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Value function factorization methods (e.g., VDN, QMIX) for

multi-agent reinforcement learning (MARL) offer promising

performance in the StarCraft Multi-Agent Challenge

(SMAC). In MARL settings, the environments are highly

stochastic due to the partial observability of each agent and

the continuously changing policies of the other agents. In

order to deal with the above issues, distributional

reinforcement learning (RL) is a potential solution that has

been empirically proven successful in a wide range of single-

agent domains. However, distributional RL has not been

applied to value function factorization methods in MARL

domains to decompose the joint return distribution. In this

work, we bridge the gap between distributional RL and value

function factorization by proposing the Distributional Value

Function Factorization (DFAC) framework as a practical

implementation to generalize expected value function

factorization methods to their distributional variants. DFAC

extends the individual utility functions from deterministic

variables to random variables, and models the quantile

function of the total return as a quantile mixture.
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Independent Q-Learning (IQL) is the simplest value-based learning method

for MARL, where each agent attempts to maximize the total rewards

separately. This causes unstationarity due to the changing policies of the

other agents and may not converge. Thus, value function factorization

methods are introduced to enable centralized training of factorizable tasks

based on the IGM (Individual-Global-Max) condition, where optimal

individual actions result in the optimal joint action of the group of agents:

argmax𝐮𝑄jt 𝐡, 𝐮 =

argmax𝑢1𝑄1 ℎ1, 𝑢1
⋮

argmax𝑢K𝑄K ℎK, 𝑢K

The previous VDN and QMIX methods assume additional premises: 

additivity and monotonicity, respectively, to simplify the tasks:

(Additivity) 𝑄jt 𝐡, 𝐮 = σ𝑘=1
K 𝑄𝑘 ℎ𝑘, 𝑢𝑘

(Monotonicity) 𝑄jt 𝐡, 𝐮 = 𝑀 𝑄1 ℎ1, 𝑢1 , … , 𝑄K ℎK, 𝑢K

where 
𝜕𝑀

𝜕𝑄𝑘
≥ 0, ∀𝑘 ∈ {1, … , K}

Value-based Methods for Fully Cooperative MARL Distributional RL methods have been proved

empirically to outperform expected RL methods in

various single-agent RL (SARL) domain. The

distributional Bellman operator 𝑇𝜋 is proved to have a

contraction in 𝑝-Wasserstein distance 𝑊𝑝, ∀𝑝 ∈ [1,∞):

𝑇𝜋𝑍 𝑠, 𝑢 =
𝐷
𝑅 𝑠, 𝑢 + 𝛾𝑍 𝑠′, 𝑢′

𝑊𝑝 𝑋, 𝑌 = න
0

1

|𝐹𝑋
−1 𝜏 − 𝐹𝑌

−1 𝜏 |𝑑𝜏

1/𝑝

Implicit Quantile Network (IQN) is by far the most

light-weight distributional RL algorithm. It models the

quantile function of the return distribution, and can

efficiently approximate the expectation by inverse

distribution sampling 𝜏𝑖 ∼ 𝑈 0,1 𝑖=1
𝑁 , as follows:

𝑄 𝑠, 𝑢 = 𝔼 𝑍 𝑠, 𝑢

= න
0

1

𝐹−1 𝑠, 𝑢; 𝜏 𝑑𝜏 ≈
1

𝑁


𝑖=1

𝑁

𝐹−1(𝑠, 𝑢; 𝜏𝑖)

DFAC Framework and Mean-Shape Decomposition

The naive generalization of the distributional form of IGM does not satisfy IGM 

in general. Thus, we introduced the mean-shape decomposition to separate the 

approximation of the mean and the shape of the return distribution:

𝑍jt = 𝔼 𝑍jt + (𝑍jt − 𝔼 𝑍jt ) = 𝑍mean + 𝑍shape, where

• 𝑍mean = Ψ 𝑠, 𝑄1 ℎ1, 𝑢1 , … , 𝑄K ℎK, 𝑢K
• 𝑍shape = Φ 𝑠, 𝑍1 ℎ1, 𝑢1 , … , 𝑍K ℎK, 𝑢K

= 𝑍state 𝑠 +
𝑘=1

K

𝛽𝑘(𝑠)(𝑍𝑘 ℎ𝑘 , 𝑢𝑘 − 𝑄𝑘 ℎ𝑘 , 𝑢𝑘 )

The factorization network Ψ can be any expected value function factorization 

method, while the shape network Φ can be approximated by a quantile mixture:

𝑍shape 𝜏 = 𝐹state
−1 𝑠; 𝜏 +


𝑘=1

K

𝛽𝑘(𝑠)(𝐹𝑘
−1 ℎ𝑘 , 𝑢𝑘; 𝜏 − 𝑄𝑘 ℎ𝑘 , 𝑢𝑘 )
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A Practical Implementation with Quantile Mixture
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Performance on the StarCraft Multi-Agent Challenge (SMAC)

All experiments are conducted on NVIDIA V100 GPUs. We

generalize the two baselines: VDN and QMIX to their distributional

variant: DDN and DMIX, respectively. The results showed that

DDN and DMIX can achieve outstanding performance in SMAC:

(Median win rates and average scores in SMAC)

The Architecture of the Distributional Value Factorization (DFAC) Framework

Distributional Reinforcement Learning

(The architecture of the DFAC framework)

The Factorization Network Ψ can be any differentiable factorization function (e.g., VDN, QMIX), 

while the Shape Network Φ if defined by a quantile mixture: 
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6h_vs_8z 13.96 15.49 14.02 14.98 19.32 17.81

3s5z_vs_3s6z 15.48 19.77 20.06 17.42 20.68 20.78

MMM2 17.47 19.32 19.45 19.21 21.06 19.69

27m_vs_30m 13.95 18.49 19.46 15.16 19.72 19.40

corridor 19.30 19.38 13.44 19.57 19.97 19.61

Factorization of a toy problem

Super Hard Map IQL VDN QMIX DIQL DDN DMIX

6h_vs_8z 0.00% 0.00% 8.81% 0.00% 83.52% 68.75%

3s5z_vs_3s6z 7.67% 90.91% 65.06% 29.83% 94.60% 90.62%

MMM2 69.32% 87.78% 92.33% 83.52% 97.44% 95.17%

27m_vs_30m 1.70% 64.20% 86.08% 12.50% 94.60% 86.08%

corridor 83.10% 85.23% 4.26% 92.05% 95.45% 90.06%

We demonstrated DFAC’s ability to factorize the

stochastic return of a toy problem with different

implementation of the Shape Network Φ.

(Factorization by Quantile Mixture)

(Factorization by 1D Convolution)


