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Introduction

● Increased demand for self-organized and autonomous
networks to address the growing complexity of 
modern cellular networks.

● Networks are required to ensure acceptable Quality of
Service (QoS) to each user connected to the network.

● Reinforcement Learning is a promising solution for 
optimal decision and control of agents in an uncertain 
environment.

● Large-scale exploration performed by RL algorithms can 
lead to unsafe states.

● In this work, we demonstrate a novel approach for 
guaranteeing safety by applying model-checking 
techniques.

Contributions

● A general automatic framework taking user input in form 
of a  LTL specification and deriving a policy that fulfils it.

● Blocking control actions that violate the Linear Temporal 
Logic (LTL) specification.

● Novel system dynamics abstraction to computationally
efficient Markov Decision Process (MDP).

● User interface allowing the user to graphically access all 
the steps of the approach.

Applicability to other domains

● A general architecture that can be applied to 
any framework in which the  dynamical system under 
consideration is abstracted into an MDP.

● Example other applications: robot planning with states
of the MDP representing the state of the environment
that the robot can move in. LTL tasks include both
reachability and safety.

● The initial user intent, which can be written in LTL format
is translated into an intent automaton.

● By gathering experience data tuples from the RL agent
trained in simulation environment, we construct the
system MDP.

● By computing the product between the MDP with the
intent automaton, we have access to all system
behaviors.

● By applying model checking and graph techniques, we
are able to find the traces that violate the LTL task.

● If there exists some unsafe and safe traces the process
moves to a shield strategy that blocks the actions that
leads to unsafe traces.

Algorithm

Conclusions and future work

● We have demonstrated an architecture for network KPIs 
optimization guided by user-defined intent specifications given in 
LTL.

● Our solution consists of MDP system abstraction, automata 
construction, and model-checking techniques. 

● Future efforts will be devoted towards applying the proposed 
framework in other telecom use cases as well as robot planning.
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Video link: https://www.ericsson.com/en/reports-and-papers/research-papers/safe-ran-control
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