
Multi-Agent Plan Diagnosis and Negotiated Repair∗

(Demo Paper)

Huib Aldewereld
Depart. of Computer Sciences

Universiteit Maastricht
Maastricht, The Netherlands

h.aldewereld@cs.unimaas.nl

Pieter Buzing
Faculty of EEMCS

Delft University of Technology
Delft, The Netherlands

p.c.buzing@tudelft.nl

Geert Jonker
Inst. of Computing Sciences

Universiteit Utrecht
Utrecht, The Netherlands

geertj@cs.uu.nl

ABSTRACT
In the complex, dynamic domain of Air Traffic Control (ATC)
many unexpected events can happen during the execution
of a plan. Sometimes these disruptions make the plan infea-
sible and require a change of the original plan. Unexpected
events may disrupt the execution of a plan leading to con-
flicts concerning the use of shared resources. By monitoring
the possibly disrupted execution of a plan, air traffic con-
trollers identify and repair conflicts before they occur, mak-
ing the plan ‘healthy’ again. Model-based diagnosis helps to
identify the causes of observed disruptions in the execution
of a plan. This information enables the creation of better
plan repairs. These repairs should efficient, but moreover
they should be fair, i.e., one airline should not be the vic-
tim of conflicts caused by another. Due to the complexity
of planning tasks, it is beneficial to provide a distributed
solution such that the workload is spread instead of cen-
tralised. Moreover, since the choice between various pos-
sible solutions to a conflict in the plan execution directly
influence different parties (with diverting interests), the de-
cision about which solution to choose should not be made
by a single (central) decision maker, but agreed upon by the
different parties involved. The Multi-Agent Diagnosis and
negotiated repair (MAD) demonstrator combines our previ-
ous research done on model-based diagnosis, planning and
scheduling techniques, and methods for multi-agent negoti-
ation to solve this problem in a distributed manner. The
resulting tool is a system to support the control and adap-
tation of distributed plan execution in the domain of ATC.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

Keywords
Plan Repair, Conflict Diagnosis, Negotiation, Multi-Agents

∗Supported by the Technology Foundation STW, applied
science division of NWO and the technology programme of
the Ministry of Economic Affairs (the Netherlands). Project
DIT5780: Distributed Model Based Diagnosis and Repair.

Cite as: Multi-Agent Plan Diagnosis and Negotiated Repair (Demo Pa-
per), Huib Aldewereld, Pieter Buzing, Geert Jonker, et. al., Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-
16.,2008,Estoril,Portugal,pp.1659-1660.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Plan development and plan execution in complex, dy-

namic environments are difficult tasks, which explains the
tendency to use intelligent heuristics to support these tasks.
Currently, the (initial) plan development in fields such as
Air Traffic Control (ATC) is largely supported by software
using such heuristics, but for plan execution, however, such
support is not widely available, even though the execution
of plans in these environments requires continuous control
and adaptation. During the execution of plans, errors may
occur that influence the outcome of the plan. As a result the
observed execution of a plan may differ from the expected
execution. Plan diagnosis, cf. [6, 3], aims at identifying the
cause of these differences. Information gained by this may
then be used to try to find adaptations to the plan (repairs)
[2, 1]. The demonstrator presented in this paper intends
to provide the missing support to plan execution, imple-
menting previous research done on adaptation and control
of plan execution by using model-based diagnosis techniques
integrated in multi-agent environments [2, 4, 3, 1, 5, 6]. The
use of distributed systems is a strong trend in ATC research
these days. In order to reduce the workload on air traffic
controllers, the planning problems need to be solved locally
instead of centrally and by the parties involved instead of
by single decision makers. Therefore the use of multi-agent
systems is an obvious solution.

Although plan execution problems exist in many different
domains, the example domain of the Multi-Agent Diagno-
sis and negotiated repair demonstrator tool (henceforth re-
ferred to as the MAD demonstrator) is the field of tactical
airport planning. This phase of planning is concerned with
the sequencing of arriving and departing aircraft and their
scheduling on the gates. In this domain the environment has
an important influence on the intended execution of a plan.
Unforeseen changes in the state of the environment, such
as snow or heavy headwinds, may influence the execution
of the plan. Due to the frequent occurrence of such dis-
ruptions to the plan execution, the domain contains some
interesting problems, making the need for repairs particu-
larly high. Moreover, due to multiple parties involved in the
plan execution, each with their own interests (e.g., compet-
ing airlines), the domain is inherently distributed. Changes
to the plan cannot be made without some form of consent
from the different parties involved (e.g., resource managers
and airlines). This means that some form of negotiations
are necessary to select the best possible repair.

