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ABSTRACT

Scheduling decisions in hospitals are often taken in a decen-
tralized way. This means that different specialized hospital
units decide autonomously on patient admissions or operat-
ing room schedules. In this paper we present an agent-based
model for the selection of an optimal mix for patient admis-
sions. Admitting the right mix of patients is important in
order to optimize the resource usage and patient throughput.
Our model is based on an extensive case analysis, involving
data analysis and interviews, conducted in a case study at a
large hospital in the Netherlands. We focus on the coordi-
nation of different surgical patient types with probabilistic
treatment processes involving multiple hospital units. We
also consider the unplanned arrival of other patients requir-
ing (partly) the same hospital resources. Simulation exper-
iments show the applicability of our agent-based decision
support tool. The simulation tool allows for the assessment
of resource network usage as a function of different policies
for decision making. Furthermore, the tool incorporates a
first optimization module for the resource allocation of post-
operative care beds.
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1. INTRODUCTION

Today, many hospitals face great demands to reduce costs
and improve quality of service, e.g. by reducing waiting
times. In several European countries this is due to the in-
troduction of a free market health care system, for example
in the Netherlands. In order to decrease costs, the occu-
pancy rates of resources need to be increased and the length
of stay of patients has to be decreased. However, increas-
ing the resource utilization can lead to bottlenecks causing
the blocking of patient flows and thus decreasing the quality
of service. Therefore, efficient patient scheduling becomes
increasingly important.

Admission scheduling is concerned with the selection of an
optimal mix of patients to be admitted to the hospital, such
that the available capacity and the demand for health care
services are matched. A good patient mix facilitates an effi-
cient usage of hospital resources through the combination of
different profiles of resource usage. In health care, this prob-
lem is acknowledged to be complex, since hospital planners
have to coordinate different patient treatment processes in
which typically several hospital units are involved. Often,
resources (like the intensive care unit (ICU)) are shared for
multiple patient treatment processes. Moreover, the hospi-
tal planners have to cope with several sources of schedule
disruptions: arriving emergency patients in urgent need for
care, sudden changes in a patient’s clinic state causing an
unexpected transfer to an intensive care facility and/or the
prolonged patient’s stay. Complications or emergencies may
lead to cancellations of operations.

Hospitals often show a distributed organizational struc-
ture [1]. They are divided into several autonomous hospital
units, each associated with a medical specialty. Schedules
of shared resources, like operating rooms, are managed lo-
cally by the units each applying their own (medical) prior-
ities and preferences. Thus, patient scheduling in hospitals
has strong decentralized features. A decision support sys-
tem for this problem should therefore not only comprise ad-
vanced scheduling techniques that consider the dynamics of
the problem, but should also reflect the distributed decision
making and contain mechanisms to coordinate the schedules
of the different parties involved. Therefore, an agent-based



approach is ideal for decision support in this setting.

For a realistic study of the admission scheduling prob-
lem of different patient groups, we developed an agent-based
simulation tool in a cooperation between academia and the
Catharina Hospital Eindhoven (CHE), the Netherlands. The
CHE is a large university-affiliated general hospital which
offers international state-of-the-art medicine for, amongst
others, cardiothoracic surgery (CTS) and intensive care in
addition to the required basic medical care. In this paper
we address the admission scheduling of CTS patients where
each relevant hospital unit is represented by an autonomous
agent. The following features are included: patient charac-
teristics influencing the patients’ priority and pathway in the
hospital, uncertainty related to the duration of stay at the
different hospital units as well as medical rules and prefer-
ences of the involved units. Resource availability is limited
and uncertain due to the inflow of other surgical patients
and the arrival of emergency patients. The latter may cause
the blocking of patient throughput at the ICU. We base our
work on an extensive data analysis and several interviews
with experts from the CTS unit and the ICU of the CHE.

Simulation experiments demonstrate the tool’s function-
ality. The patient throughput realized by the agent-based
admission scheduling system is comparable to the perfor-
mance of the human planners at the CHE. What-if scenarios
allow for the evaluation of different scheduling and bed allo-
cation policies. Additionally, an optimizer for determining
an optimal bed allocation is incorporated based on a pre-
defined objective function. To the best of our knowledge,
this is the first agent-based model and simulation system
for patient admission scheduling that includes multiple pa-
tient groups and resources and that is based on real hospital
data and current scheduling practice. The agent-based sim-
ulation and evaluation tool is suitable for decision support
in practice.

