
Case Studies for Contract-based Systems
Michal Jakob

Michal P chou ekě č
Czech Technical University in Prague, Faculty of

Electrical Engineering Technická 2
166 27 Praha 6, Czech Republic

{jakob,pechoucek}@labe.felk.cvut.cz

Simon Miles
Michael Luck

King's College London, Department of Computer Science
London WC2R 2LS, UK

{simon.miles,michael.luck}@kcl.ac.uk

ABSTRACT
Of the ways in which agent behaviour can be regulated in a multi-
agent system, electronic contracting – based on explicit
representation of different parties' responsibilities, and the
agreement of all parties to them – has significant potential for
modern industrial applications. Based on this assumption, the
CONTRACT project aims to develop and apply electronic
contracting and contract-based monitoring and verification
techniques in real world applications. This paper presents results
from the initial phase of the project, which focused on
requirements solicitation and analysis. Specifically, we survey
four use cases from diverse industrial applications, examine how
they can benefit from an agent-based electronic contracting
infrastructure and outline the technical requirements that would
be placed on such an infrastructure. We present the designed
CONTRACT architecture and describe how it may fulfil these
requirements. In addition to motivating our work on the contract-
based infrastructure, the paper aims to provide a much needed
community resource in terms of use case themselves and to
provide a clear commercial context for the development of work
on contract-based system.

Keywords
contract-based systems, contracts, multi-agent systems, services,
monitoring, architecture

1 INTRODUCTION
Of the ways in which agent behaviour can be regulated in a multi-
agent system, electronic contracting may be the most suitable for
industrial applications. In part, this is because it explicates
different parties' responsibilities, and the agreement of all parties
to them, allowing businesses to operate with expectations of the
behaviour of others, but providing flexibility in how they fulfil
their own obligations. Additionally, it mirrors existing (non-
electronic) practice, aiding adoption.
In technical terms, an electronic contracting approach, where
publicly declared commitments in the form of contract documents
between application-specific agents are created and reasoned
about, provides the following benefits:

• Contracts abstract away detailed implementation information
of individual actors and model dependencies between them
explicitly.

• Contracts are publicly observable, improving run-time
monitoring of the system as a whole.

• Contracts can model functional as well as non-functional
properties of an interaction.

• Contracts correspond to the types of relationships occurring
in organisations in which business software systems are
deployed and, therefore, allow software engineers to perform
a more intuitive analysis.

• Contracts can be linked to more general social structures
such as social laws, rules, norms and institutions, which
provide useful metaphors for system design.

While contract-based infrastructures have previously been
proposed, e.g. [4, 6], with each applied to particular scenarios,
without a principled study of requirements on electronic
contracting across a range of industrial use cases, there is a danger
that they may be designed in a non-reusable way, fulfilling only
individual application needs. An analysis of electronic contracting
requirements may also highlight open questions for research into
open agent systems.
The CONTRACT project [11] aims to develop and apply
electronic contracting and contract-based monitoring and
verification techniques in real world applications. However, rather
than focus on simply building particular instantiations of an
architecture, the project also seeks to address one of the
fundamental barriers to the adoption of agent technologies, the
lack of a sufficient range of case studies [3].
While several efforts have been made to report on particular
applications in support of this aim (for example, [1] and previous
AAMAS Industry Tracks), these have tended to be one-off
applications that are inadequate to show broad applicability and
relevance of generic techniques across a range of domains or
indeed applications themselves. Some efforts have sought to use
similar examples to illustrate the use of particular techniques,
such as the conference management system in the case of
methodologies for agent oriented software engineering (e.g., [2]),
but these are to some extent toy examples rather than real use
cases.
In contrast, our effort to develop a contract architecture is
unashamedly tied directly to our efforts in eliciting requirements
from real business cases, and developing prototype systems for
real applications. In this paper, therefore, we survey four use cases
from diverse industrial applications, examine how they can benefit
from an agent-based electronic contracting infrastructure, draw
out the technical requirements this would place on such an
infrastructure, and describe how our architecture may fulfil them.
The aim of the paper is threefold: first, to motivate and inform our
work on the contract-based infrastructure; second, to provide a
community resource in terms of the use cases themselves, to

 Cite as: Case Studies for Contract-based Systems, M. Jakob et al., Proc.
of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008) – Industry and Applications Track, Berger, Burg, Nishiyama (eds.),
May, 12-16., 2008, Estoril, Portugal, pp. 55-62.

Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

55

facilitate understanding, comparison and evaluation of competing
techniques and architectures; and third, to provide a clear
commercial context for the development of work in this area, and
demonstrating the business benefit to be gained. Note that it is not
the aim of the paper to provide a description of the actual
implementation of the contracting infrastructure. This is currently
an on-going effort in the CONTRACT project, part of which is
reported in a separate paper [12].