Most of the time the airlines can help each other. How-
ever, since we assume that agents (representing the different

airlines) are selfish (due to their competitive nature), some
sort of mechanism is required to guarantee that providing
help will be paid back. In essence, a means needs to be
introduced to stimulate co-operation among the agents; to
this end, the MAD demonstrator makes use of a specialised
monetary system to facilitate reciprocal co-operation. In
short this means that when, for instance, KLM flight K1232
is delayed and therefore not able to finish its procedures at
the gate in time, the next scheduled flight (in this case, L241
from Lufthansa) could agree to wait with going on-gate in-
stead of forcing K1232 to leave. In return, KLM pays the
cost of this repair to Lufthansa. A crucial aspect of the plan
repair domain is that resources may not be economically ex-
ploited. E.g., an airline may not obtain a slot only to sell
it against a high price. For this reason, standard currency
can not be used. We developed a novel currency mechanism
in which the value of an individual credit depends on the
reputation of the agents that have used it. This currency
mechanism guarantees equitable reciprocal co-operation un-
der relatively weak assumptions [4, 5].

2. THE MAD DEMONSTRATOR
The main component of the demonstrator is the plan rep-

resentation (see Figure 1 for a representation of the MAD
demonstrator and the execution flow). The plan consists
of distributed reservations to the airports resources, which
maintain the details of those reservations. The different re-
sources are modelled as different agents of the system. The
reservations represent a sort of ‘contract’ of an airline with a
resource for the handling of one of the flights of that partic-
ular airline (each flight has three distinct reservations; one
for landing, one for de-boarding/boarding, and one for take-
off). At the program start, the number of resources and
airline agents can be specified, after which a random prob-
lem instantiation with the specified constraints is created.

After initialisation, the MAD demonstrator works in dif-
ferent stages as shown in Figure 1. The main loop of the
program consists of the generation of a random disruption
to simulate unforeseen occurrences that take place during
the execution of the plan. The disruptions are handled and
the plan is updated, which is then checked for consistency.
If a conflict is found (e.g., the reservations of two different
flights on the same gate overlap), the conflict is handed to
the repair and diagnosis engines, which provide the input
for the negotiation between the agents.

The repair engine determines the best possible repairs
(more than one repair candidate may be generated for a
given conflict) based on the current state of the plan. Can-
didates are generated by moving and swapping reservations
on different gates/runways.

The diagnosis engine examines the conflict to determine
the cause of the disruption (useful for predicting other sim-
ilar events, e.g., all flights from the same direction are af-
fected similarly by weather changes during flight) and the
agent responsible for the conflict (the responsible agent is pe-
nalised for the conflict by being forced to pay for the costs
of the necessary repairs).

The negotiation part of the program contains the co-ordi-
nation between all parties involved in the selection of the
repair candidate that is most desired. Upon initialisation
(i.e., input is received from the negotiation and diagnosis
engines), the negotiations between the agents are initiated
and, based on their preferences, the agent responsible for

Plan Gate1

Plan Gate2

Plan Gaten

Plan Arrival Runway1

Plan Arrival Runwaym

Plan Departure Runway1

Plan Arrival Runwayk

Conflict

Repair

Candidates
Responsible

Elected

 Candidate

Flights

Disruptions

Conflict

Detection

Repair

Engine

Diagnosis

Engine

Negotiation

Engine

Plan

.

..

.

..

.

..

Figure 1: Demonstrator program structure.

the conflict, and fairness, the repair solution that suits the
agents best is chosen. Note that the fairness should only
be measured over a period of time, after multiple repairs.
An airline delaying one of its flights to help solve a conflict
now could be helped by another airline at a later time. Fair
repair is achieved when for every participant the amount
of given help is equal to the amount of received help. The
chosen candidate is used to repair the plan and the main
cycle can start over.

3. ADDITIONAL AUTHORS
Additional authors: Femke de Jonge (Universiteit Maas-

tricht, e-mail: f.dejonge@unimaas.nl), Frank Dignum (Uni-
versiteit Utrecht, email: dignum@cs.uu.nl), John-Jules Ch.
Meyer (Universiteit Utrecht, email: jj@cs.uu.nl), Nico Roos
(Universiteit Maastricht, email: roos@unimaas.nl), and Cees
Witteveen (Delft University of Technology, email:
c.witteveen@tudelft.nl).

4. REFERENCES
[1] P. Buzing, A. ter Mors, J. Valk, and C. Witteveen.

Coordinating self-interested planning agents. Journal of
Autonomous Agents and Multi-Agent Systems,
12(2):199–218, 2006.

[2] P. C. Buzing and C. Witteveen. Temporal plans and
resource management. In A. Tuson, editor, Proc. of the
24th Annual Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG 2005),
pages 115–124, 2005.

[3] F. de Jonge, N. Roos, and H. Aldewereld. Using DES
for temporal diagnosis of multi-agent plan execution. In
Multiagent Systems Technologies. 5th German
Conference, MATES 2007, LNAI 4687, 2007.

[4] G. Jonker, H. Hesselink, J.-J. Ch.. Meyer, and
F. Dignum. Preventing selfish behaviour in distributed
tactical airport planning. In Proc. of the 7th
USA/Europe R&D Seminar on Air Traffic
Management (ATM’07), 2007.

[5] G. Jonker, J.-J. Ch.. Meyer, and F. Dignum. Achieving
cooperation among selfish agents in air traffic
management domain using signed money. In Proc. of
the 6th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2007), 2007.

[6] N. Roos and C. Witteveen. Models and methods for
plan diagnosis. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS), to appear, 2007.