The remainder is organized as follows. First, we discuss
related work in Section 2. Next, a description of the hos-
pital domain and a model for patient flows is presented in
Section 3. The agent-based simulation model with its deci-
sion structures and input and output elements is described
in Section 4, followed by simulation experiments reported in
Section 5. Finally, in Section 6 we provide our conclusions
and an outlook on future work.

2. RELATED WORK

Earlier work in Operations Research mainly focused on
single resources, such as operating rooms, intensive care beds
or diagnostic facilities such as in [2] or [3]. We consider com-
plex treatment processes requiring multiple hospital units.
The work reported in [4] and [5] provide theoretical results
for bed utilization levels for deterministic patient treatment
processes. We offer a more operational approach which can
deal with stochastic treatment durations and routing. More-
over, our approach is very flexible and can be easily adapted
to other settings. The simulation model presented in [6] fa-
cilitates the evaluation of aggregated bed allocation policies.
Our approach allows for an in-depth analysis of allocation
strategies also on the level of different hospital units. Addi-
tionally, the effect of (small) changes in bed allocations can
be evaluated using the agent-based simulation tool.

Also in the literature on agent-based scheduling, the hos-
pital domain has been addressed. In [1] the issue of conflict
handling in patient scheduling is studied. However, the dy-
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namics of the problem, like stochastic treatment durations
and stochastic routing, as well as different patient character-
istics are not considered. Patient planning in [7] is based on
medical wellness functions of patients. This solution, how-
ever, does not scale sufficiently and does not consider the
stochastic features incorporated in our approach. Random
treatment durations and routing between treatment steps
are, however, very important to consider because they per-
turb the hospital units’ schedules. Multiple appointments
in an outpatient setting have been studied in [8]. Their ap-
proach assumes a predefined treatment path which does not
hold in our problem setting. Also no stochastic appointment
lengths were considered.

3. DOMAIN DESCRIPTION AND MODEL

3.1 Hospital domain

In general, a hospital can be divided into several, medi-
cally specialized, care units [1]. Hospital care units like nurs-
ing wards provide treatment and monitoring and are typi-
cally dedicated to a medical specialty such as orthopedics
or cardiothoracic surgery. Hospital care units that are com-
monly shared by different specialties are the operating room
(OR) unit, where medical specialties are assigned time slots
for performing surgical procedures, and the intensive care
unit (ICU), where patients with serious to life-threatening
diseases are monitored. Often, the ICU is divided into sev-
eral subunits characterized by different care levels. Care
levels indicate the intensity of care and monitoring. We dis-
tinguish intensive care (IC), high care (HC) and medium
care (MC), in decreasing order. Another important part
of the ICU is the post anesthesia care unit (PACU) where
patients recovering from anesthesia are monitored. Unless
complications occur, patients stay at the PACU only for a
few hours before returning to another hospital unit. Some
hospitals also have designated ICU areas for medical special-
ties, e.g. the Coronary Care Unit (CCU) for heart disease.

We denote the set of care units relevant for our domain
by U with U={CTS-OR, IC, IC-HC, MC, CCU, CTS-HC,
CTS-PACU, CTS ward, o}*. o denotes the possible desti-
nations of a patient’s discharge from the hospital which are
home or other care facilities, but also mortality.

For providing patient care at a hospital unit, resources
are required. Relevant resources are ORs and hospital beds.
Usually, ORs are available between 8 a.m. and 5 p.m. Hos-
pital beds may also be opened only for a certain time period.
This is typically the case at the PACU. We assume that re-
sources are staffed and equipped with specialized facilities.

In order to accommodate patients at the appropriate care
level, back-up capacity may be used. This means that an
additional bed is opened at the respective care unit or that a
patient is temporarily accommodated at another unit until a
regular bed is available. At the CHE, the CCU serves as as
back-up for the ICU. Usage of back-up capacity is undesired
and will be accounted for in the output of our model.

