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ABSTRACTSheduling deisions in hospitals are often taken in a deen-tralized way. This means that di�erent speialized hospitalunits deide autonomously on patient admissions or operat-ing room shedules. In this paper we present an agent-basedmodel for the seletion of an optimal mix for patient admis-sions. Admitting the right mix of patients is important inorder to optimize the resoure usage and patient throughput.Our model is based on an extensive ase analysis, involvingdata analysis and interviews, onduted in a ase study at alarge hospital in the Netherlands. We fous on the oordi-nation of di�erent surgial patient types with probabilistitreatment proesses involving multiple hospital units. Wealso onsider the unplanned arrival of other patients requir-ing (partly) the same hospital resoures. Simulation exper-iments show the appliability of our agent-based deisionsupport tool. The simulation tool allows for the assessmentof resoure network usage as a funtion of di�erent poliiesfor deision making. Furthermore, the tool inorporates a�rst optimization module for the resoure alloation of post-operative are beds.
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1. INTRODUCTIONToday, many hospitals fae great demands to redue ostsand improve quality of servie, e.g. by reduing waitingtimes. In several European ountries this is due to the in-trodution of a free market health are system, for examplein the Netherlands. In order to derease osts, the ou-pany rates of resoures need to be inreased and the lengthof stay of patients has to be dereased. However, inreas-ing the resoure utilization an lead to bottleneks ausingthe bloking of patient ows and thus dereasing the qualityof servie. Therefore, eÆient patient sheduling beomesinreasingly important.Admission sheduling is onerned with the seletion of anoptimal mix of patients to be admitted to the hospital, suhthat the available apaity and the demand for health areservies are mathed. A good patient mix failitates an eÆ-ient usage of hospital resoures through the ombination ofdi�erent pro�les of resoure usage. In health are, this prob-lem is aknowledged to be omplex, sine hospital plannershave to oordinate di�erent patient treatment proesses inwhih typially several hospital units are involved. Often,resoures (like the intensive are unit (ICU)) are shared formultiple patient treatment proesses. Moreover, the hospi-tal planners have to ope with several soures of sheduledisruptions: arriving emergeny patients in urgent need forare, sudden hanges in a patient's lini state ausing anunexpeted transfer to an intensive are faility and/or theprolonged patient's stay. Compliations or emergenies maylead to anellations of operations.Hospitals often show a distributed organizational stru-ture [1℄. They are divided into several autonomous hospitalunits, eah assoiated with a medial speialty. Shedulesof shared resoures, like operating rooms, are managed lo-ally by the units eah applying their own (medial) prior-ities and preferenes. Thus, patient sheduling in hospitalshas strong deentralized features. A deision support sys-tem for this problem should therefore not only omprise ad-vaned sheduling tehniques that onsider the dynamis ofthe problem, but should also reet the distributed deisionmaking and ontain mehanisms to oordinate the shedulesof the di�erent parties involved. Therefore, an agent-based
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approah is ideal for deision support in this setting.For a realisti study of the admission sheduling prob-lem of di�erent patient groups, we developed an agent-basedsimulation tool in a ooperation between aademia and theCatharina Hospital Eindhoven (CHE), the Netherlands. TheCHE is a large university-aÆliated general hospital whiho�ers international state-of-the-art mediine for, amongstothers, ardiothorai surgery (CTS) and intensive are inaddition to the required basi medial are. In this paperwe address the admission sheduling of CTS patients whereeah relevant hospital unit is represented by an autonomousagent. The following features are inluded: patient hara-teristis inuening the patients' priority and pathway in thehospital, unertainty related to the duration of stay at thedi�erent hospital units as well as medial rules and prefer-enes of the involved units. Resoure availability is limitedand unertain due to the inow of other surgial patientsand the arrival of emergeny patients. The latter may ausethe bloking of patient throughput at the ICU. We base ourwork on an extensive data analysis and several interviewswith experts from the CTS unit and the ICU of the CHE.Simulation experiments demonstrate the tool's funtion-ality. The patient throughput realized by the agent-basedadmission sheduling system is omparable to the perfor-mane of the human planners at the CHE. What-if senariosallow for the evaluation of di�erent sheduling and bed allo-ation poliies. Additionally, an optimizer for determiningan optimal bed alloation is inorporated based on a pre-de�ned objetive funtion. To the best of our knowledge,this is the �rst agent-based model and simulation systemfor patient admission sheduling that inludes multiple pa-tient groups and resoures and that is based on real hospitaldata and urrent sheduling pratie. The agent-based sim-ulation and evaluation tool is suitable for deision supportin pratie.The remainder is organized as follows. First, we disussrelated work in Setion 2. Next, a desription of the hos-pital domain and a model for patient ows is presented inSetion 3. The agent-based simulation model with its dei-sion strutures and input and output elements is desribedin Setion 4, followed by simulation experiments reported inSetion 5. Finally, in Setion 6 we provide our onlusionsand an outlook on future work.
2. RELATED WORKEarlier work in Operations Researh mainly foused onsingle resoures, suh as operating rooms, intensive are bedsor diagnosti failities suh as in [2℄ or [3℄. We onsider om-plex treatment proesses requiring multiple hospital units.The work reported in [4℄ and [5℄ provide theoretial resultsfor bed utilization levels for deterministi patient treatmentproesses. We o�er a more operational approah whih andeal with stohasti treatment durations and routing. More-over, our approah is very exible and an be easily adaptedto other settings. The simulation model presented in [6℄ fa-ilitates the evaluation of aggregated bed alloation poliies.Our approah allows for an in-depth analysis of alloationstrategies also on the level of di�erent hospital units. Addi-tionally, the e�et of (small) hanges in bed alloations anbe evaluated using the agent-based simulation tool.Also in the literature on agent-based sheduling, the hos-pital domain has been addressed. In [1℄ the issue of onithandling in patient sheduling is studied. However, the dy-

