
Simultaneous Learning of Moving and Active Perceptual Policies 

for Autonomous Robot

Motivation

Humans/animals can move their bodies, heads, and eyes actively to perceive 

the state of the environment they are surrounded by, autonomous robots 

should also do that.

However: 

• Optimizing perceptual behaviors is not explicitly treated as a problem in a 

common setting, what the robot learns to perceive depends on the 

environment or task.

• Specifying what the robot should perceive every time according to the 

environment or task is not scalable.
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Experiments in partially observable environment

Contribution

• A novel approach for improving the task achievement of a robot by integrating 

motion and perceptual planning.

• A novel policy update technique using a meta-evaluation makes autonomous 

robots optimize moving and perceptual policies simultaneously without rewards 

from an environment.

Meta-evaluation and optimization of policies

Factorizing MDP

We assume that two policies exist in one robot, and each policy takes the same 

camera image as input.

ℰ1, ℰ2 : two same environments.

𝜋𝜃
𝑚 : the moving policy.

𝜋𝜙1

𝑐 , 𝜋𝜙2

𝑐 : the perceptual policies in  ℰ1 and ℰ2.

𝑉𝑤1, 𝑉𝑤2 : the value functions for 𝜋𝜃
𝑚 in  ℰ1 and ℰ2.

Preliminary

Evaluating a contribution of the perceptual policy

𝑢𝑡
𝑐2 = ൝

argmax 𝜋𝜙2
𝑐 ҧ𝑠𝑡 with probability 1 − 𝜖

a random action ҧ𝑠𝑡 with probability 𝜖

The meta-evaluator 𝕍 quantifies the contribution of perceptual policies for a task 

achievement by comparing the values 𝑉𝑤1 and  𝑉𝑤2 in each environment.

Update rule of policies and value functions

𝜋𝜃
𝑚, 𝑉𝑤1 :  A2C [1] using a trajectory by a rollout of 𝜋𝜃

𝑚 with updated 𝜋𝜙1

𝑐 in ℰ1.

𝜋𝜙2

𝑐 : REINFORCE with a cumulative reward replaced by the meta-evaluator 𝕍.

Map 

Single room with three obstacles. 
Observations 

Two field-of-views: narrow and wide.

Actions

𝑢𝑚 : move-forward, turn-left/right

𝑢𝑐 : look-forward/left/right

Each agent rotates 15 degrees.

Results

Settings

Fixed_Forward: The camera is fixed in the forward direction.

• The meta-evaluation process successfully allows the perceptual policy to acquire 

observations that are favorable to the moving policy for task achievement.

• ε-greedy exploration of perceptual behavior leads to intuitive results for us.

Ours(ε=0.3)

Ours(ε=0.1)

Joint: A single agent has a joint action 𝑈𝑚 × 𝑈𝑐.

Curriculum[2]: Joint agent with pre-trained without any obstacles.

IA2C: 𝜋𝑚 and 𝜋𝑐 are trained separately by A2C.

Narrow fov Wide fov

πc

πm

Problem setup

The state transition reflects a realistic environment:

• The robot’s movements affect which direction the camera faces whereas the 

camera’s movements do not affect the robot’s movements.

• Only 𝜋𝑚 gets a reward from an environment.

Moving policy that controls the robot’s movement.

𝑉𝑤2: copy updated 𝑉𝑤1.

𝜋𝜙1

𝑐 : soft-update rule with updated 𝜋𝜙2

𝑐 .  

Empirical: controlling perceptual behaviors

Perceptual policy that decides where to face a 

camera mounted on the robot.

agent

goal obstacles

We found that ε-greedy exploration is beneficial to learn better perceptual policy 𝜋𝜙2

𝑐

rather than an entropy regularization of A2C.

Conclusion

∇𝜙2𝐽 𝜋𝜙2
𝑐 = 𝔼 ҧ𝑠𝑡,𝑢𝑡

𝑐 ∈𝜏2
[∇𝜙2log 𝜋𝜙2

𝑐 ut
c ҧ𝑠𝑡 𝕍]

𝜙1 = 𝛼𝜙2 + 1 − 𝛼 𝜙1

∇𝜃𝐽 𝜋𝜃
𝑚 = 𝔼(𝑠𝑡,𝑢𝑡𝑚)∈𝜏′1

[∇𝜃log 𝜋𝜃
𝑚 ut

𝑚 𝑠𝑡 𝐴𝑤1 𝑠𝑡 , 𝑢𝑡
𝑚 ]

ℒ(𝑤1) = 𝑟 𝑠𝑡 , 𝑢𝑡
𝑚 + 𝛾𝑉𝑤1 𝑠𝑡+1 − 𝑉𝑤1(𝑠𝑡)

2