3.2 Model of patient flows

!The prefix CTS indicates that a hospital unit is (partly)
dedicated to CTS patients, e.g. OR time slots assigned to
the CTS specialty. The HC is divided into IC-HC, which
is shared by different specialties, and CTS-HC which occa-
sionally allows other patients as well.
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Figure 1: Representation of type I patient pathway?®

We distinguish between scheduled patients (i.e. elective
surgical patients from the waiting lists) and non-scheduled
patients (i.e. emergency patients in urgent need for surgi-
cal and/or intensive care). Furthermore, we assume that
patients can be grouped on the basis of their required treat-
ment steps and respective expected duration. In a hospital
context, the duration of a patient’s stay at a hospital re-
source is referred to as Length of Stay (LoS). The above
grouping of patients is commonly based on diagnosis related
groups [9], expertise of medical specialists, or machine learn-
ing techniques as in [10].

The set of patient categories resulting from this grouping
is denoted by C. We define a patient path (also referred
to as pathway) of category ¢ € C as the sequence of actu-
ally required treatment operations and the respective LoS.
Specifically, we focus on complex (surgical) patient paths in
which OR and different postoperative care departments are
involved. All possible pathways of patient type ¢ € C are
modeled as a probabilistic graph [11], G° = (N¢, A°, P°),
where the set of nodes, N¢ C U, represent the involved hos-
pital units and the set of arcs, A°, represents the possible
adjacent treatment operations. The length of stay of a pa-
tient of category ¢ € C at hospital unit u € N°¢ is modeled
as a random variable, LoS;,, that follows a probability dis-
tribution P7°%e. P° is the set of conditional probability
distributions defined on A° with

P ={Pr(v|u,c,t)|u € N, (u,v) € A°,t > 0} for c € C.
(1)
Pr(v|u,c,t) represents the probability that care provided
by unit v is required given that a patient of type ¢ has been
admitted to unit u for ¢ time units.

3.3 Casestudy at CTS

The following is based on an extensive case analysis in the
form of numerous expert interviews and data analysis. In
the CHE case study for the CTS, four types of patient path-
ways (type I to IV) were identified. Type I and II patients
are CTS patients, for whom the first postoperative care for
type I and II patients is indicated as CTS-HC and CTS-
PACU, respectively®. The type III pathway corresponds to
the treatment process of emergency patients who arrive un-
expectedly. The type IV patient path represents the inflow
of other surgical patients in the system.The pathway of type
I patients is depicted in Figure 1. Here, type I patients un-
dergo surgery in the OR time slots allocated to the CTS
specialty, denoted as CTS-OR. After surgery, they are ad-
mitted to the CTS-HC and are expected to return to the
CTS ward on the following day. There is a 15% chance that
complications require an admission to IC or MC? for type I

2The decision for a type I or I path is based on a preoper-
ative assessment of the patient’s clinical condition.

3The actual patient routing may deviate from the medical
indication depending on the available beds at the respective
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Figure 2: Interference of CTS, other surgical and
emergency patient pathways®

patients®. Patients admitted to IC or MC are subsequently
transferred to the CTS ward. If type I patients no longer
require medical care and monitoring in the hospital, they
are discharged and leave the system®. Figure 2 shows the
four types of patient pathways and their interference. By
dashed arcs, the possible pathways of type II patients are
depicted. Type II patients follow a fast-track variant of the
type I path. Postoperative care is performed at the CTS-
PACU and type II patients are expected to return to the
CTS-ward on the day of surgery. Severe complications oc-
cur rarely with corresponding probabilities of an IC or MC
admission given as 5% and 15%, respectively®. Concerning
type III and IV pathways, we focus on their possible interfer-
ence with type I and II patients at IC, IC-HC, CTS-HC and
MC. The preceding and successive treatment steps of type
IIT and IV patients do not need to be considered because
other dedicated resources are used. Type IV patients are
primarily admitted to the IC-HC. If IC-HC beds are scarce,
IC or CTS-HC beds may be used.

4. AGENT-BASED ADMISSION SCHEDUL-
ING SYSTEM

In the following, the agent system for scheduling patient
admissions is described. For the analysis and design, the
methodologies in [12] and [13] were taken into account. In
the development phase, the model and system were fre-
quently discussed with hospital planners at the CHE. The
resulting system was approved by the CHE domain experts.

4.1 Overview

Figure 3 provides an overview of the architecture of the
agent system. The system comprises two types of agent: OR
scheduling agents and resource agents. The OR scheduling
agent represents the CTS specialty and is responsible for
managing the CTS-OR schedule. Resource agents act on be-

hospital care units. Patients may only be transferred to a
higher care level than indicated. The procedure is described
in detail in Section 4.2.2.

