
Electronic Institutions Development Environment

(Demo Paper)

M. Esteva, J. A. Rodriguez-Aguilar, J. LL. Arcos, C. Sierra, P. Noriega, B. Rosell, D. de la Cruz
Artificial Intelligence Research Institute, IIIA

Spanish Council for Scientific Research, CSIC
{marc,jar,arcos,sierra,pablo,rosell,davdela}@iiia.csic.es

ABSTRACT
In this paper we present the Electronic Institutions Devel-
opment Environment (EIDE) to support the engineering of
multiagent systems as Electronic Institutions. An electronic
institution defines a set of rules that structure agent interac-
tions, establishing what agents are permitted and forbidden
to do, as well as the consequences of their actions. EIDE
supports and facilitates all the stages of electronic institu-
tions’ engineering, namely from the specification of an insti-
tutional rules to its execution and monitoring.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms

Keywords
Electronic Institutions, Development Environments

1. INTRODUCTION
Multiagent systems (MAS) are complex systems popu-

lated by autonomous entities that interact to achieve some
shared or individual goals. The design and development
of MAS suffers from all the problems inherent to the de-
velopment of distributed concurrent systems as well as the
additional problems which arise from having flexible and
complex interactions among autonomous entities [3]. Hence,
the design of appropriate methodologies and software tools
for assisting this process is one of the main areas of MAS
research. One of the most prominent methodologies for en-
gineering this kind of systems is the Electronic Institutions
methodology [1]. An electronic institution (EI) defines a set
of rules that establish what agents are permitted and forbid-
den to do, and the consequences of agent’ actions. Hence, an
EI can be regarded as a coordination artifact that mediates
agent interactions. Since EIs do not impose restrictions on

Cite as: Electronic Institutions Development Environment (Demo Pa-
per), M. Esteva, J.A. Rodriguez-Aguilar, J.LL. Arcos, C. Sierra, P. Nor-
iega, B. Rosell and D. de la Cruz,Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal,pp.1657-1658.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Electronic Institutions Development cycle.

the type of agents that may participate, they can be used
for building both closed and open MAS.

The engineering of EIs is supported by the Electronic In-
stitutions Development Environment (EIDE). EIDE is com-
posed of a set of software tools that support all the stages of
an EI engineering, from the specification of the institutional
rules to its final deployment and execution. Notably, EIDE
moves away from machine-oriented views of programming
toward organisational-inspired concepts that more closely
reflect the way in which we may understand distributed ap-
plications such as MAS. It supports a top-down engineering
approach: firstly the organisation, secondly the individuals.
In this paper we show the different stages engineers have
to go through in order to build an EI and how EIDE sup-
port them. EIDE can be freely downloaded from http://e-
institutor.iiia.csic.es/eide/pub/.

2. ENGINEERING ELECTRONIC INSTITU-
TIONS

Next we detail the steps to be followed when engineering
and subsequently executing EIs. Figure 1 depicts the role
of the EIDE tools in an EI engineering cycle. Notice that
EIDE allows for engineering both the institutional rules and
their participating software agents.

2.1 Specification and static verification
The engineering of EIs starts with a formal specification

of the institutional rules according to its formalization pre-
sented in [1]. In order to specify an EI, designers have to



define the roles that agents may play and their relationships,
a common ontology and communication language, a network
of interaction protocols establishing the interactions agents
can engage in and how they can move among them depend-
ing on their active role, and a set of normative rules defining
the consequences of agent’ actions within an EI.

The specification of EIs is supported by ISLANDER, which
combines both graphical and textual specifications of EI com-
ponents. The tool permits the graphical specification of the
roles and their relationships, the interaction protocols, and
the network of interaction protocols. We believe that graph-
ical specifications facilitate the work of agent designers be-
cause they are easier to create and to understand. A new
feature of the current version is that it incorporates a world
model to specify the attributes or properties of the world in
which the EI is situated (the World of Interest), that do not
depend on the EI but that can be relevant for its partici-
pants.

ISLANDER also supports the static verification of speci-
fied EIs, which amounts to checking the structural correct-
ness of specifications. For instance, to check that interaction
protocols are correctly specified. The verification permits to
detect and correct errors before moving to the next stage.
The result is a sound and unambiguous definition of the in-
stitutional rules.

