On weakly and strongly popular rankings

Sonja Kraiczy*, Ágnes Cseh, David Manlove

What are popular rankings?

Popularity is all about robustness against majority swings!

We have a set V of voters and a set C of candidates. Each voter submits a ranking π_v (strictly ordered list) of the candidates. Whether a voter prefers one ranking π to another σ is calculated based on the Kendall distance.

 $K(\pi, \sigma) = |\{(a, b) | \pi \text{ and } \sigma \text{ disagree on the relative rank of } a \text{ and } b\}|$

Goal: A ranking π of the candidates avoiding the scenario that a majority of voters prefer another candidate ranking.

Popular rankings may not exist

Van Zuylen et al. [1]: A popular ranking has to be topologically sorted, but even without a Condorcet paradox, a popular ranking may not exist.

Definition: *c*-sorted ranking: If candidate *a* is ranked above candidate *b*, at least a *c*-fraction of the voters prefer *a* to *b*. *topologically sorted rankings are* $\frac{1}{2}$ *-sorted*

Theorem: $\frac{3}{4}$ is the smallest constant *c* such that any *c*-sorted ranking is weakly-popular.

2k,2k-1 2k-1,2k

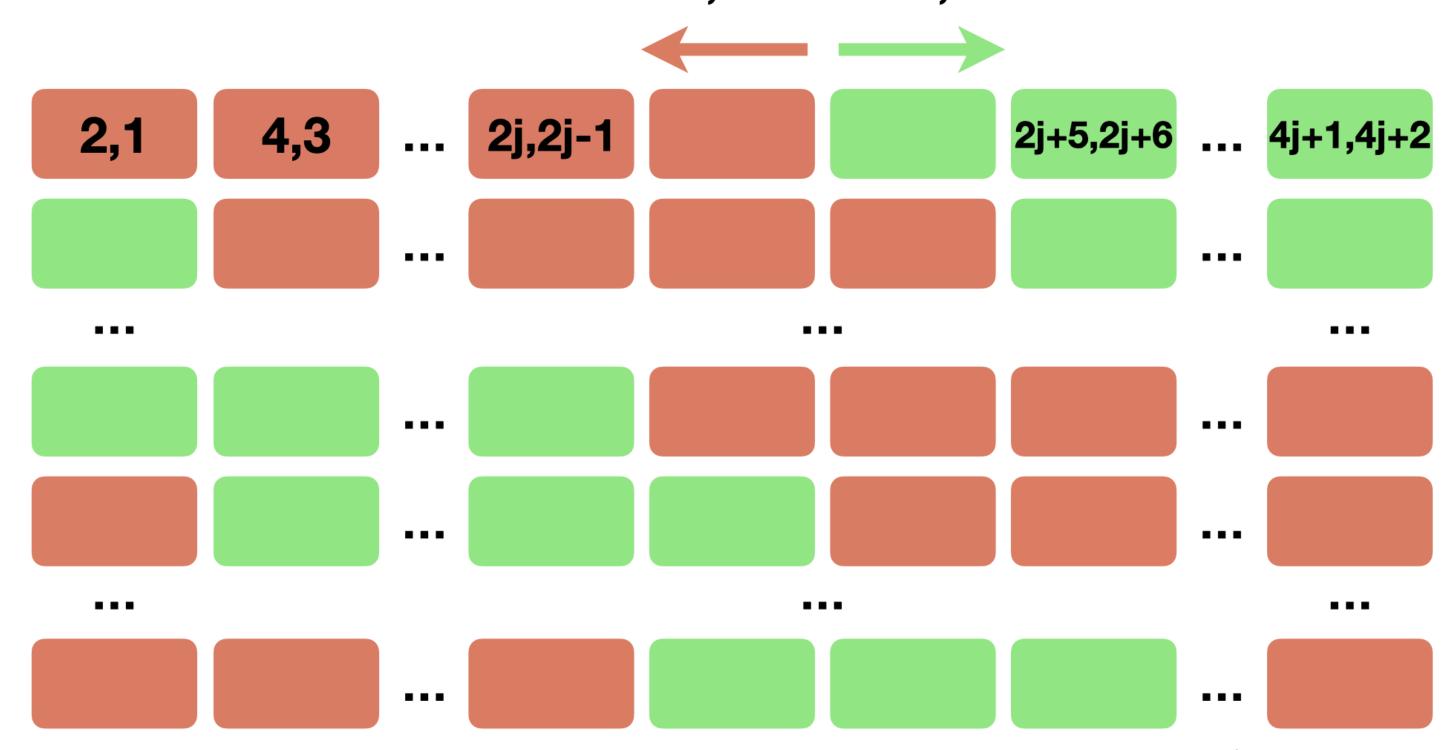
A ranking π is **weakly popular** if compared against any other ranking σ , π is preferred to σ by at least half of the voters (Van Zuylen et al. [1]).

Strong and weak popularity

If many voters abstain, the devil is in the non-abstaining voters.

Say we have 100 voters and 10 candidates, and we have two rankings π and σ where 51 voters abstain (i.e., they like π equally as much as σ) but 49 prefer π to σ . Intuitively, we want to prevent σ from being popular!

Solution: A ranking π is **strongly popular** if compared against any other ranking σ , it is preferred by at least half of the *non-abstaining* voters.



This is a construction with 4j voters to show that for any $\epsilon > 0$, the $\frac{3}{4} - \epsilon$ -sorted ranking may not be weakly popular.

When the abstaining voters are not in your favour :(

Context: Two rankings, σ and π and a majority of all voters who don't abstain prefers π to σ . So σ is not strongly popular.