4The ward round at the CTS-HC is scheduled at 10am dur-
ing which patient transfer decisions are taken. This implies
that the LoS at the CTS-HC can be considered as determin-
istic and ¢ is irrelevant in (1). The same holds for type II
patients at the closing of the CTS-PACU.

Complications requiring re-admission or re-operation can
be easily incorporated in our model. In the considered CTS
case, however, they were irrelevant because they occur only
exceptionally (in about 0.6% of the cases).
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half of postoperative and critical care hospital units. Here,
IC, IC-HC, MC, CTS-HC and the CTS-PACU unit and CTS
ward are represented by resource agents. Resource agent co-
ordinate patient admissions and discharges with other agents
based on the patient pathway and their available resources.
The in- and output elements and their relation to the in-
ternal decision structure of the OR scheduling and resource
agents are shown in the upper and lower part of Figure 3,
respectively. A detailed description of the agents’ decision
models is given in Section 4.2. The scheduling policies em-
ployed by the different agents are derived from the CHE
case study and are outlined in Table 1. Table 1 also con-
tains information on the number of resources allocated to
the different units at the CHE. The CTS-OR is available
from 8am till 5pm. Beds at the CTS-PACU and CTS-HC
are opened for a limited time window. Hospital beds at the
remaining units are opened day and night on 365 days per
year (indicated as 24/7). Costs for different types of hospi-
tal beds relate to the daily costs for staff and materials and
are expressed relative to the costs of a nursing ward bed.

The OR scheduling and several resource agents initiate
part of their admission and transfer communication at fixed
points in time. A time line is depicted in Figure 5.

In the present work, we consider the number of allocated
beds and ORs as free decision variables (highlighted by dou-
ble borders in Figure 3). Future work will also focus on the
optimization of the agents’ scheduling policies.

4.2 Decision model of agents

4.2.1 OR scheduling agent
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Scheduling decisions of the OR scheduling agent depend
on the availability of elective surgical patient groups on the
waiting lists, and their medical priorities®, e.g. [7]. The OR
scheme specifies the number of patients of the different types
to be scheduled to the allocated OR time slots, i.e. 2 half-
day sessions for each of the 4 ORs. For the CTS, a half-
day session corresponds to one surgery. The design of the
patient pathway, described in Section 3.3, requires that early
OR slots are assigned to type II patients. The agent’s task
is to schedule admitted patients to time slots according to
the OR scheme. Also, the agent informs the CTS ward
agent of the required number of patients of the different
types for the following day’s OR scheme and sends requests
for postoperative transfers to the CTS-HC and CTS-PACU.
The implemented policy is summarized in Table 1.

4.2.2 Resource agents

Admission and transfer decisions of resource agents de-
pend on patient categories and pathways, bed availability,
and the messages exchanged with other agents®. The re-
source agents’ policies are described in Table 1.

In general, patients are admitted to a hospital unit only if
beds are available. If more patients are proposed for admis-
sion than beds are available, a multitude of clinical variables
determines which patients are admitted. We represent the
medical choice by a stochastic process that randomly selects
patients for available beds (excluding back-up capacity).

At the CHE, type I and II patients with IC indication are
considered like emergency patients and are always admitted
to the IC. If free IC beds are scarce, the IC agent may use
back-up capacity which is accounted for in the system’s per-
formance. At the same time, one bed is kept free for type
III patients. If the admission of type III patients is rejected
by the IC agent, patients are admitted to another hospital
which is left out of our model.

As analyzed at the CHE, the MC agent always accepts
transfer requests from the CTS-PACU because CTS-PACU
beds are closed at 22pm. If MC beds are scarce, patients
are accommodated to back-up capacity.

If no bed is available at the indicated hospital unit, a re-
source agent approaches a resource agent of higher care level
for transfer. We refer to this strategy as “upgrading” which
together with the consecutive patient path is illustrated for
type I patients by bold arrows in Figure 4. If a patient can-
not be transferred to the MC, the CTS-HC agent approaches
the IC-HC agent which normally is not intended. If the re-
quest is accepted, the concerned patient is “upgraded” to the
higher care level. Otherwise, the next higher care agent is
approached, i.e. the IC agent. If the transfer is not possible,
the patient remains admitted to the CTS-HC until transfer
to the CTS ward. The CTS-OR agent is informed of the
limited admission possibilities.