2.2 Dynamic verification
At run time EIs are open to varying populations of het-

erogeneous and self-interested agents. Hence, it is hard to
know, at design time, the dynamics that may emerge caused
by (possibly large populations of) agents. Eventually, un-
expected chaotic behaviours that jeopardise the institution
may come up. Thus, the static verification carried by IS-
LANDER is not enough and further verification tools are re-
quired in order to carry out dynamic verifications. In EIDE
the dynamic verification is carried out by means of simula-
tions supported by SIMDEI that allows to run EI simula-
tions with different agent populations. EI designers should
analyse the simulation results to decide whether to modify
or not the institutional rules.

Since we have incorporated the notion of a world model
to the EIs specification, we also have to simulate it to allow
agents to sense and act on it. At this aim we have im-
plemented a simulation bridge that: (i) synchronises both
simulators; (ii) forwards the world model variables’ values
to SIMDEI ; and (iii) translates actions within the simu-
lated EI into actions in the world model. At present, we do
offer implementations of the simulation bridge to connect
SIMDEI to either Simulink [4] or EJS [2] simulations. In
the current version simulations executed by SIMDEI can be
visualised using a monitoring tool, which graphically shows
all the events occurring during a simulation.

2.3 Agent development
An EI specification defines the possible behaviours agents

may have, but it is a task of agent designers to incorporate
agents with the decision making mechanisms that will deter-
mine the concrete agent behaviour. At this point we want
to remark that we do not impose restrictions on the type
of agents that can participate in an EI. Agent designers can
choose the language and architecture that is best to fulfil
their goals and they can use any software tools that facili-
tate their work. Therefore, it is not mandatory for them to

use the aBUILDER tool.
Nonetheless, we believe that it is important to support

this intricate development process via the aBUILDER tool.
The tool supports the graphical specification of agent be-
haviours starting from an institution specification created
with ISLANDER. aBUILDER supports the automatic gen-
eration of agent (code) skeletons based on graphical speci-
fications of agent behaviours. The generated skeletons can
be used on EI simulations supported by SIMDEI or in the
real execution of the institution supported by AMELI.

2.4 Execution and Analysis
An EI defines a normative environment that shapes agent

interactions. As an EI may be populated at execution time
by heterogeneous self-interested agents, we cannot expect
that these agents will behave according to the institutional
rules encoded in the specification. Hence, unlike approaches
that allow agents to openly interact with their peers via a
communication layer, we advocate for the introduction of
a social layer (AMELI ) that mediates agent interactions at
run time. On the one hand, AMELIprovides participating
agents with information about the current execution. For in-
stance, information about the participating agents in an in-
teraction protocol. On the other hand, it enforces whenever
possible the institutional rules to the participating agents.
At this aim, AMELI keeps track of the execution state, and
uses it along with the institutional rules encoded in the spec-
ification to validate agents actions.

AMELI is a domain-independent platform as it can be
used for the deployment of any specified EI without any ex-
tra coding. For this purpose, AMELI loads institution spec-
ifications as XML documents generated by ISLANDER. In
order to take part in an institution, agents are only required
to be capable of opening a communication channel with
AMELI. Thus, AMELI allows the participation of agents
with any internal architecture and developed using any avail-
able programming language.

An EI execution can be monitored thanks to the moni-
toring tool that depicts graphically all the events occurring
during an EI execution. Fairness, trust and accountability
are the main motivations for the development of a monitor-
ing tool that registers all interactions in a given enactment
of an EI.

Acknowledgements

This work was partially funded by projects AT (CON-
SOLIDER CSD2007-0022), IEA (TIN2006-15662-C02-01),
EU-FEDER funds, and by the Generalitat de Catalunya
under the grant 2005-SGR-00093. Marc Esteva enjoys a
Ramon y Cajal contract from the Spanish Government.

3. REFERENCES
[1] J. L. Arcos, M. Esteva, P. Noriega, J. A.

Rodŕıguez-Aguilar, and C. Sierra. Environment
engineering for multiagent systems. Engineering
Applications of Artificial Intelligence, 18(1):191–204,
January 2005.

[2] Easy java simulations. http://www.um.es/fem/Ejs.

[3] N. R. Jennings, K. Sycara, and M. Wooldridge. A
roadmap of agent research and development.
Autonomous Agents and Multi-agent Systems,
1:275–306, 1998.

[4] Simulink.
http://www.mathworks.com/products/simulink/.