2 USE CASES
To this end, the CONTRACT project has sought to capture
requirements in four application areas, each represented by one
industrial partner: modular certification testing (provided by
Certicon); service procurement in the insurance industry (Y’All);
aircraft engine aftercare (Lost Wax); and service level agreement
management in software engineering (Fujitsu).

The use cases were captured in a multi-round dialogue, the basis
of which comprised detailed use case templates completed by
each industrial partner. The emphasis was on capturing business
relationships and contracts in each domain as these provide a
solid foundation for the description of technical requirements and
specific use case scenarios. In this paper, we provide only a brief
overview of each of the four use cases – for detailed descriptions,
see [10]. Each overview below consists of a description of the
application area, business entities and services involved in the
business model, and selected main contracts formally
underpinning business interactions in the domain.

2.1 Use Case 1: Modular Certification Testing
Modular certification testing allows a large number of
heterogeneous and independent businesses to flexibly collaborate
on the provision of certification services. The model has been
applied to computer literacy testing using the European Computer
Driving Licence (ECDL1) concept, first in the Czech Republic and
later in Slovakia, and can be equally well applied to other
certification programmes of similar structure.

2.1.1 Actors
There are three categories of business entities cooperating in the
certification business domain (see Figure 1 for an overview):

1The European Computer Driving Licence® (or ECDL) is the registered
trade mark of The European Computer Driving Licence Foundation
Limited in Ireland and other countries.

• accreditation institutions (the national licensee and sub-
licensees) are the subjects responsible for the proper
operation of the certification programme;

• suppliers (accredited test centres, test room operators and
testers) provide services required for certification testing
(both to customers and between themselves);

• and consumers are the recipients of certification testing
services.

From the perspective of the use case, the most important business
entities in the domain are the accredited test centres. Test centres
offer certification testing to candidates who want to get certified
in the respective certification programme. Candidate testing is a
complex process and requires a combination of multiple services,
including the provision of testing facilities (test rooms), the
supervision of test sessions and the marking of tests. Although a
test centre can provide all these service internally, in many cases it
is advantageous to procure these services on the supplier market.
Business cooperation between test centres and their
subcontractors on the supplier market is the primary focus of the
use case.

2.1.2 Contracts
Out of a number of different contracts governing the provision of
services in the domain, the use case primarily focuses on the
following:

• Certification Test Contract is a business-to-consumer
contract specifying the terms and conditions of certification
testing between a certification candidate and an accredited
test centre.

• Test Room Rental and Tester Hire are business-to-business
contracts governing the provision of testing facilities and test
supervision/test marking services, respectively.

2.1.3 Benefits of Contract-based Technology
Contract-based technology should primarily be applied to enable
test centres to establish and manage supplier relationships with
accredited test room operators and accredited testers, as well as
their relationships to customers. The application of electronic
contracting should lead to increased flexibility by which test
centres can respond to consumer demand for certification testing
by forming on-demand business partnerships. Automated contract
management and monitoring should result in significant reduction
in labour cost, better utilisation of resources, higher reliability and
consequently improved quality of service to the consumer.

2.2 Use Case 2: Dynamic Insurance Settlement
The insurance domain relies heavily on traditional ways of claims
handling. Every aspect of a claim is dealt with by different
specialists working in different departments of a company, or in
different companies involved in the total claims handling process.
Therefore, the whole process is very costly. Nowadays, the
insurance market is increasingly seeking ways to economise on
claims handling by increasing the level of process automation and
improving the integration of the different parties (e.g., victims,
witnesses, surveyors/experts, lawyers, insurance companies,
middlemen and doctors) and systems involved.

The Dynamic Insurance Settlement use case describes a
CarRepairGrid system to be built for an envisioned new
company, DamageSecure (Figure 2), which manages and controls

Figure 1: Overview of the certification business domain
showing business entities and services they provide

56

all businesses involved in dealing with car damage claims for
several insurance companies. The goal of DamageSecure is to
enhance the quality and efficiency of the total damage claims
handling process between consumers, damage repair companies
and insurance companies. CarRepairGrid reasons about repairs of
damaged cars that are insured at insurance companies in order to
settle the claim under the best circumstances (lowest prices,
highest quality, as soon as possible, as close as possible, etc).

2.2.1 Actors
In all, five types of entities are involved in business transactions
in the insurance domain:
• Customers who are the holders of insurance policies

• Repair companies which repair and replace damage.

• Insurance companies which inspect, approve and pay
approved claims.

• DamageSecure which operates the CarRepairGrid and acts
as a broker between the other parties in the domain. It offers
services to both Insurance Companies (centralised
procurement of services) and Repair Companies (centralised
selling of services to Insurance Companies).

• Experts who perform counter-expertise for Damage Secure

2.2.2 Contracts
In terms of contracts regulating business transactions in the
domain, the use case is focused on:
• Overall Contract which specifies the relationship between

an Insurance Company and DamageSecure.

