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ABSTRACT
We present an application of a multi-agent cooperative search
approach to the problem of optimizing gas pipeline opera-
tions, i.e. finding control parameters for a gas transmission
network that result in a low usage of energy to make the re-
quired gas deliveries. Our cooperative search approach im-
proves on the pure competition of search agents by having
them exchange good solutions from time to time that both
are integrated into the search state of the agents and used to
improve the search control of the agents. Our experimental
evaluation with real problem instances from TransCanada
show that our system meets TransCanada’s time require-
ments and reliably outperforms the interactive method that
is the current state-of-the-art by creating solutions that re-
quire more than 10 percent less energy.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; I.2.8 [Problem Solving, Control Methods and
Search]: Heuristic methods; J.7 [Computers in other
systems]: Industrial control

General Terms
Algorithms, Experimentation

Keywords
Cooperative search, pipeline operations, optimization

1. INTRODUCTION
Cooperative problem solving by a group of agents was an

early focus of research in multi-agent systems. The hopes
of such research was to speed-up the efficiency of problem
solving and perhaps even to achieve synergetic effects. This
was especially true for problems that require as solution
method some kind of search, a solution method that usu-
ally employs heuristical controls and as a consequence per-
forms many computation steps that in hindsight, after hav-
ing found the solution, are revealed as unnecessary. Multi-
agent approaches to achieve cooperative problem solving us-
ing search have been shown to achieve synergetic effects (see
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[4], [7], [13]) and also to deal with additional problems like
naturally distributed search problems (see [15]) and many
distribution approaches to different search paradigms are
best described using multi-agent systems (see [5]) even if
originally they were not presented this way (see, for exam-
ple, [1], [8], or [10]).

But despite the reported successes for well-known search
problems from literature, the use of multi-agent search ap-
proaches to solve difficult industrial and business problems
has been rather limited. A notable exception is [11]. One
of the reasons for this lack of application might have been
that the advances in computer hardware have been so rapid
that waiting a little bit was enough to get the problems into
reach. Solving an instance of a search problem that required
too much run time at one point in time was easily possible
one or two hardware generations later, which often was only
a few months later. And this is usually less time than would
have been needed to develop a new system utilizing multi-
agent search with agents that use their own processors or
computers.

Unfortunately, in recent years the performance improve-
ments achieved by new hardware generations, while still
growing steadily if we define performance by, for example,
basic computations per second, is now achieved by multi-
ple core and/or multiple processor machines that produce
the increases essentially due to parallel processing. While
some applications are relatively easy to modify towards be-
ing solved by several processors, most search algorithms con-
stantly re-evaluate their possible steps after each step taken,
so that simple distribution concepts do not result in improve-
ments over the sequential algorithms (only in more unnec-
essary steps taken). Multi-agent cooperation concepts are
needed to use the multi-core/multi-processor technology for
search!

An application area where the complexity of problem in-
stances outgrew even the improvements in computer hard-
ware is the optimization of pipeline operations. Finding
control parameters to operate compressor/pumping stations
and other devices in transportation networks that achieve
the required deliveries out of the output stations of the net-
work or subnetwork with a minimal consumption of energy
and within the various system constraints is a difficult prob-
lem. The sets of equations that describe and model the
system are too complex to allow for a direct solution, so
that every solution candidate for a problem instance has
to be evaluated using a simulation of the pipeline network,
which is a rather costly step with regard to the computing
effort involved. Additionally, the fact that some parame-
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ters are real values adds the need to deal with continuous
optimization, while there is nevertheless a strong discrete
optimization component. As a consequence, there is a lot of
heuristical knowledge around this application that often has
as much potential to confuse as to help.

In this paper, we present the results of applying the TECHS
concept for cooperative search (see [7]) to the optimization
of the operation of some of TransCanada’s subnetworks of
gas pipelines. More precisely, we use a homogeneous variant
of TECHS with agents that perform a set-based search us-
ing particle swarms and periodically exchange selected infor-
mation. Our IOPO system, which instantiates the TECHS
concept for our application, was able to produce solutions
for complex networks that resulted in more than 10 per-
cent less cost than the current interactive method commer-
cially available taking approximately the same time (but be-
ing fully automated). Our experiments also reveal that the
multi-processor/multi-core technology and current operat-
ing systems still do not perfectly support multi-agent search
approaches.

