How to Guide a Non-Cooperative Learner to Cooperate: Exploiting No-Regret Algorithms in System Design

Nicholas Bishop, Le Cong Dinh, Long Tran-Thanh

Motivation

- We investigate a repeated *two-player game setting* where the column player is also a designer of the system, and has *full control* over payoff matrices
- We assume that the row player uses a *no-regret algorithm* to efficiently learn how to adapt their strategy to the column player's behaviour over time
- The goal of the column player is to *guide her opponent* into picking a mixed strategy which is preferred by the system designer.
- Applications: *wildlife patrol* [1], *designing network infrastructure* [2]

Model

- Before play begins, the row player selects a payoff matrix $A \in \mathbb{R}^{m \times n}$.
- For each time t = 1, ..., T the row player chooses a mixed strategy $x_t \in$ Δ_m and the column player selects a mixed strategy $y_t \in \Delta_n$.
- After each time step, the row player (column player) receives payoff $x_t^T A y_t (-x_t^T A y_t)$ and observes $A y_t (-x_t^T A)$.
- Assume that the row player uses a *stable no-regret algorithm*:

 $\forall t: y_t = y^* \Rightarrow x_{t+1} = x_t.$

• Key Idea: Choose matrix which has unique minimax equilibria containing the desired mixed strategy for the column player.

References

[1] Moore et al. (2018) "Are ranger patrols effective in reducing poaching-related threats within protected areas?" In: J Appl Ecol. 2018; 55: 99–107 [2] Schlenker et al. (2018) "Deceiving Cyber Adversaries: A Game Theoretic Approach" In: AAMAS 2018 [3] Dinh et al. (2020) "Last Round Convergence and No-Instant Regret in Repeated Games with Asym-metric Information" In: arXiv, abs/2003.11727

Southampton

Games with Unique Minimax Solutions

• Key Idea: Construct matrices so that desired mixed strategy satisfies the KKT conditions for the linear programming formulation of zero-sum games, and that ensure that the resulting linear program has a unique solution [4].

Theorem 1. Let $\mathbf{x} \in \Delta_n$, $\mathbf{y} \in \Delta_m$ such that $k = support(\mathbf{x}) < l =$ support (y). Let the matrix A be of the form

	a_1	α_2		α_k	β_1		β_1
	α_1	a_2		α_k	β_2	•••	β_2
			•••				
A =	α_1	α_2		a_k	β_k	•••	β_k
	$\alpha_1 - z$	$\alpha_2 - z$	•••	$\alpha_k - z$	υ		υ
			•••				
	$\alpha_1 - z$	$\alpha_2 - z$	•••	$\alpha_k - z$	υ	•••	υ

where the parameters of A satisfy

$$\begin{split} 0 &< v_1 < v\bar{y}, \qquad \bar{y} = \sum_{i=k+1}^l \mathbf{y}_i, \quad z = \frac{v\bar{y} - v_1}{\sum_{i=1}^k \mathbf{y}_i}, \\ \beta_i &= v, \quad \alpha_i = v + \frac{x_i(v\bar{y} - v_1)}{\mathbf{y}_i}, \quad a_i = \alpha_i - \frac{v\bar{y} - v_1}{\mathbf{y}_i} \ \forall i \in [k]. \end{split}$$

then x is the unique minimax strategy for the row player in the zerosum game described by A.

Algorithm 1: Last Round Convergence with Asymmetry (LRCA) algorithm

Input: Current iteration t, past feedback $x_{t-1}^{\top}A$ of the row player, minimax strategy y^* and value v of the game. **Output:** Strategy y_t for the column player if t = 2k - 1, $k \in \mathbb{N}$ then $y_t = y^*$ if $t = 2k, k \in \mathbb{N}$ then $e_t := \operatorname{argmax}_{e \in \{e_1, e_2, \dots, e_m\}} x_{t-1}^\top A e$ $f(x_{t-1}) := \max_{y \in \Delta_m} x_{t-1}^\top Ay; \quad \alpha_t := \frac{f(x_{t-1}) - v}{\max(\frac{n}{4}, 2)}$ $y_t := (1 - \alpha_t)y^* + \alpha_t e_t$

Applications 25:151–162

• Key Idea: The column player plays according to an algorithm which guarantees last round convergence to minimax equilibria. • Simple approaches do not work!

Theorem 6. Suppose the row player follows a FTRL algorithm with regularizer R(x) defined as:

Last Round Convergence in Two-Player Zero-Sum Games

CLAIM 2. If support $(\mathbf{x}) > 1$, then there is no guarantee that if the column player repeatedly plays y^* , the row player will eventually converge to \mathbf{x}^* .

• Instead, the column player can guarantee last round convergence by playing according to the LRCA algorithm [3]..

• Key Idea: Make use of stability by playing the minimax strategy on odd rounds so that the future behaviour of the row player is predictable • Move towards the minimax strategy slowly on even rounds.

THEOREM 4. Assume that the row player follows a stable no-regret algorithm and n is the dimension of the row player's strategy. Then, by following LRCA, for any $\epsilon > 0$, there exists $l \in \mathbb{N}$ such that $\frac{\mathcal{R}_l}{l} = O(\frac{\epsilon^2}{n})$ and $f(\mathbf{x}_l) - v \leq \epsilon$.

When the row player uses a no-regret algorithm with optimal regret bound, then LRCA guarantees that the row player will reach an ε-Nash equilibrium in $O(\varepsilon^{-4})$ rounds.

Stability of No-regret Algorithms

• Our results assume that the no-regret algorithm employed by the row player is stable.

• In the full version of the paper, we show that *many classical families of* no-regret algorithms are stable.

$$x_t = \operatorname*{argmin}_{x \in \Delta_n} x^\top \left(\sum_{i=1}^{t-1} Ay_i \right) + R(x).$$

If there exists a fully-mixed minimax equilibrium strategy for the row player, then FTRL is stable.