• Repair Contract which specifies the relationship between
DamageSecure and a Repair Company.

The Overall Contract is a good example of a long-term contract
between a supplier and a broker defining a contractual framework
within which targeted, short-term repair contracts are established.
Repair Contracts are the primary interest from the project's
perspective because they have significantly higher volume and
dynamics than the rather static Overall Contracts.

2.2.3 Benefits of Contract-based Technology
The biggest opportunity for the application of automated contract
technology lies with DamageSecure. Contract technology can
significantly improve insurance claims handling by enabling
automated, contract-based matching of repair requests to repair

companies as well as automated monitoring of the claims handling
process. This is expected to lead to a decreased cost due to
reduced manual labour, increased competition and improved
efficiency of the claims handling market. With an estimated
100,000 claims per year, the automation of CarRepairGrid could
potentially save 172,000,000 Euros. Greater variety of customised
insurance policies and a wider range of repair options together
with accelerated claim handling are the other benefits expected
from automated contract-based claim handling.

2.3 Use Case 3: Aerospace Aftermarket
The aerospace aftermarket is increasingly populated by customers
buying a service rather than a product. Here, the aircraft engine
manufacturer is responsible for providing a specified number of
serviceable engines so that the airline operator’s aircraft can be
kept flying. The engine manufacturer is paid by the hour when the
engines are available and may face a penalty if planes are on the
ground waiting for a serviceable engine. In this business model,
servicing and maintenance becomes a key driver of long term
profitability for the engine manufacturer. Aftercare contracts are
worth millions of Euros and can last several years. They are
complex with stipulated service levels and penalties for failure to
meet them.

A unique feature of this use case is the Aerogility system, an
agent-based decision support tool developed by LostWax to
simulate aerospace aftercare. A contract-enhanced Aerogility
would be able to show the effects of variations in contracts – not
only in profitability but also the different aftercare strategies
needed to meet the revised contract.

2.3.1 Actors
From the perspective of the use case, there are three relevant types
of businesses in the domain (see Figure 3):
• Airline Operators are customers for aftercare contracts.

Each operator has its own fleet of aircraft which need to be
kept in service.

• Engine Manufacturers are suppliers of aftercare contracts.
They attempt to fulfil the service levels specified in the
contracts or else incur penalties.

Figure 2: Overview diagram of the insurance domain

Figure 3: Actors and services in the Aerospace aftermarket
domain

57

• Part Manufacturers manufacture and deliver engine parts.
They have contracts to supply new or refurbished parts of
given types to engine manufacturers.

2.3.2 Contracts
The provision of services is regulated by contractual agreements
between respective parties. The use case explicitly models the
following two contracts:
• Aftercare Contract which specifies the terms and conditions

under which the aircraft manufacturer undertakes to supply
and maintain engines for the operator's aircraft. The
Aftercare Contract specifies e.g. serviceable engine rate,
airports and routes on which the operator operates, penalties
applicable if agreed service levels are not met, etc.

• Parts Supply Contract which regulates how the engine
manufacturer asks a part manufacturer to make and deliver
new parts or refurbished old parts of a given type over a
given period. The Parts Supply Contract specifies e.g.
locations where part supplies should be delivered, the cost of
parts, delivery times, etc.

Note that although Aftercare and Parts Supply Contracts can be
relatively long-term, they provide a framework under which a
large number of specific service requests are handled. The Parts
Supply Contract is more speculative and simpler than the
Aftercare Contract, but is potentially more dynamically and
frequently created and may provide a useful extra test of the
developed contract-based technology.

2.3.3 Benefits of Contract-based Technology
In contrast to the other use cases, which envision the deployment
of the developed technology directly into the application domain,
here the contracting technology will be used in the simulated
environment provided by the Aerogility simulation system. Rather
than automating operation in the application domain, the
emphasis of the use case is on investigating collaboration patterns
emerging from contract-driven interaction between parties in the
domain. By using contract monitoring and verification techniques,
operators and manufacturers can investigate the properties of
contracts they are involved in, and analyse the impact of their
potential modification. Potentially, this could lead to
recommendations of change on the basis of current contracts to be
fulfilled.

2.4 Use Case 4: SLAs in Software Engineering
Service level agreements (SLA) play an increasing role in IT
service management. Customers expect from their IT service

providers high quality and flexible services at reasonable cost,
meeting customer requirements. One of the major tasks of service
level management (SLM) consists in grasping requirements of end
users and offering respective services. In this process, the quality
and quantity of services at acceptable costs are negotiated,
defined, measured, and continuously improved. To ensure stable
and reliable operation of the IT infrastructure of an organisation
with a high degree of performance, the responsible managers
within the organisation establish, verify and monitor contracts
with service providers.

