u = 1− e−rt. (1)

To evaluate DMCTS in the risk-aware domain, we compare
DMCTS against Q-learning [5].

To evaluate DMCTS in a multi-objective setting under ESR,
we use the Fishwood problem [3] with the following
non-linear utility function:

u = min
(
fish,

⌊wood
2

⌋)
. (2)

To evaluate DMCTS in the Fishwood domain, we compare
DMCTS against C51 [1], EUPG [3], and Q-learning [5].

As shown in Figure 1 and Figure 2, DMCTS learns good
policies in risk-aware settings and achieves state-of-the-art
performance in MORL under ESR.
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Figure 1:Results from the risk-aware environment.
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Figure 2:Results from the fishwood environment.
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