This paper is organized as follows. After this introduction,
in Section 2 we present the industrial application problem
of optimizing gas pipeline operations. In Section 3, we pro-
vide some general notations about multi-agent search sys-
tems and present the TECHS concept for cooperative search.
Section 4 presents TECHS’ instantiation to our application
area. Section 5 reports on the experiments we performed
with pipeline networks from TransCanada, comparing our
approach to a commercial method and another approach
from literature, and analyzes the contribution of multi-agent
concepts and a multi-processor/multi-core hardware archi-
tecture. Finally, in Section 6, we conclude with some lessons
learned and possible future work.

2. THE PROBLEM: OPTIMIZATION OF
GAS PIPELINE OPERATIONS

The problem of interest to TransCanada is the optimiza-
tion of the operation of their natural gas pipeline transmis-
sion system. A pipeline transmission system is represented
by a complex network that may consist of hundreds of nodes,
devices and other equipment to control. Natural gas is gen-
erally received from receipt points along the pipeline network
and delivered to sales stations at specified flows and pres-
sures. Between these points pressure drop occurs due to gas
expansion, friction loss, changes in elevation and changes in
temperature ([9]). Compression is required to overcome the
pressure losses that occur over the length of the pipeline.
Adding compressor stations at intervals along the pipeline
network is one of the solutions used to achieve and maintain
the required pressure. Natural gas-fired turbine engines are
the most common drivers for compressors on TransCanada’s
gas transmission pipelines in Canada. Gas turbines spin cen-
trifugal compressors and compress the gas up to a hundred
times normal atmospheric pressure to move the gas. Reduc-
tion of the energy used in pipeline operations not only has
a tremendous economical impact but also quite an environ-
mental one. More efficient operation of compressor stations
results in less greenhouse gas emissions being dissipated to
the atmosphere.

Operation of a natural gas pipeline network implies the
selection of all operational settings of the components of the
network in order to maintain not only the desired through-

put but also to meet the standards and regulations designed
to minimize the risk of high-pressure transmission lines.

Our research addressed the problem of determining the
operational configuration of compressor stations that uses
a minimum amount of energy (e.g. fuel, power) for given
transportation requirements. This configuration will include,
for example, the set of compressors that should be On/Off,
and if On, the corresponding level of operation. The solu-
tion procedure should lead to the result in a short period of
time to enable optimization of operations as often as nec-
essary to keep the process as close as possible to optimal
conditions.

Optimization of natural gas pipeline operations can be
achieved by optimizing objectives such as fuel consumption,
throughput and linepack1, see [2], [3]. The objective of our
research work was also to reduce the computational cost and
therefore the time needed to find the vector of operational
settings (~x) that optimizes the operation of a pipeline trans-
mission network, i.e. achieve a minimal total cost of trans-
portation of natural gas while satisfying safety regulations
and meeting customer demands.

More formally, the main variables that affect the fuel
consumption are the mass flow rate (ṁ), suction pressure
(Ps) and discharge pressure (Pd) at each compressor station
(CS). The cost of operation of CSi can then be expressed

as Ψi (ṁ, Ps, Pd). The objective function ~f(~x) for the fuel
minimization problem can then be calculated as:

Minimize ~f(~x) =

nCS
X

i=1

Ψi (ṁ, Ps, Pd) (1)

where nCS is the total number of CSs in the pipeline network
and {ṁ, Ps, Pd} ∈ ~x. Some of the constraints imposed to

the solution of ~f(~x) are governed by the physical character-
istics of each compressor unit such as surge2 and stonewall3

limits, minimum and maximum speed, and minimum and
maximum power.

Other sets of equality and inequality constraints are gov-
erned by pipeline characteristics such as operating pressure
limits, mass balance equations and flow equations. Although
a detailed description of these equations is out of the scope
of this paper, a good reference for pipeline hydraulics can
be found in [9].

In addition to the compressor settings described above,
other hydraulic components that belong to ~x and affect the

cost function ~f (~x) are the settings of all control valves (CV)
and block valves (BV) in the transportation system, as well
as the availability of gas supply (receipts) and market de-
mand (deliveries). It is worth noting that some of the com-
ponents of the solution vector ~x are discrete decision vari-
ables such as the status of the CSs (On/Off) and the status
of BVs (Open/Closed), hence adding complexity to the so-
lution surface and as consequence difficulty to the problem.

Solving the optimization of the pipeline operations prob-
lem is definitely not straightforward due to the non-convexity
of the feasible domain of compressor units, non-linearity and
non-convexity of the fuel cost function, and non-convexity of

1Volume of gas contained in a pipeline system at any point
in time.
2Limit set to avoid unstable conditions (pulsating flow) in
centrifugal compressors operating under low flow conditions.
3High flow condition in which the velocity of the fluid can
approach sonic speed.
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the set defined by the pipe flow equations [14]. The dimen-
sion (|~x| = nx) of the optimization problem directly depends
on the size (nCS) and configuration (Conf )4 of the pipeline
network under investigation and the number of parameters
considered sufficient to define its operation. A typical net-
work might consist of thousands of pipes, dozens of CSs with
several compressor units inside, meter stations, cooling sys-
tems and a large number of different devices such as CVs
and BVs.