2.4.1 Actors
Business collaboration in the domain takes place between a
customer who has an identified need for a specific IT service to
contribute to its business, and an IT service provider who can
deliver the requested services to the customer. IT services
provided range from processing a single help desk call to the
development of a new software system. From this broad range, the
use case focuses primarily on software engineering services for
developing new systems or enhancing existing software solutions
based on change requests issued by customers

Figure 4 depicts business collaboration patterns corresponding to
the provision of software engineering services, including a high-
level view of internal services and resources involved at each
party.

2.4.2 Contracts
The provision of services in the use case domain is governed by
two key contracts:
• Change Request Agreement Contract which specifies the

characteristics of the delivery process of the software
modification and the quality properties of the software to be
delivered.

• Service Level Agreement Contract which specifies the
service level for technical support of a software system in
terms of characteristics of the delivery process, e.g., response
times for reported incidents.

In addition to a simple scenario consisting of just one customer
and one provider, more complicated collaboration patterns are
also envisioned. A more complicated scenario can involve a
customer and a provider with one main agreement defining default
conditions and obligations, and any number of sub-contracts, e.g.,
for single change requests, which have to meet the rules of the
main agreement, while they can contain extensions as long as they
remain consistent with the conditions and obligations of the main
agreement.

2.4.3 Benefits of Contract-based Technology
Due to compliance issues and legal regulations, IT service
providers and customers increasingly tend to measure the quality
of software products and the performance of software engineering
and technical support processes. Automated contract technology
can greatly help this task by supporting continuous monitoring of
performance indicators before and during service delivery, issuing
early warnings in case of the risk of not meeting the conditions
and obligations set in the agreement, and thus preventing contract
violations. This decreases the risk of delivering IT services too
late or with low quality, reduces costs of penalties and increases
customer satisfaction.Figure 4: Actors and resources involved in the provision of

software engineering services

58

Representation of IT service agreements in a machine
interpretable way can also greatly improve contract management,
providing an accurate and up-to-date view of contracts and the
state of corresponding commitments, and opening a way for the
optimisation of the provisioning process. In scenarios with
multiple dependent contracts, requesting changes to already
established contracts can be better controlled, avoiding
inconsistencies and unnecessary business disputes. In addition,
well-defined syntax and structure of electronic contracts allows a
clear definition of the obligations for the IT service provider and
the respective expectations of the customer.

3 REQUIREMENTS
Following solicitation of the use cases, we performed an analysis
to determine technical requirements. Analysis was performed on
the complete descriptions of the use cases [10], which provide
significantly more information. Detailed analysis has been omitted
due to space constraints, but we hope the connection between use
cases and extracted requirements will be evident to the reader.
Several categories of requirements were identified: general,
storage and representation, life-cycle management, monitoring
and deployment2, described below.

3.1 General Requirements
The first group contains generic requirements which concern
multiple areas of functionality of a contract-based system.

Table 1: General requirements

R1 The system supports all stages of the contract lifecycle, namely negotiation,
creation, execution and termination.

R2 The system allows for short-term contracts created only for the purpose of
fulfilling one-off service requests (as opposed to long-running contracts)

R3 The system allows for contracts that operate over long, defined periods (as
opposed to short-lived one-off requests)

R4 The system allows for obligations that come into force on being triggered by
(possibly unpredictable) domain events.

R5 Exposure of sensitive information about internal processes of each business
partner is minimised.

R6 Contracts are secured from unauthorised access, in particular they are not
revealed to competitors.

R7 When required, important decisions can be escalated to a human decision
maker for ratification.

R8 A party can have a number of different contracts with different parties active at
the same time

3.2 Storage
The ability to store and manipulate contracts is crucial for any
contract-based system. It represents the basis on which the more
advanced functionality of contract management and monitoring
can be built. An important requirement from all four use cases is
support for contract templates as a way to represent and
manipulate classes of contracts that can be instantiated by
inserting details.

Table 2: Contract storage and representation requirements

2 In the CONTRACT project, requirements for design-time verification of
contract-based system have also been analysed. Although a very
important component of the project, verification has been omitted in
this paper due to lack of space required for a sensible exposition of the
verification functionality. Please refer to [10] and [11] for more
information on this aspect of contract-based systems.

R9 The system stores contracts throughout their life-cycle. Basic persistent
storage operations (create, retrieve, update and delete) are supported.

R10 The system can handle multiple versions of the same contract.

R11 The system supports contract templates and operations with them (storage,
creation, modification etc.)

R12 Contract hierarchies (such as a master contract and all its subcontracts) are
supported for contracts and contract templates.

R13 Contracts can be annotated with metadata which can be used for the
organisation of contracts (e.g. searching, sorting and grouping)

R14 Contracts and contract templates can be searched/browsed using a rich set of
criteria (contract status, contract parties, time interval etc.)

R15 Dependencies between contracts are represented and can be analysed.

