

BRANCH-AND-BOUND HEURISTICS FOR INCOMPLETE DCOPS

PROBLEM DEFINITION

Distributed Constraint Optimization Problems

Washer	Dryer	Discomfort
04:00	05:00	4
04:00	04:00	45
23:00	05:00	8
23:00	04:00	10

Dryer	Iron	Discomfort	
05:00	05:00	15	
05:00	06:00	11	
04:00	05:00	21	
04:00	06:00	30	

Figure 1: DCOPs

Objective:

Finding an optimal solution that minimizes constraint costs (e.g. the best schedule for the devices that minimizes the users' discomfort)

Limitation of DCOPs:

Unrealistic assumption of apriori knowledge on all constraint costs

SOLVING DCOPS

Distributed Synchronous <u>Branch-and-Bound</u>

Figure 5: SyncBB Search Algorithm

- Variables / Agents: W, D, and I

- Values: 0 and 1

- Constraints: WD and DI

REFERENCES

[1] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. A multiagent system approach to scheduling devices in smart homes. In AAMAS, 2017.

[2] Rajiv T Maheswaran, Milind Tambe, Emma Bowring, Jonathan P Pearce, and Pradeep Varakantham. Taking dcop to the real world: Efficient complete solutions for distributed multi-event scheduling. In AAMAS, 2004.

Atena M. Tabakhi, Yuanming Xiao, William Yeoh, and Roie Zivan* Washington University in St. Louis, *Ben-Gurion University of the Negev

MODEL

To address the limitation of DCOPs: we introduce Incomplete DCOPs (I-DCOPs)

Washer	Dryer	Discomfort	Elic
04:00	05:00	4	0
04:00	04:00	?	20
23:00	05:00	8	0
23:00	04:00	?	9

Dryer	Iron	Discomfort	Elic
05:00	05:00	15	0
05:00	06:00	?	3
04:00	05:00	?	29
04:00	06:00	30	0

Figure 2: Incomplete DCOPs (I-DCOPs)

I-DCOPs: constraints can be partially specified

- Unknown costs are denoted by '?'
- Eliciting unknown constraints incurs costs

Objective:

Finding a solution that minimizes both **constraint** costs and elicitation costs

BRANCH-AND-BOUND HEURISTICS

We proposed distributed **heuristics**:

- CAC Heuristic: Child's Ancestors' Constraints: computes the estimated cost recursively and includes all **ancestors** costs
- ADC Heuristic: <u>Agent's Descendants' Constraints:</u> computes the estimated cost recursively and includes all **descendants** costs

To solve an I-DCOP, our approach:

- Employs SyncBB to interleave search with elicitation
- Applies heuristics to speed up SyncBB

Advantages SyncBB with heuristics: as shown in Figure 4

- Smaller # of elicitations
- Smaller # of expanded nodes in the search tree
- Faster runtime
- Better quality solutions

WHAT THIS PAPER IS ABOUT IN 30 SECONDS!

Heuristics to elicit preferences from users in distributed multi-agent problems modeled with constraint optimization.

Scan the QR code with Your Phone to Read the Paper