The IC-HC agent applies upgrading for the admission of
type IV patients for which the IC agent is approached first,
followed by the CTS-HC agent. If upgrading is not pos-
sible, type IV patients are rejected. A rejected admission
may affect the corresponding surgical specialty’s OR. sched-
ule and may cause blocking at the dedicated nursing ward.
Since only the resources shared with type I and II patients
are considered in our model, the consequences of rejected
admissions are not accounted for.

6For future use we included a policy module called utility
function.



Table 1: Scheduling policies, resource availability and costs implemented in agent-based simulation system

for patient admission scheduling

Agent No. re- Costs Resource Scheduling policy
sources availability
CTS-OR 4 ORs - Mo-Fr 8h00- request transfer of type II (I) from CTS ward to OR as specified in OR
Scheduling 17h00 scheme at time Scrsir (Scrsi) (cf. Figure 5);
agent if informed by CTS-HC agent that insufficient beds are available, type
I surgeries are canceled accordingly;
based on OR scheme for following day, inform CTS ward on required
number of type I and II patients at time Ar41r;
send transfer requests to CTS-PACU and CTS-HC agents after com-
pleted surgery of type II and I patients, respectively
CTS-PACU 4 beds 2 Mo-Fr send transfer requests to hospital unit indicated for admitted patients
agent 12h00-22h00 at time Ters—pacu
CTS-HC 4 beds 2 Mo 10h00- send transfer requests to resource agents at time Tors— g as described
agent Sa 10h00 in Section 4.2.2; if transfer is rejected by all possible resource agents,
patients remain at CTS-HC; inform CTS-OR agent of limited bed avail-
ability;
accept admission of type IV patients if beds are available
IC agent 11 beds 4 24/7 admit all type I & II patients with IC indication; if IC beds are scarce,
use back-up capacity;
other patient admissions are accepted by random choice over patients
contained in transfer request, one bed is retained for type IIT patients
IC-HC 4 beds 2 24/7 if insufficient IC-HC beds are available for requested type IV admissions,
agent send admission request to resource agents as described in Section 4.2.2;
if not successful, reject admission;
admit other patients proposed for transfer by random choice to free beds
MC agent 4 beds 2 24/7 admit all patients from CTS-PACU; if MC beds are scarce, use back-up
capacity;
admit other patients proposed for transfer by random choice to free beds
CTS ward 35 beds 1 24/7 admit all postoperative patients; the number of preoperative admissions
agent depends on the following day’s OR scheme accounting for previously

admitted patients whose surgeries have been canceled; if ward beds are
scarce, use back-up capacity

CTS-OR /

- = at. e
— Ean. &,'ie 1l
"""" pat. type IV

Figure 4: Current practice for type I patient “up-
grading”

The agent model reflects the complex features of the hospi-
tal domain in a detailed and realistic way. The experimental
system evaluation and validation is described in Section 5.

4.3 Technical details of implementation

The agent model is implemented in Java as an event-based
simulation. FEvents are patient admissions and transfers.
The system offers logging possibilities for actual scheduling
decisions which is used to determine local and global perfor-
mance according to predefined performance measures, e.g.
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Figure 5: Time line for the fixed decision moments
and communication: S - schedule surgery, T - trans-
fer, A - admission and respective agent/patient type

number of treated patients or costs for regular beds.

Patient path information, i.e. the required treatment steps
(including complications) and the respective LoS, are sam-
pled at the start of a simulation run. The information dis-
closed to an agent is restricted to an event at the time a
patient can be transferred or discharged. In the former case,
the hospital unit to which the patient is to be transferred is
indicated.

