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Introduction

e Increased demand for self-organized and autonomous
networks to address the growing complexity of
modern cellular networks.

e Networks are required to ensure acceptable Quality of
Service (QoS) to each user connected to the network.

e Reinforcement Learning is a promising solution for
optimal decision and control of agents in an uncertain
environment.

e Large-scale exploration performed by RL algorithms can
lead to unsafe states.

e Inthis work, we demonstrate a novel approach for
guaranteeing safety by applying model-checking
techniques.

Contributions

e Ageneral automatic framework taking user input in form
of a LTL specification and deriving a policy that fulfils it.

e Blocking control actions that violate the Linear Temporal
Logic (LTL) specification.

o Novel system dynamics abstraction to computationally
efficient Markov Decision Process (MDP).

e Userinterface allowing the user to graphically access all
the steps of the approach.

Applicability to other domains

o Ageneral architecture that can be applied to

any framework in which the dynamical system under
consideration is abstracted into an MDP.

e Example other applications: robot planning with states

of the MDP representing the state of the environment
that the robot can move in. LTL tasks include both

reachability and safety.
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The initial user intent, which can be written in LTL format
is translated into an intent automaton.

By gathering experience data tuples from the RL agent
trained in simulation environment, we construct the

system MDP.

By computing the product between the MDP with the
intent automaton, we have access to all system
behaviors.

By applying model checking and graph techniques, we
are able to find the traces that violate the LTL task.

If there exists some unsafe and safe traces the process
moves to a shield strategy that blocks the actions that
leads to unsafe traces.
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Algorithm

Input: User specification ®

: Gather experience replay (s, a,r,s’) from data;
: Discretize states into Nj. State space size is | S|Nb;

Construct the MDP dynamics (S, A, P, R, y);

: Translate the LTL formula @ to a BA A,;

Compute the product 7= MDP ® A, and pass it to model checker;

: Model checking returns traces that violate ¢;
: If no safe traces found Modify/Relax ¢
: Else Block unsafe actions by function Shield(MDP, 7).

Conclusions and future work

e We have demonstrated an architecture for network KPIs =~
optimization guided by user-defined intent specifications given in
LTL.

e  Oursolution consists of MDP system abstraction, automata
construction, and model-checking techniques.

e  Future efforts will be devoted towards applying the proposed
framework in other telecom use cases as well as robot planning.
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