3.3 Life-Cycle Management
During their lifetime, contracts can go through a number of
different stages. At each stage, each contract is ascribed a contract
status which denotes how the contract should be currently
interpreted. The ability to track and manipulate contract status
throughout the contract life-cycle has been identified as a third
important group of requirements.

Table 3: Contract life-cycle management requirements

R16 Authorised users can manually change, stop or re-negotiate (modify
obligations) contracts when needed.

R17 The system should allow for one party to break a contract where the other
party/parties do not fulfil their obligations.

R18 There is a mechanism allowing contract parties to terminate their contracts.

R19 Existing contracts can be extended / renewed, potentially with modified
parameters.

R20 Contract status can be either derived automatically from other back-office
systems or entered manually by authorised staff.

R21 Contract instances can be created by filling in details (such as price, or
delivery date) into pre-specified contract templates.

3.4 Monitoring
The ability to evaluate at runtime to what extent the behaviours of
agents in a system conform to agreements made presents a strong
motivator for the introduction of explicit contracts into
information systems. Requirements in this regard concern the
ability to determine fulfilment states from the individual clause up
to the whole-contract level, both for the internal use by an agent
(for decision making, resource allocation etc.) and for use by
independent third-parties.

Table 4: Monitoring requirements

R22 The system provides information on the fulfilment state of contracts.

R23 The system can detect whether a particular clause in being fulfilled

R24 The system can monitor the levels of fulfilment defined in terms of process
and service-related metrics. Fulfilment metrics can either be evaluated
automatically or entered manually by a human expert. Aggregated degree of
fulfilment can be calculated from partial metrics.

R25 The system detects and reports violations of active contracts.

R26 The system can issue warnings when there is a risk of contract violation.

R27 The system can evaluate the degree to which a party adheres to a contract.
The assessment can be also carried out over a group of contracts or contract
parties. Both run-time analysis and historical analysis based on recorded data
should be supported.

59

R28 There is a mechanism for resolving disputes between contract parties over the
fulfilment of contract provisions. The mechanism can involve an independent
third party.

3.5 Deployment
The use cases described anticipate different ways in which the
components implementing the contracting functionality would
best be deployed in a real-world system.

Table 5: Deployment requirements

R29 Centralised deployment is supported whereby contracts are stored with a
single system and are accessed remotely by all partners.

R30 For security and sensitive information protection, distributed deployment
should be considered whereby contracts are stored and managed in a
distributed way by systems deployed at partner sites.

R31 For security reasons, hosting the CONTRACT engine by an independent 3rd
party should be considered.

4 ARCHITECTURE
The requirements of the previous section can be implemented in
different ways. The CONTRACT project has proposed a
framework and architecture to, respectively, provide a conceptual
mapping of applications to contract technology and provide an
infrastructure for the administration of contract-related processes.
In the following, we briefly describe the key design decisions of
the framework and architecture, starting from basic concepts. The
full technical details, including design patterns, service interfaces
and agent reasoning behaviour, are outside the scope of this
paper. Where a requirement is addressed by the description we
add annotation [Rn] where Rn is the requirement's reference
above.

4.1 Overall Structure
The models and procedures comprising the CONTRACT
framework and architecture are shown in Figure 5. The primary
component of this is the framework itself, depicted at the top of
the figure.

Figure 5: The overall structure of the CONTRACT
architecture and framework

From the framework specification of a given application, other
important information is derived. First, off-line verification
mechanisms can check whether the contracts to be established
obey particular properties, such as being achievable, given the
possible states the world can reach. From this, and the contracts
themselves, we can determine which states are critical to observe
during execution to ensure appropriate behaviour. A critical state

of a contract-based system with regard to an obligation essentially
indicates whether the obligation is fulfilled or fulfillable, e.g.
achieved, failed, in danger of not being fulfilled, etc.
The framework specification is used to determine suitable
processes for administration of the electronic contracts through
their lifetimes, including establishment, updating, termination,
renewal, and so on. Such processes may also include observation
of the system, so that contractual obligations can be enforced or
otherwise effectively managed, and these processes depend on the
critical states identified above. Once suitable application
processes are identified, we can also specify the roles that agents
play within them, the components that should be part of agents to
allow them to manage their contracts, and the contract documents
themselves.