5. EXPERIMENTAL EVALUATION

5.1 Experimental setup

The settings of our simulation experiments are based on
case analysis in the form of data analysis and expert inter-
views at the CTS department of the CHE. The relevant in-
put parameters of the different patient pathways introduced



Table 2: Input parameters of patient pathways

Patient ~ Unit LoS (hours) Routing
group mean-tstdev prob.
Typel CTS-HC 15+0 -
1C 48.48 £ 54 0.15
MC 24.48 4 38.52 0.15
CTS ward 120 £ 22.08 0.7
TypeII CTS- 6+0 -
PACU
1C 42 +57.12 0.05
MC 10.32 4+ 22.08 0.15
CTS ward 120 £+ 22.08 0.8
Type III  IC 37 +84.55 -

Type IV IC-HC 100.27 £ 200.66 -

in Section 3.3 are given in Table 2. Models for sampling pa-
tients’ LoS commonly used in the literature are Lognormal,
Gamma and Weibull distributions [14]. We chose a Log-
normal distribution because the use of it is simple and fast.
Moreover, Gamma and Weibull distributions did not result
in significantly different simulation results in the basic set-
ting. We estimated Lognormal distribution parameters us-
ing the method of moments [15]. In accordance with expert
opinion, “upgrading” does not affect the LoS of a patient.
In our simulations, type IIT patient arrivals follow a Poisson
process with on average two patients per day. Bulk arrivals
of type IV patients vary between 2 and 4 patients per day
with a mode of 3. Patients of type I and II are elective sur-
gical patients who arrive based on the admission schedule.
Patient inflow at the MC can be included in an abstract
manner: the number of available beds is sampled at the
start of a day using a discrete stationary probability distri-
bution. This representation was chosen because type I and
II patients are admitted to the MC for about one day (on
average). This implies a minimal time dependency between
subsequent days. Other patient inflow requires 3, 2, 1 or 0
beds with probability 0.2, 0.5, 0.2 and 0.1, respectively.
For the basic validation and evaluation of our system, we
implemented the resource allocation policies currently em-
ployed at the CHE. An overview of the number of allocated
resources and associated (relative) costs is given in Table 1.
The simulation system offers a number of outcome mea-
sures. Of particular interest to the hospital is the patient
throughput, i.e. the number of patients discharged from the

hospital after treatment. Also, the number of patients treated

at the different hospital units, the frequency of external
back-up capacity usage and the period of usage are of inter-
est. In a hospital environment resource cost plays an impor-
tant role. Here, we distinguish between the cost for “regular”
beds and the costs for using back-up capacity. Regular costs
are determined based on the bed capacity allocated to the
hospital units, whereas back-up costs are calculated based
on actual timely usage of back-up beds. The cost factors
used for calculating costs are given in Table 1.

5.2 Experiments

5.2.1 Basic scenario and validation

In Table 3 the simulation outcomes for the basic setup, de-
scribed in Section 5.1, are shown. The results were obtained
from 50 simulation runs of 52 weeks each and a warming-
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Table 3: Simulation outcomes for basic scenario
Outcome measure Mean+Stdev

Type I + II patient throughput 1768.08 + 40.31
Type III patient throughput 539.16 £+ 26.91
Type IV patient throughput 899.72 +10.28
Resource costs
regular
back-up

38835+ 0
355.65 + 48.64

up period” of 12 weeks. With the policies presented in
Section 4.2, the agent-based admission scheduling system
achieved a mean total patient throughput of about 3207 pa-
tients. Of this, 1768 patients of type I and II are treated
with a standard deviation of approx. 40. Purely based on
the CTS-OR capacity, a maximum throughput of 2080 type
I and II patients could be realized. This upper bound is not
realized in practice because the frequent blocking at the ICU
affects the CTS-PACU and CTS-HC which in turn causes
canceled CTS surgeries. At the CHE, about 1800 type I and
II patients undergo surgery per year. Thus, the performance
of the agent-based simulation system compares well to the
human CHE planners. Regarding admission requests for
type III and IV patients, the system achieves an acceptance
rate of about 82.93% and 98.97%, respectively. These out-
comes are comparable to recent aggregated measurements
performed at the CHE.

In our simulations, back-up capacity is used for about
50%, 25% and 25% of the cases for CTS ward, IC and MC.
At the CTS ward, about 9.5% of the type I and II patients
are admitted to another ward prior to surgery after which
they follow the process described in Section 3.3. Postoper-
ative patients are admitted to a back-up bed in about 8.5%
of the cases with a mean LoS of about 16 hours. At the
IC a back-up bed is required about once every three weeks
for on average 16 hours. The frequency of back-up capacity
usage at the MC back-up capacity is comparable to the IC,
in total for about 26.7 bed days per year. Domain experts
from the CHE have found the above results to be realistic.