namis of the problem, like stohasti treatment durationsand stohasti routing, as well as di�erent patient harater-istis are not onsidered. Patient planning in [7℄ is based onmedial wellness funtions of patients. This solution, how-ever, does not sale suÆiently and does not onsider thestohasti features inorporated in our approah. Randomtreatment durations and routing between treatment stepsare, however, very important to onsider beause they per-turb the hospital units' shedules. Multiple appointmentsin an outpatient setting have been studied in [8℄. Their ap-proah assumes a prede�ned treatment path whih does nothold in our problem setting. Also no stohasti appointmentlengths were onsidered.
3. DOMAIN DESCRIPTION AND MODEL

3.1 Hospital domainIn general, a hospital an be divided into several, medi-ally speialized, are units [1℄. Hospital are units like nurs-ing wards provide treatment and monitoring and are typi-ally dediated to a medial speialty suh as orthopedisor ardiothorai surgery. Hospital are units that are om-monly shared by di�erent speialties are the operating room(OR) unit, where medial speialties are assigned time slotsfor performing surgial proedures, and the intensive areunit (ICU), where patients with serious to life-threateningdiseases are monitored. Often, the ICU is divided into sev-eral subunits haraterized by di�erent are levels. Carelevels indiate the intensity of are and monitoring. We dis-tinguish intensive are (IC), high are (HC) and mediumare (MC), in dereasing order. Another important partof the ICU is the post anesthesia are unit (PACU) wherepatients reovering from anesthesia are monitored. Unlessompliations our, patients stay at the PACU only for afew hours before returning to another hospital unit. Somehospitals also have designated ICU areas for medial speial-ties, e.g. the Coronary Care Unit (CCU) for heart disease.We denote the set of are units relevant for our domainby U with U=fCTS-OR, IC, IC-HC, MC, CCU, CTS-HC,CTS-PACU, CTS ward, og1. o denotes the possible desti-nations of a patient's disharge from the hospital whih arehome or other are failities, but also mortality.For providing patient are at a hospital unit, resouresare required. Relevant resoures are ORs and hospital beds.Usually, ORs are available between 8 a.m. and 5 p.m. Hos-pital beds may also be opened only for a ertain time period.This is typially the ase at the PACU. We assume that re-soures are sta�ed and equipped with speialized failities.In order to aommodate patients at the appropriate arelevel, bak-up apaity may be used. This means that anadditional bed is opened at the respetive are unit or that apatient is temporarily aommodated at another unit until aregular bed is available. At the CHE, the CCU serves as asbak-up for the ICU. Usage of bak-up apaity is undesiredand will be aounted for in the output of our model.
3.2 Model of patient flows1The pre�x CTS indiates that a hospital unit is (partly)dediated to CTS patients, e.g. OR time slots assigned tothe CTS speialty. The HC is divided into IC-HC, whihis shared by di�erent speialties, and CTS-HC whih oa-sionally allows other patients as well.
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Figure 1: Representation of type I patient pathway3
We distinguish between sheduled patients (i.e. eletivesurgial patients from the waiting lists) and non-sheduledpatients (i.e. emergeny patients in urgent need for surgi-al and/or intensive are). Furthermore, we assume thatpatients an be grouped on the basis of their required treat-ment steps and respetive expeted duration. In a hospitalontext, the duration of a patient's stay at a hospital re-soure is referred to as Length of Stay (LoS). The abovegrouping of patients is ommonly based on diagnosis relatedgroups [9℄, expertise of medial speialists, or mahine learn-ing tehniques as in [10℄.The set of patient ategories resulting from this groupingis denoted by C. We de�ne a patient path (also referredto as pathway) of ategory  2 C as the sequene of atu-ally required treatment operations and the respetive LoS.Spei�ally, we fous on omplex (surgial) patient paths inwhih OR and di�erent postoperative are departments areinvolved. All possible pathways of patient type  2 C aremodeled as a probabilisti graph [11℄, G = (N; A; P ),where the set of nodes, N � U , represent the involved hos-pital units and the set of ars, A, represents the possibleadjaent treatment operations. The length of stay of a pa-tient of ategory  2 C at hospital unit u 2 N is modeledas a random variable, LoSu, that follows a probability dis-tribution PLoSu . P  is the set of onditional probabilitydistributions de�ned on A withP  = fPr(vju; ; t)ju 2 N; (u; v) 2 A; t � 0g for  2 C:(1)Pr(vju; ; t) represents the probability that are providedby unit v is required given that a patient of type  has beenadmitted to unit u for t time units.