4.2 Framework
A contract documents obligations, permissions and prohibitions
(collectively clauses) on agents and is agreed to by those agents.
The agents obliged, permitted and prohibited in a contract are the
parties to that contract. One agent can hold multiple contracts
with the same or different parties [R8]. A contract specifies
contract roles, which are named roles played by agents with
regard to the contract. Each clause is documented as applying to
contract roles, and agents are assigned to the contract roles in the
contract, the combination of which means that the clauses apply to
those agents. A contract proposal is a contract that has not yet
been agreed, but may be agreed later (often, a contract proposal is
a contract under negotiation).
One contract, the child contract, may reference parent contracts,
which are other contracts whose contents are implicitly included
in the child contract. The roles in the child contract are mapped,
within the child contract, to those in the parent contracts, so that
any agent assigned to a role in the child contract may also be
assigned to roles in the parent contracts. Using multiple connected
child and parent contracts, hierarchies of contracts can be built up
[R12, R15].
A contract template documents a set of generalised clauses, where
the clauses may contain parameters with no assigned values, and
contract roles may not be assigned to agents. These parameters
may be viewed as unbound variables. By assigning values to the
parameters and agents to roles, the contract template is
instantiated into a contract proposal.
A contract can have a contract status, which denotes something of
how the contract should currently be interpreted [R14]. For
instance, in some applications for which it makes sense to do so, a
contract may have the status 'agreed but not ratified'. Contract
status can be referred to by clauses of the contract (and in other
contracts and agent communications). One contract status is so
commonly required, we name it explicitly: terminated, which
denotes that the contract no longer holds. By defining a generic
terminated status, storage for contract documents can make use of
it (e.g. for garbage collection). Contract status is updated using
the same mechanisms as any other part of a contract [R20].

4.3 Contract Parties
Administrative contract parties provide administrative support for
a contract during its life cycle. They can be classified by the
general role they play for the contract, and the responsibilities of
that role. Our model places no constraints on the number of agents

60

playing each role, nor on their position in the system, allowing
administration of contracts to be deployed as best fits the
application [R29, R30, R31]. For example, an agent fulfilling the
observer role listens to environment events and observes state
changes to determine whether contractual obligations are being
fulfilled or not [R23]. The observer can notify listeners when an
obligation is not being fulfilled [R25] or in danger of not being
fulfilled [R26].
Another administrative role is that of a manager: agents playing
this role know about a breach of contract by (conceptually at
least) registering to listen to the notifications from an observer.
One agent may play the role of both manager and observer. The
nature of the action taken by a manager may vary considerably. In
highly automated and strict applications, an automatic fine may be
taken from a party. In other cases, a management agent may be a
person who decides how to resolve the problem. Alternatively, a
manager may merely provide analysis of problems over a long
term, so that a report can be presented detailing which obligations
were violated [R24, R27]. A manager can be, or act with, a third-
party arbiter, independent from the managed contract's other
parties [R28]. Note that administrative contract party roles may be
played by humans as well as software agents [R7].
A contract store provides persistent and access-controlled storage
of contracts [R9] and contract proposals. Aside from being a
general document store with version control [R10], it provides
some contract-specific functionality.

• It allows storage and retrieval of contracts and proposals.

• It enforces access control on contracts so that they can only
be retrieved by parties to the contract [R5, R6].

Retrieval of contracts can be achieved either by a specific contract
accession ID, for that version of the contract document, or by
searching for contracts meeting given criteria [R14], including a
store-specific category to which they may belong [R13]. Updating
a contract leads to the creation of a new version in the store, and a
notification sent to registered listeners, such as the contract
parties. A contract store can also provide analysis functions over
the contents of contracts it contains.
A contract template store provides storage of contract templates
and querying facilities for finding templates that match particular
criteria, e.g. It may contain obligations to fulfil particular
generalised goals [R11].

4.4 Contract Life-cycle
The life cycle of a contract consists of up to five stages: creation,
fulfilment, maintenance and update (ensuring access, security and
integrity, controlled change etc.), management (observing
handling violations etc.), and termination and renewal. Each
stage defines one process type, which will be instantiated by
different processes depending on the application. The contract is
first created, then fulfilled and possibly enforced and/or updated,
before at some point being terminated or renewed, the latter
leading to further life of the contract. The architecture supports all
stages of the life cycle [R1], which may be long-lasting or brief
depending on the contract's period of use (which may or may not
be fixed beforehand) [R2, R3].
As an example of one process fulfilling the creation process type,
contracts can be created from templates that have been found to
potentially meet the initiating agent's goals [R11, R21].

The choices of management and update process dictate which
administrative contract parties are used. The continued existence
and integrity of a contract after creation is an important factor in a
reliable system. Also, contract updates should be allowed only in
a well-managed way [R16].
Termination of a contract means that the obligations and other
clauses contained within it no longer have any force. There are a
number of ways that a contract may be terminated.

• A contract may terminate naturally, if the system reaches a
state in which none of its clauses apply, e.g. the contract's
period of life expires, all obligations have been met etc.

• A contract may terminate by design, if the contract has an
explicit statement that the contract is terminated when a
particular event occurs, e.g. if one party fails to meet its
obligation, the contract is terminated and all others are
released from their obligations [R17].

• A contract may terminate by agreement, if all parties agree
that the contract should no longer hold and modify it to a
terminated contract status [R18]. The contract maintenance
and update processes dictate how to update contracts.