Popular rankings in the hierarchy of rankings

Rankings

Kemeny consensus rankings

Topologically sorted rankings

Weakly popular rankings

Strongly popular rankings

Discovering unpopularity

Question: Given a ranking π , find a ranking σ that is preferred by a majority of voters or output that it does not exist.

Theorem: If the abstaining voters are themselves Condorcetparadox-free, then σ is not even weakly popular!

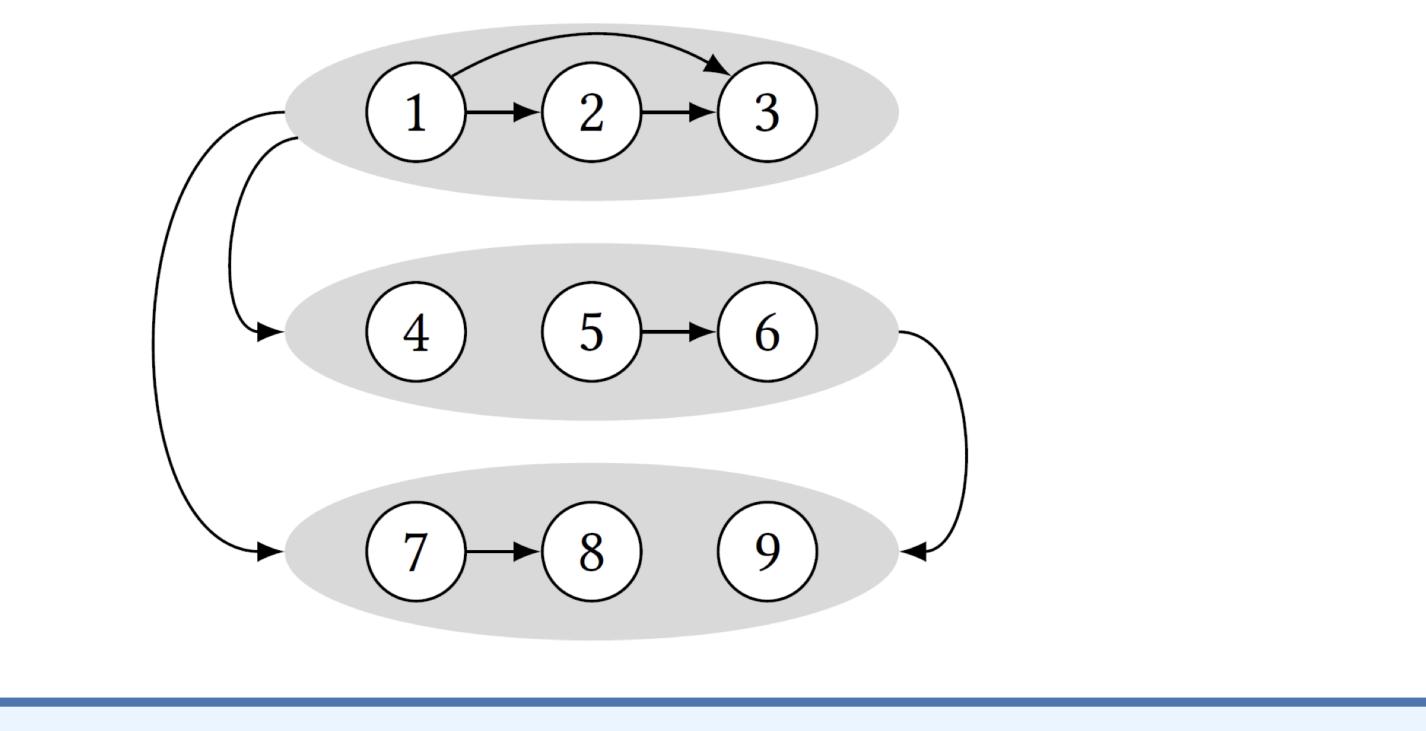
Consequences:

1. Weak and strong popularity are the same if $n \leq 5$.

2. For at least 6 voters, they are not in general the same. The following instance has a ranking that is weakly popular but not strongly popular.

 $\pi_{v_1} = [1, 2, 3], [6, 4, 5], [8, 9, 7], \pi_{v_2} = [2, 3, 1], [4, 5, 6], [9, 7, 8]$ $\pi_{v_3} = [3, 1, 2], [5, 6, 4], [7, 8, 9], \pi_{v_4} = [1, 2, 3], [4, 5, 6], [7, 8, 9]$ $\pi_{v_5} = [1, 2, 3], [5, 4, 6], [9, 7, 8], \pi_{v_6} = [1, 2, 3], [5, 6, 4], [7, 9, 8]$

The majority graph of the instance:



6/7 voters: This is NP-hard for 7 voters (Van Zuylen et al. [1]). It is also NP-hard for 6 voters and the version, in which we seek σ preferred by a majority of non-abstaining voters for 6/7 voters.

4/5 voters: Theorem: If it was poly-time solvable, then the Kemeny consensus ranking problem for 3 voters, currently an open problem, is too!

2/3 voters: Easy, as topologically sorted rankings are weakly/strongly popular.

[1] Anke van Zuylen, Frans Schalekamp, and David P. Williamson. 2014. Popular ranking. *Discrete Applied Mathematics* 165 (2014), 312–316. * Sonia Kraiczy@morton ov as uk, supported by the Undergraduate Research Bursary 10, 20, 66

* Sonja.Kraiczy@merton.ox.ac.uk, supported by the Undergraduate Research Bursary 19-20-66 from the London Mathematical Society, and by the School of Computing Science, University of Glasgow.