3.3 Case study at CTSThe following is based on an extensive ase analysis in theform of numerous expert interviews and data analysis. Inthe CHE ase study for the CTS, four types of patient path-ways (type I to IV) were identi�ed. Type I and II patientsare CTS patients, for whom the �rst postoperative are fortype I and II patients is indiated as CTS-HC and CTS-PACU, respetively2. The type III pathway orresponds tothe treatment proess of emergeny patients who arrive un-expetedly. The type IV patient path represents the inowof other surgial patients in the system.The pathway of typeI patients is depited in Figure 1. Here, type I patients un-dergo surgery in the OR time slots alloated to the CTSspeialty, denoted as CTS-OR. After surgery, they are ad-mitted to the CTS-HC and are expeted to return to theCTS ward on the following day. There is a 15% hane thatompliations require an admission to IC or MC3 for type I2The deision for a type I or II path is based on a preoper-ative assessment of the patient's linial ondition.3The atual patient routing may deviate from the medialindiation depending on the available beds at the respetive

��� !� "#$ %$&"'()*+,-. /�
0���� 12 0� !���� 34�5 "#$ %$&"'((6789: ��� ;<=>

?@AB AC?D EEE F EG?@AB AC?D EG
?@AB AC?D EEE HIJK JLHM NNNHIJK JLHM NNHIJK JLHM NHIJK JLHM NO

?@AB AC?D EG
Figure 2: Interferene of CTS, other surgial andemergeny patient pathways3
patients4. Patients admitted to IC or MC are subsequentlytransferred to the CTS ward. If type I patients no longerrequire medial are and monitoring in the hospital, theyare disharged and leave the system5. Figure 2 shows thefour types of patient pathways and their interferene. Bydashed ars, the possible pathways of type II patients aredepited. Type II patients follow a fast-trak variant of thetype I path. Postoperative are is performed at the CTS-PACU and type II patients are expeted to return to theCTS-ward on the day of surgery. Severe ompliations o-ur rarely with orresponding probabilities of an IC or MCadmission given as 5% and 15%, respetively3. Conerningtype III and IV pathways, we fous on their possible interfer-ene with type I and II patients at IC, IC-HC, CTS-HC andMC. The preeding and suessive treatment steps of typeIII and IV patients do not need to be onsidered beauseother dediated resoures are used. Type IV patients areprimarily admitted to the IC-HC. If IC-HC beds are sare,IC or CTS-HC beds may be used.
4. AGENT-BASED ADMISSION SCHEDUL-