Renewal of a contract means that a contract that would have
imminently terminated naturally is modified (updated) so that
termination is no longer imminent [R19].

4.5 Critical Application States
Obligations may be classified into three types: achievement,
maintenance and triggered. An achievement obligation obliges
the assigned party to bring the system to some state. A
maintenance obligation obliges the assigned party to keep the
system in some state. Finally, a triggered obligation obliges the
assigned party to react to events of a given type by taking on an
additional obligation related to that event; i.e. whenever event
E(X) occurs, obligation O(X) is in force [R4].
For each obligation, there are critical application states which can
be identified. These critical states are the states of the system for
which there is value in observing and managing using
administrative contract parties. For example, a general
achievement obligation may be divided into the states:

• Pre-Achievement State, where the goal has not yet been
achieved but is still achievable.

• Achievement State, where the goal has been achieved.

• Failure State, where the goal has not been achieved, and is
no longer achievable.

In some applications, multiple Pre-Achievement States may be
specified to denote more detailed relations between the system
state and obligation. For example, a danger state can be added to
denote that the goal is in danger of not being achieved [R26].

5 RELATED WORK
Related work falls into two broad categories: service-oriented and
agent-oriented. There is a significant gap between the type of e-
Business systems that technology such as ebXML and Web
services allow to be built and the technologies that exist so as
allow for the modelling and verification of such systems. One of
the primary promising approaches for filling this gap is the use of
electronic contracts as an explicit specification of obligations,
permissions and prohibitions that regulate the activities and

61

interactions within a distributed software system. In existing work
(including ebXML, WSLA [8], WS-Agreement [9] as well as that
planned in OASIS), efforts and results to date either do not focus
specifically on system specification or do not provide any formal
verification tools. Software by Contract and the newly released
Microsoft INDIGO platform are a case in point, since they focus
on low level specification of method execution properties rather
than more general types of obligations such as performance
actions if particular conditions arise, or commitment to
availability at certain dates and times.
In multi-agent systems, there has been much previous work on
contract-based systems, and our approach is intended to build on,
and be compatible with, other ideas presented elsewhere. For
example, there are many approaches to negotiation which may be
used in the establishment of contracts [4], and the administration
of contracts can integrate with other useful behaviour, such as
observation of fulfilment and violation of obligations potentially
feeding into a longer-term assessment of agents [5]. In addition,
the wider domains of normative systems and agreement in service-
oriented architectures inform our work. Concepts such as norms
specifying patterns of behaviour for agents, contract clauses as
concrete representations of dynamic norms, management or
enforcement of norms itself being a norm, are already established
in the literature [5, 6, 7].
A detailed comparison of approaches is outside the scope of this
paper. However, there has been no analysis across a range of
business cases to determine the requirements of electronic
contracting, as is presented in this paper.

6 CONCLUSIONS
The CONTRACT project seeks to develop frameworks,
components and tools that make it possible to model, build, verify
and monitor distributed electronic business systems on the basis
of dynamically generated, cross-organisational contracts that
underpin formal descriptions of the expected behaviours of
individual services and the system as a whole. Unlike traditional
academic projects, CONTRACT is predicated on the industrial
context, and the business case from four distinct business
domains, in which the contract-based infrastructure is likely to
bring real benefits.
In this paper, we have described the four main use cases in which
our work is situated, detailing the requirements aggregated from
them, and showing how our contract architecture satisfies them.
This is the first step in our efforts to develop prototype contract-
based systems for real applications. In addition to adopting the
use cases to motivate and inform our work, we seek to address the
noted lack of community resources in a library of real case
studies, to facilitate understanding, comparison and evaluation of
competing techniques and architectures, as well as providing a
clear commercial context for the development of work.

ADDITIONAL AUTHORS
Jiří Chábera (Certicon a.s., chabera@certicon.cz), Martin Dehn
(Fujitsu EST, mailto:martin.dehn@est.fujitsu.com), Camden Holt
(Lost Wax, Camden.Holt@lostwax.com), Martin Kollingbaum
(Carnegie Mellon University, mkolling@cs.cmu.edu), Nir Oren,
(King's College London, nir.oren@kcl.ac.uk), Patrick Storms

(Y'All BV, patrick@yall.nl), Javier Vazquez (Universitat
Politècnica de Catalunya, jvazquez@lsi.upc.edu),

ACKNOWLEDGEMENTS
The research described in this paper is partly supported by the
European Commission Framework 6 funded project CONTRACT
(INFSO-IST-034418). The opinions expressed herein are those of
the named authors only and should not be taken as necessarily
representative of the opinion of the European Commission or
CONTRACT project partners.