5.2.2 Scenario analyzes

In many hospitals, an efficient allocation of resources to
the different hospital units is a major managerial issue, es-
pecially because the relationship between beds, occupancy
and acceptation rates for different patient groups is complex
[6]. In order to address this problem, we analyzed several
scenarios using the simulation system described above.

In the current situation at the CHE, about 10% of the
preoperative CTS patients are admitted to other nursing
wards because no bed is available at the CTS ward. Al-
though the quality of care is not affected, admission to the
CTS ward is preferable from a patient-friendliness point of
view. Of course, the costs for patient-friendliness improve-
ment through additional CTS ward beds should be moder-
ate.

The results are given in Table 4. One additional ward bed,
which increases total costs with about 1.7%, decreases the
frequency of pre- and postoperative admissions to back-up
beds by factor 3. Back-up capacity usage can be further de-
creased by additional ward beds with a minimum of about

"Warming-up was used to avoid starting with an empty hos-
pital.



Table 4: Resource costs and frequency of back-up
usage for varying number of CTS ward beds
Number of CTS ward beds
Outcome 35 36 37 38
Mean  frequency
back-up cap. usage

preOR 9.51% 6.46% 4.07% 2.4%
postOR. 8.54% 5.78% 3.57% 2.02%
Resource costs
(meanztstdev)
regular 38835 39200 39565 39930
back-up 355.65+ 278.59+ 226.11+ 173.33+
48.64 33.33 33.52 27.28
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Figure 6: Mean patient throughput for 0 IC-HC
beds and varying IC bed capacity

2% for 38 ward beds. Further increase of CTS ward ca-
pacity does not improve the resulting frequencies and was
therefore not included in Table 4. Currently, the manage-
ment of the CHE discusses the option of closing the IC-HC
and transfer the bed capacity to the IC in order to be more
flexible in patient admissions. Figure 6 shows the mean
patient throughput per patient type for the above scenario
and varying IC bed capacity. For increasing IC bed capac-
ity, the mean throughput of type I and II patients increases
linearly from 1268.4 to 1985.95 for 10 to 20 IC beds. The
throughput of type III patients starts at about 500 and in-
creases to about 620 for 17 IC beds (corresponding to an
acceptance rate of about 96%) with a standard deviation
of about 20. Thus, the variability in type III throughput
is primarily determined by the variation of patient arrivals
and LoS. The throughput remains almost constant for more
than 17 IC beds. The same holds for type IV patients where
the turning point is at 16 IC beds and 97% of the patients
are accepted for admission. Interestingly, the treatment of
type IV patients shifts from CTS-HC to the IC for increasing
number of IC beds. This means that for increasing number
of IC beds, the number of type IV patients treated at the
CTS-HC decreases and increases at the IC.

Because of the shift in patient mix, 16 IC beds are re-
quired to guarantee the same overall patient throughput. 17
IC beds are needed to realize a comparable patient mix. Due
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Figure 7: Contour plot of mean resource costs per
patient for varying IC-HC and IC bed allocations

to the interesting insights, we also compared other bed allo-
cations for IC-HC and IC in terms of their cost-effectiveness.
Here, cost-effectiveness is the ratio of mean total resource
costs and mean total patient throughput. Figure 7 shows a
contour plot of the mean resource costs per patient for IC-
HC and IC beds varying from 0 to 10 and 5 to 20, respec-
tively. The white cross indicates the current bed allocation
at the CHE. The figure shows that resource costs per patient
are convex with a minimum at about 6 IC and 6 to 8 IC-HC
beds. Compared to the current situation at the CHE, this
allocation increases the patient throughput of type I+II by
9%. Type III throughput decreases by factor 2, while type
IV throughput remains almost the same. Costs for regu-
lar capacity are decreased by 16.9%, whereas back-up costs
are increased by 70.9%. For 0 IC-HC beds, mean costs re-
main almost constant for increasing number of IC beds and
decrease slightly for 14 to 16 IC beds. For this bed allo-
cation, type I+II and IV throughput is decreased by about
12.4% and 6%, respectively, whereas type III throughput is
increased by 8.9%. Regular costs are slightly increased by
3.8% while back-up costs decrease with 45.9%. These re-
sults can be explained by the interaction of different patient
paths and its effect on the total patient throughput.