ING SYSTEMIn the following, the agent system for sheduling patientadmissions is desribed. For the analysis and design, themethodologies in [12℄ and [13℄ were taken into aount. Inthe development phase, the model and system were fre-quently disussed with hospital planners at the CHE. Theresulting system was approved by the CHE domain experts.
4.1 OverviewFigure 3 provides an overview of the arhiteture of theagent system. The system omprises two types of agent: ORsheduling agents and resoure agents. The OR shedulingagent represents the CTS speialty and is responsible formanaging the CTS-OR shedule. Resoure agents at on be-hospital are units. Patients may only be transferred to ahigher are level than indiated. The proedure is desribedin detail in Setion 4.2.2.4The ward round at the CTS-HC is sheduled at 10am dur-ing whih patient transfer deisions are taken. This impliesthat the LoS at the CTS-HC an be onsidered as determin-isti and t is irrelevant in (1). The same holds for type IIpatients at the losing of the CTS-PACU.5Compliations requiring re-admission or re-operation anbe easily inorporated in our model. In the onsidered CTSase, however, they were irrelevant beause they our onlyexeptionally (in about 0.6% of the ases).
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QUR[a]SU_hU`X
 

 

QUR[a]SU_hU X̀
 

 

Figure 3: Arhiteture of the system
half of postoperative and ritial are hospital units. Here,IC, IC-HC, MC, CTS-HC and the CTS-PACU unit and CTSward are represented by resoure agents. Resoure agent o-ordinate patient admissions and disharges with other agentsbased on the patient pathway and their available resoures.The in- and output elements and their relation to the in-ternal deision struture of the OR sheduling and resoureagents are shown in the upper and lower part of Figure 3,respetively. A detailed desription of the agents' deisionmodels is given in Setion 4.2. The sheduling poliies em-ployed by the di�erent agents are derived from the CHEase study and are outlined in Table 1. Table 1 also on-tains information on the number of resoures alloated tothe di�erent units at the CHE. The CTS-OR is availablefrom 8am till 5pm. Beds at the CTS-PACU and CTS-HCare opened for a limited time window. Hospital beds at theremaining units are opened day and night on 365 days peryear (indiated as 24/7). Costs for di�erent types of hospi-tal beds relate to the daily osts for sta� and materials andare expressed relative to the osts of a nursing ward bed.The OR sheduling and several resoure agents initiatepart of their admission and transfer ommuniation at �xedpoints in time. A time line is depited in Figure 5.In the present work, we onsider the number of alloatedbeds and ORs as free deision variables (highlighted by dou-ble borders in Figure 3). Future work will also fous on theoptimization of the agents' sheduling poliies.
4.2 Decision model of agents

