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REQUIREMENTS :

Quality Maximize
Assurance Revenue

We model our problem as an Integer
Linear Program (ILP) where a planner
needs to select a subset of agents, each
with its own quality and cost, so as to
maximize revenue whilst ensuring that

the average quality is above a threshold.

We propose a dynamic programming
based algorithm, DPSS to solve for it.

But What If Qualities g
Are Unknown ?
We consider a setting where the

qualities of the agents are unknown to
the planner beforehand and needs to

estimated through sequential selection.

We model this as a Multi Arm Bandit
problem and leverage the popular UCB
algorithm to design an abstract
algorithm SS-UCB.

The algorithm takes in input the
available agents, their costs, quality
threshold (a), tolerance parameter (¢,)
and a suitable offline subset selection
algorithm, SSA.

Algorithm 2 SS-UCB

Inputs: N, a, €2, R, costs ¢ = {c¢; }ieN
For each agent i, maintain: w!, g¢, (§7)*
T 32]“—]; t=0

: while ¢ Zs 7 (Explore Phase) do

Play a super-arm S’ = N

Observe qualities X{, Vi € S* and update w}, ¢
te—t+1

: while ¢t < T (Explore-Exploit Phase) do

For each agent i, set (§)* = ¢¢ + [%
i

10:  S"=SSA({(§])*}ien, ¢, a + e2,R)
11: Observe qualities X{, Vi € S* and update w!, §
12: te—t+1
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Key Results
Using DPSS as our SSA in Algorithm 2
(DPSS-UCB), we show that :

1. DPSS-UCB returns a subset which
approximately satisfies the quality
constraint with a high probability after t
rounds, where Tt~ O(In T)
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2.. The algorithm incurs a regret of O(In T)
after T rounds
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Approximate but Faster Solution
The time complexity of DPSS is of O(2"), which
makes it difficult to scale when n is large. We
propose an approximate, greedy-based,
polynomial time, O(n logn), algorithm, GSS, to
our ILP. Further, we empirically show that by
using GSS as the SSA in Algorithm 2
(GSS-UCB), we achieve similar results to
DPSS-UCB.
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