Thus, closing the IC-HC will affect the patient mix by
increasing the number of treated type III patients and de-
creasing the throughput of type I+II and IV patients. The
total patient throughput decreases slightly. Contrary to the
discussion of the hospital management regarding closing of
the IC-HC, increasing the IC-HC capacity seems advisable
from a cost-effectiveness point of view.

5.2.3 Optimization of bed allocation

To automatically find an optimal bed allocation, we im-
plemented a brute-force optimizer that uses the simulation
system to evaluate different bed allocations. It can be used
for various objective functions. The number of IC-HC and
IC beds are varied from 0 to 10 and from 5 to 20 which
results in 176 possible allocations. Each allocation was eval-
uated on the basis of 20 simulation runs of 52 simulated
weeks and a warming-up period of 12 weeks. On an Intel
Pentium 4 2.8GHz machine with 2GB RAM a simulation
run takes about 13.1 seconds which resulted in a runtime of



about 12.8 hours for the allocation optimizer. We illustrate
the algorithm using the mean resource costs per patient as
objective function. In the optimal bed allocation, the IC-
HC capacity is increased to 7 beds and the IC capacity is
reduced to 5 beds which results in resource costs per patient
of 10.6 on average. The optimal allocation results in a mean
annual total throughput of about 3100 patients.

6. CONCLUSIONS

In this paper we presented an agent-based simulation and
evaluation tool for patient admission scheduling that realis-
tically captures the complex features of the problem domain.
To the best of our knowledge, this is the first agent-based
simulation system for patient admission scheduling that in-
cludes multiple patient groups with stochastic arrival and
treatment pathways. We showed that an agent-based model
can be developed based on knowledge elicitation from the
case that realistically reflects the problem domain. The im-
plemented simulation system can be adjusted to comparable
situations in other hospital settings. Furthermore, extensive
simulation experiments demonstrate the applicability of the
model and show how the agent-based simulation tool is use-
ful for decision support. In a hospital setting where the plan-
ning is often performed in a decentralized way, a multi-agent
decision support system is ideal because it allows for design-
ing and evaluating improved (adaptive) policies, which can
then be implemented easily in real life.

The multiple simulation outcomes for the basic setting
show that the patient throughput achieved by the agent-
based scheduling system is comparable to the planning per-
formed by hospital staff of the CHE. Using the system new
scheduling policies can be examined in a fast way: one year
of hospital time can be simulated in a few seconds.

What-if scenarios show that the agent-based admission
simulation tool can be helpful in analyzing the complex re-
lationship between bed allocations, occupancy and patient
mix. It allows a realistic analysis that otherwise would be
impossible. Thus, the simulation system is of substantial
value for decision support in practice.

We also presented a first approach to optimize resource
management using the simulation model. Here, the free
variables were the number of IC-HC and IC beds which ap-
peared to have a significant influence on the overall patient
throughput. The efficient computation and the size of the
search space allowed using a brute-force optimization which
guarantees a globally optimal solution. We illustrate the
optimizer by using the mean resource costs per patient as
objective function, but other performance measures can also
be easily incorporated in the simulation tool. Optimally, the
IC-HC capacity should be increased by 50% and the IC beds
should be reduced by factor 2, compared to the current set-
ting at the CHE. Due to its little variability in performance,
the optimal allocation is a promising solution for practical
implementation. The results show the multi-objective na-
ture of the problem which will be addressed in future work.
However, the benefit of a well-designed agent-based simula-
tion for hospital scheduling becomes apparent.

It should be noted that in this study we consider situations
for which waiting lists for elective surgery are sufficiently
long, so elective patients are always available. This assump-
tion holds for the Netherlands and several other European
countries where the waiting list for cardiac surgery are long.
In future work we will also address the online admission
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scheduling problem where waiting lists are filled dynami-
cally and account for the patients’ waiting time as measure
of patient satisfaction. Moreover, we will develop an opti-
mization algorithm for more than two resource categories
using techniques from computational intelligence. Also, we
will investigate possibilities for dynamic resource allocations.
The agent-based simulation and evaluation tool and the
results were well received by domain experts and planners at
the CHE. Because of the realistic modeling and the promis-
ing results, the system will be used at the CHE for further
analysis and optimization of patient admission scheduling.
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