4.2.1 OR scheduling agent

Sheduling deisions of the OR sheduling agent dependon the availability of eletive surgial patient groups on thewaiting lists, and their medial priorities6, e.g. [7℄. The ORsheme spei�es the number of patients of the di�erent typesto be sheduled to the alloated OR time slots, i.e. 2 half-day sessions for eah of the 4 ORs. For the CTS, a half-day session orresponds to one surgery. The design of thepatient pathway, desribed in Setion 3.3, requires that earlyOR slots are assigned to type II patients. The agent's taskis to shedule admitted patients to time slots aording tothe OR sheme. Also, the agent informs the CTS wardagent of the required number of patients of the di�erenttypes for the following day's OR sheme and sends requestsfor postoperative transfers to the CTS-HC and CTS-PACU.The implemented poliy is summarized in Table 1.
4.2.2 Resource agentsAdmission and transfer deisions of resoure agents de-pend on patient ategories and pathways, bed availability,and the messages exhanged with other agents6. The re-soure agents' poliies are desribed in Table 1.In general, patients are admitted to a hospital unit only ifbeds are available. If more patients are proposed for admis-sion than beds are available, a multitude of linial variablesdetermines whih patients are admitted. We represent themedial hoie by a stohasti proess that randomly seletspatients for available beds (exluding bak-up apaity).At the CHE, type I and II patients with IC indiation areonsidered like emergeny patients and are always admittedto the IC. If free IC beds are sare, the IC agent may usebak-up apaity whih is aounted for in the system's per-formane. At the same time, one bed is kept free for typeIII patients. If the admission of type III patients is rejetedby the IC agent, patients are admitted to another hospitalwhih is left out of our model.As analyzed at the CHE, the MC agent always aeptstransfer requests from the CTS-PACU beause CTS-PACUbeds are losed at 22pm. If MC beds are sare, patientsare aommodated to bak-up apaity.If no bed is available at the indiated hospital unit, a re-soure agent approahes a resoure agent of higher are levelfor transfer. We refer to this strategy as \upgrading" whihtogether with the onseutive patient path is illustrated fortype I patients by bold arrows in Figure 4. If a patient an-not be transferred to the MC, the CTS-HC agent approahesthe IC-HC agent whih normally is not intended. If the re-quest is aepted, the onerned patient is\upgraded" to thehigher are level. Otherwise, the next higher are agent isapproahed, i.e. the IC agent. If the transfer is not possible,the patient remains admitted to the CTS-HC until transferto the CTS ward. The CTS-OR agent is informed of thelimited admission possibilities.The IC-HC agent applies upgrading for the admission oftype IV patients for whih the IC agent is approahed �rst,followed by the CTS-HC agent. If upgrading is not pos-sible, type IV patients are rejeted. A rejeted admissionmay a�et the orresponding surgial speialty's OR shed-ule and may ause bloking at the dediated nursing ward.Sine only the resoures shared with type I and II patientsare onsidered in our model, the onsequenes of rejetedadmissions are not aounted for.6For future use we inluded a poliy module alled utilityfuntion.
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Table 1: Sheduling poliies, resoure availability and osts implemented in agent-based simulation systemfor patient admission shedulingAgent No. re-soures Costs Resoureavailability Sheduling poliyCTS-ORShedulingagent 4 ORs - Mo-Fr 8h00-17h00 request transfer of type II (I) from CTS ward to OR as spei�ed in ORsheme at time SCTSII (SCTSI) (f. Figure 5);if informed by CTS-HC agent that insuÆient beds are available, typeI surgeries are aneled aordingly;based on OR sheme for following day, inform CTS ward on requirednumber of type I and II patients at time AI+II ;send transfer requests to CTS-PACU and CTS-HC agents after om-pleted surgery of type II and I patients, respetivelyCTS-PACUagent 4 beds 2 Mo-Fr12h00-22h00 send transfer requests to hospital unit indiated for admitted patientsat time TCTS�PACUCTS-HCagent 4 beds 2 Mo 10h00-Sa 10h00 send transfer requests to resoure agents at time TCTS�HC as desribedin Setion 4.2.2; if transfer is rejeted by all possible resoure agents,patients remain at CTS-HC; inform CTS-OR agent of limited bed avail-ability;aept admission of type IV patients if beds are availableIC agent 11 beds 4 24/7 admit all type I & II patients with IC indiation; if IC beds are sare,use bak-up apaity;other patient admissions are aepted by random hoie over patientsontained in transfer request, one bed is retained for type III patientsIC-HCagent 4 beds 2 24/7 if insuÆient IC-HC beds are available for requested type IV admissions,send admission request to resoure agents as desribed in Setion 4.2.2;if not suessful, rejet admission;admit other patients proposed for transfer by random hoie to free bedsMC agent 4 beds 2 24/7 admit all patients from CTS-PACU; if MC beds are sare, use bak-upapaity;admit other patients proposed for transfer by random hoie to free bedsCTS wardagent 35 beds 1 24/7 admit all postoperative patients; the number of preoperative admissionsdepends on the following day's OR sheme aounting for previouslyadmitted patients whose surgeries have been aneled; if ward beds aresare, use bak-up apaity
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The agent model reets the omplex features of the hospi-tal domain in a detailed and realisti way. The experimentalsystem evaluation and validation is desribed in Setion 5.
4.3 Technical details of implementationThe agent model is implemented in Java as an event-basedsimulation. Events are patient admissions and transfers.The system o�ers logging possibilities for atual shedulingdeisions whih is used to determine loal and global perfor-mane aording to prede�ned performane measures, e.g.
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Figure 5: Time line for the �xed deision momentsand ommuniation: S - shedule surgery, T - trans-fer, A - admission and respetive agent/patient type
number of treated patients or osts for regular beds.Patient path information, i.e. the required treatment steps(inluding ompliations) and the respetive LoS, are sam-pled at the start of a simulation run. The information dis-losed to an agent is restrited to an event at the time apatient an be transferred or disharged. In the former ase,the hospital unit to whih the patient is to be transferred isindiated.
5. EXPERIMENTAL EVALUATION

5.1 Experimental setupThe settings of our simulation experiments are based onase analysis in the form of data analysis and expert inter-views at the CTS department of the CHE. The relevant in-put parameters of the di�erent patient pathways introdued
49