REFERENCES
[1] Belecheanu, R. A. et al. 2007. Commercial Applications of
Agents: Lessons, Experiences and Challenges. In Proc. 5th Int.
Joint Conf. on Autonomous Agents and Multiagent Systems
(Industry Track), Hakodate, Japan.
[2] Santos, D., Blois, M., and Bastos, R. 2007. Developing a
Conference Management System with the Multi-agent Systems
Unified Process: A Case Study. In Proc. 8th Int. Workshop on
Agent Oriented Software Engineering.
[3] Wagner, T., Gasser, L., Luck, M., Odell, J. and Carrico, T.
2005. Impact for Agents. In Proc. 4th Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems (Industry Track),
93-99, Utrecht, Netherlands.
[4] Cardoso, H. L. and Oliveira, E. 2000. Using and Evaluating
Adaptive Agents for Electronic Commerce Negotiation. In Proc.
7th Ibero-American Conference on AI: Advances in Artificial
Intelligence, volume 1952 of LNCS, 96–105.
[5] Duran, F., Torres da Silva, V., and de Lucena, C. J. P. 2007.
Using Testimonies to Enforce the Behaviour of Agents. In
AAMAS'07 Workshop on Coordination, Organization,
Institutions and Norms in agent systems, pages 25–36.
[6] Dellarocas, C. 2000. Contractual Agent Societies: Negotiated
Shared Context and Social Control in Open Multi-Agent Systems.
In Workshop on Norms and Institutions in Multi-Agent Systems,
Agents 2000, Barcelona, Spain..
[7] Lopez y Lopez, F., Luck, M., and d'Inverno, M. 2005. A
Normative Framework for Agent-based Systems. In Computatio-
nal and Mathematical Organization Theory, 12(2–3):227–250.
[8] Ludwig, H. 2003. Web Service Level Agreement (WSLA)
Language Specification. IBM.
[9] Andrieux, A. et al. 2004. Web Services Agreement
Specification (WS-Agreement). http://www.gridforum.org/
Meetings/GGF11/Documents/draft-ggf-graapagreement.pdf,
Version 1.1. Draft 18. 2004.
[10] Jakob, M. et al. 2007. Use Case Outlines and Requirements.
CONTRACT project Deliverable D6.1, available from
http://www.ist-contract.org/
[11] IST CONTRACT project, http://www.ist-contract.org/
[12] Meneguzzi, F. R., Miles, S., and Holt, C. 2008. Electronic
contracting in Aircraft Aftercare: a Case Study. To apper in Proc.
7th Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (Industry and Applications Track)

62

http://www.ist-contract.org/
http://www.ist-contract.org/
http://www.ist-contract.org/
http://www.ist-contract.org/
http://www.ist-contract.org/
http://www.ist-contract.org/
http://www.gridforum.org/
http://www.gridforum.org/
http://www.gridforum.org/
mailto:jvazquez@lsi.upc.edu
mailto:jvazquez@lsi.upc.edu
mailto:jvazquez@lsi.upc.edu
mailto:patrick@yall.nl
mailto:patrick@yall.nl
mailto:patrick@yall.nl
mailto:nir.oren@kcl.ac.uk
mailto:nir.oren@kcl.ac.uk
mailto:nir.oren@kcl.ac.uk
mailto:mkolling@cs.cmu.edu
mailto:mkolling@cs.cmu.edu
mailto:mkolling@cs.cmu.edu
mailto:Camden.Holt@lostwax.com
mailto:Camden.Holt@lostwax.com
mailto:Camden.Holt@lostwax.com
mailto:martin.dehn@est.fujitsu.com
mailto:martin.dehn@est.fujitsu.com
mailto:martin.dehn@est.fujitsu.com
mailto:chabera@certicon.cz
mailto:chabera@certicon.cz
mailto:chabera@certicon.cz

	1 INTRODUCTION
	2 USE CASES
	2.1 Use Case 1: Modular Certification Testing
	2.1.1 Actors
	2.1.2 Contracts
	2.1.3 Benefits of Contract-based Technology

	2.2 Use Case 2: Dynamic Insurance Settlement
	2.2.1 Actors
	2.2.2 Contracts
	2.2.3 Benefits of Contract-based Technology

	2.3 Use Case 3: Aerospace Aftermarket
	2.3.1 Actors
	2.3.2 Contracts
	2.3.3 Benefits of Contract-based Technology

	2.4 Use Case 4: SLAs in Software Engineering
	2.4.1 Actors
	2.4.2 Contracts
	2.4.3 Benefits of Contract-based Technology

	3 REQUIREMENTS
	3.1 General Requirements
	3.2 Storage
	3.3 Life-Cycle Management
	3.4 Monitoring
	3.5 Deployment

	4 ARCHITECTURE
	4.1 Overall Structure
	4.2 Framework
	4.3 Contract Parties
	4.4 Contract Life-cycle
	4.5 Critical Application States

	5 RELATED WORK
	6 CONCLUSIONS
	ADDITIONAL AUTHORS
	ACKNOWLEDGEMENTS
	REFERENCES