Table 2: Input parameters of patient pathwaysPatientgroup Unit LoS (hours)mean�stdev Routingprob.Type I CTS-HC 15� 0 -IC 48:48� 54 0.15MC 24:48� 38:52 0.15CTS ward 120� 22:08 0.7Type II CTS-PACU 6� 0 -IC 42� 57:12 0.05MC 10:32� 22:08 0.15CTS ward 120� 22:08 0.8Type III IC 37� 84:55 -Type IV IC-HC 100:27� 200:66 -
in Setion 3.3 are given in Table 2. Models for sampling pa-tients' LoS ommonly used in the literature are Lognormal,Gamma and Weibull distributions [14℄. We hose a Log-normal distribution beause the use of it is simple and fast.Moreover, Gamma and Weibull distributions did not resultin signi�antly di�erent simulation results in the basi set-ting. We estimated Lognormal distribution parameters us-ing the method of moments [15℄. In aordane with expertopinion, \upgrading" does not a�et the LoS of a patient.In our simulations, type III patient arrivals follow a Poissonproess with on average two patients per day. Bulk arrivalsof type IV patients vary between 2 and 4 patients per daywith a mode of 3. Patients of type I and II are eletive sur-gial patients who arrive based on the admission shedule.Patient inow at the MC an be inluded in an abstratmanner: the number of available beds is sampled at thestart of a day using a disrete stationary probability distri-bution. This representation was hosen beause type I andII patients are admitted to the MC for about one day (onaverage). This implies a minimal time dependeny betweensubsequent days. Other patient inow requires 3, 2, 1 or 0beds with probability 0.2, 0.5, 0.2 and 0.1, respetively.For the basi validation and evaluation of our system, weimplemented the resoure alloation poliies urrently em-ployed at the CHE. An overview of the number of alloatedresoures and assoiated (relative) osts is given in Table 1.The simulation system o�ers a number of outome mea-sures. Of partiular interest to the hospital is the patientthroughput, i.e. the number of patients disharged from thehospital after treatment. Also, the number of patients treatedat the di�erent hospital units, the frequeny of externalbak-up apaity usage and the period of usage are of inter-est. In a hospital environment resoure ost plays an impor-tant role. Here, we distinguish between the ost for\regular"beds and the osts for using bak-up apaity. Regular ostsare determined based on the bed apaity alloated to thehospital units, whereas bak-up osts are alulated basedon atual timely usage of bak-up beds. The ost fatorsused for alulating osts are given in Table 1.
5.2 Experiments

5.2.1 Basic scenario and validationIn Table 3 the simulation outomes for the basi setup, de-sribed in Setion 5.1, are shown. The results were obtainedfrom 50 simulation runs of 52 weeks eah and a warming-

Table 3: Simulation outomes for basi senarioOutome measure Mean�StdevType I + II patient throughput 1768:08� 40:31Type III patient throughput 539:16� 26:91Type IV patient throughput 899:72� 10:28Resoure ostsregular 38835� 0bak-up 355:65� 48:64
up period7 of 12 weeks. With the poliies presented inSetion 4.2, the agent-based admission sheduling systemahieved a mean total patient throughput of about 3207 pa-tients. Of this, 1768 patients of type I and II are treatedwith a standard deviation of approx. 40. Purely based onthe CTS-OR apaity, a maximum throughput of 2080 typeI and II patients ould be realized. This upper bound is notrealized in pratie beause the frequent bloking at the ICUa�ets the CTS-PACU and CTS-HC whih in turn ausesaneled CTS surgeries. At the CHE, about 1800 type I andII patients undergo surgery per year. Thus, the performaneof the agent-based simulation system ompares well to thehuman CHE planners. Regarding admission requests fortype III and IV patients, the system ahieves an aeptanerate of about 82.93% and 98.97%, respetively. These out-omes are omparable to reent aggregated measurementsperformed at the CHE.In our simulations, bak-up apaity is used for about50%, 25% and 25% of the ases for CTS ward, IC and MC.At the CTS ward, about 9.5% of the type I and II patientsare admitted to another ward prior to surgery after whihthey follow the proess desribed in Setion 3.3. Postoper-ative patients are admitted to a bak-up bed in about 8.5%of the ases with a mean LoS of about 16 hours. At theIC a bak-up bed is required about one every three weeksfor on average 16 hours. The frequeny of bak-up apaityusage at the MC bak-up apaity is omparable to the IC,in total for about 26.7 bed days per year. Domain expertsfrom the CHE have found the above results to be realisti.
5.2.2 Scenario analyzesIn many hospitals, an eÆient alloation of resoures tothe di�erent hospital units is a major managerial issue, es-peially beause the relationship between beds, oupanyand aeptation rates for di�erent patient groups is omplex[6℄. In order to address this problem, we analyzed severalsenarios using the simulation system desribed above.In the urrent situation at the CHE, about 10% of thepreoperative CTS patients are admitted to other nursingwards beause no bed is available at the CTS ward. Al-though the quality of are is not a�eted, admission to theCTS ward is preferable from a patient-friendliness point ofview. Of ourse, the osts for patient-friendliness improve-ment through additional CTS ward beds should be moder-ate.The results are given in Table 4. One additional ward bed,whih inreases total osts with about 1.7%, dereases thefrequeny of pre- and postoperative admissions to bak-upbeds by fator 3. Bak-up apaity usage an be further de-reased by additional ward beds with a minimum of about7Warming-up was used to avoid starting with an empty hos-pital.
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Table 4: Resoure osts and frequeny of bak-upusage for varying number of CTS ward bedsNumber of CTS ward bedsOutome 35 36 37 38Mean frequenybak-up ap. usagepreOR 9.51% 6.46% 4.07% 2.4%postOR 8.54% 5.78% 3.57% 2.02%Resoure osts(mean�stdev)regular 38835 39200 39565 39930bak-up 355:65�48:64 278:59�33:33 226:11�33:52 173:33�27:28
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Figure 6: Mean patient throughput for 0 IC-HCbeds and varying IC bed apaity
2% for 38 ward beds. Further inrease of CTS ward a-paity does not improve the resulting frequenies and wastherefore not inluded in Table 4. Currently, the manage-ment of the CHE disusses the option of losing the IC-HCand transfer the bed apaity to the IC in order to be moreexible in patient admissions. Figure 6 shows the meanpatient throughput per patient type for the above senarioand varying IC bed apaity. For inreasing IC bed apa-ity, the mean throughput of type I and II patients inreaseslinearly from 1268:4 to 1985:95 for 10 to 20 IC beds. Thethroughput of type III patients starts at about 500 and in-reases to about 620 for 17 IC beds (orresponding to anaeptane rate of about 96%) with a standard deviationof about 20. Thus, the variability in type III throughputis primarily determined by the variation of patient arrivalsand LoS. The throughput remains almost onstant for morethan 17 IC beds. The same holds for type IV patients wherethe turning point is at 16 IC beds and 97% of the patientsare aepted for admission. Interestingly, the treatment oftype IV patients shifts from CTS-HC to the IC for inreasingnumber of IC beds. This means that for inreasing numberof IC beds, the number of type IV patients treated at theCTS-HC dereases and inreases at the IC.Beause of the shift in patient mix, 16 IC beds are re-quired to guarantee the same overall patient throughput. 17IC beds are needed to realize a omparable patient mix. Due
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Figure 7: Contour plot of mean resoure osts perpatient for varying IC-HC and IC bed alloationsto the interesting insights, we also ompared other bed allo-ations for IC-HC and IC in terms of their ost-e�etiveness.Here, ost-e�etiveness is the ratio of mean total resoureosts and mean total patient throughput. Figure 7 shows aontour plot of the mean resoure osts per patient for IC-HC and IC beds varying from 0 to 10 and 5 to 20, respe-tively. The white ross indiates the urrent bed alloationat the CHE. The �gure shows that resoure osts per patientare onvex with a minimum at about 6 IC and 6 to 8 IC-HCbeds. Compared to the urrent situation at the CHE, thisalloation inreases the patient throughput of type I+II by9%. Type III throughput dereases by fator 2, while typeIV throughput remains almost the same. Costs for regu-lar apaity are dereased by 16.9%, whereas bak-up ostsare inreased by 70.9%. For 0 IC-HC beds, mean osts re-main almost onstant for inreasing number of IC beds andderease slightly for 14 to 16 IC beds. For this bed allo-ation, type I+II and IV throughput is dereased by about12.4% and 6%, respetively, whereas type III throughput isinreased by 8.9%. Regular osts are slightly inreased by3.8% while bak-up osts derease with 45.9%. These re-sults an be explained by the interation of di�erent patientpaths and its e�et on the total patient throughput.Thus, losing the IC-HC will a�et the patient mix byinreasing the number of treated type III patients and de-reasing the throughput of type I+II and IV patients. Thetotal patient throughput dereases slightly. Contrary to thedisussion of the hospital management regarding losing ofthe IC-HC, inreasing the IC-HC apaity seems advisablefrom a ost-e�etiveness point of view.
5.2.3 Optimization of bed allocationTo automatially �nd an optimal bed alloation, we im-plemented a brute-fore optimizer that uses the simulationsystem to evaluate di�erent bed alloations. It an be usedfor various objetive funtions. The number of IC-HC andIC beds are varied from 0 to 10 and from 5 to 20 whihresults in 176 possible alloations. Eah alloation was eval-uated on the basis of 20 simulation runs of 52 simulatedweeks and a warming-up period of 12 weeks. On an IntelPentium 4 2.8GHz mahine with 2GB RAM a simulationrun takes about 13.1 seonds whih resulted in a runtime of
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about 12.8 hours for the alloation optimizer. We illustratethe algorithm using the mean resoure osts per patient asobjetive funtion. In the optimal bed alloation, the IC-HC apaity is inreased to 7 beds and the IC apaity isredued to 5 beds whih results in resoure osts per patientof 10.6 on average. The optimal alloation results in a meanannual total throughput of about 3100 patients.
6. CONCLUSIONSIn this paper we presented an agent-based simulation andevaluation tool for patient admission sheduling that realis-tially aptures the omplex features of the problem domain.To the best of our knowledge, this is the �rst agent-basedsimulation system for patient admission sheduling that in-ludes multiple patient groups with stohasti arrival andtreatment pathways. We showed that an agent-based modelan be developed based on knowledge eliitation from thease that realistially reets the problem domain. The im-plemented simulation system an be adjusted to omparablesituations in other hospital settings. Furthermore, extensivesimulation experiments demonstrate the appliability of themodel and show how the agent-based simulation tool is use-ful for deision support. In a hospital setting where the plan-ning is often performed in a deentralized way, a multi-agentdeision support system is ideal beause it allows for design-ing and evaluating improved (adaptive) poliies, whih anthen be implemented easily in real life.The multiple simulation outomes for the basi settingshow that the patient throughput ahieved by the agent-based sheduling system is omparable to the planning per-formed by hospital sta� of the CHE. Using the system newsheduling poliies an be examined in a fast way: one yearof hospital time an be simulated in a few seonds.What-if senarios show that the agent-based admissionsimulation tool an be helpful in analyzing the omplex re-lationship between bed alloations, oupany and patientmix. It allows a realisti analysis that otherwise would beimpossible. Thus, the simulation system is of substantialvalue for deision support in pratie.We also presented a �rst approah to optimize resouremanagement using the simulation model. Here, the freevariables were the number of IC-HC and IC beds whih ap-peared to have a signi�ant inuene on the overall patientthroughput. The eÆient omputation and the size of thesearh spae allowed using a brute-fore optimization whihguarantees a globally optimal solution. We illustrate theoptimizer by using the mean resoure osts per patient asobjetive funtion, but other performane measures an alsobe easily inorporated in the simulation tool. Optimally, theIC-HC apaity should be inreased by 50% and the IC bedsshould be redued by fator 2, ompared to the urrent set-ting at the CHE. Due to its little variability in performane,the optimal alloation is a promising solution for pratialimplementation. The results show the multi-objetive na-ture of the problem whih will be addressed in future work.However, the bene�t of a well-designed agent-based simula-tion for hospital sheduling beomes apparent.It should be noted that in this study we onsider situationsfor whih waiting lists for eletive surgery are suÆientlylong, so eletive patients are always available. This assump-tion holds for the Netherlands and several other Europeanountries where the waiting list for ardia surgery are long.In future work we will also address the online admission

sheduling problem where waiting lists are �lled dynami-ally and aount for the patients' waiting time as measureof patient satisfation. Moreover, we will develop an opti-mization algorithm for more than two resoure ategoriesusing tehniques from omputational intelligene. Also, wewill investigate possibilities for dynami resoure alloations.The agent-based simulation and evaluation tool and theresults were well reeived by domain experts and planners atthe CHE. Beause of the realisti modeling and the promis-ing results, the system will be used at the CHE for furtheranalysis and optimization of patient admission sheduling.
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