The big challenge of this optimization problem is to iden-
tify the set of pipeline operational settings —e.g. pressure
at control nodes, mass flow rates, compressors settings, sta-
tus of block valves, etc.— that optimize objectives such as
the fuel consumption in real time. The solution space of
~f (~x) may be composed by many, from hundreds to millions,
of combinations of operational settings that satisfy equal-
ity and inequality constraints but the goal of our work is to
identify the combination of operational parameters in ~x (or

sets of combinations) that optimizes ~f(~x) in a timely man-
ner. Solving this problem has proven to be computationally
expensive. See [2], [3] for previous work in this area and
the quality associated with the solution provided by each
approach.

3. THE MULTI-AGENT SOLUTION
APPROACH: HOMOGENEOUS TECHS

Multi-agent systems are a very good way to model and
implement distributed search concepts. The following ter-
minology is taken from [5]. A multi-agent search system
MASS consists of a start agent AgS , an end agent AgE, a
set of search agents Ag1,...,Agn and a communication struc-
ture Kom. We also have a set PU of processing units that
are used by the agents to perform their work. A MASS
is aimed at solving a search problem SP , more precisely its
start agent AgS takes an instance Inst of SP and creates
instances Inst1,...,Instn of search instances for the search
agents. The search agents take their instances, work on
them and communicate with the other agents using Kom

while doing so. If all search agents have finished their work
(and all messages between agents have been received), then
the end agent AgE uses the results of all search agents to
create the solution to Inst.

Obviously, the search agents are the most important com-
ponents of MASS. Each search agent Agi is characterized
by the triple (Pri,Kom,mesi), where Pri is a search process,
mesi the communication function of Agi and Kom the al-
ready mentioned communication structure. The search pro-
cess Pri is characterized by the triple (Ai, Envi, Ki), where
Ai is the search model used by the process, Ki is the search
control that the process uses for this search model and Envi

is the environment within MASS that the process is able
to perceive. Since we are doing a search, this environment is
a subset of the data areas in Kom. The control of a search
process takes the current state s of the search by the process
and the current values of the data areas in the environment
e and then selects one state among all the possible succes-
sor states of s (as defined by the search model) as the next
state of the process. Since e is considered by the search
control, the search of a search agent can be influenced (out-
side of itself) by changing this environment, which is done

4E.g. gun-barrel, serial, parallel, looped, etc.

by other search agents using their communication functions.
A communication function mesi takes the current values of
the data areas in Kom and the current search state of Agi

and creates new values for the data areas in Kom (usually it
creates only new values for some of the data areas in Kom).

How Kom is structured and what the mesis are allowed
to do with Kom is an important part of defining a partic-
ular multi-agent search system. By using a communication
structure, we can abstract from the physical communication
channels available to us (both blackboard-like approaches
and message-passing approaches can be modeled), but it
should be noted that implementing a particular Kom on
different hardware structures can lead to considerable differ-
ences in performance. This can also be true for the method
in which the agents are mapped to PU . If performance is
an issue (as in our case), then each active agent should have
its own processing unit and only as many agents should be
active as we have elements in PU .

The particular distributed search approach that we have
chosen for our work is called TECHS (TEams for Cooperative
Heterogeneous Search, see [7], although for this work we
use only homogeneous search agents) and it is an approach
that follows the ”improving on the competition approach”
paradigm for distributed search (see [5]). A multi-agent
search system based on ”improving on the competition ap-
proach” provides every search agent with the complete in-
stance of the search problem that is to be solved. The pure
competition approach then simply lets all agents search un-
til one of them finds a solution. Improvements allow the
agents to communicate while they are working on finding a
solution.

In TECHS, the work of the search agents is done in so-
called rounds, where each round consists of a phase in which
each search agent tries to solve the given search instance
using its search process. This is followed by a phase in which
each agent evaluates its results in order to decide whether
the new information it has found might be of interest to the
other agents. Then the selected information is sent to the
other agents (or selected other agents) who then evaluate
all the received information again with regard to how useful
this information might be for them and then integrate the
information that passes this filter into their search for the
next phase. Figure 1 shows one round in this general cycle
for 3 agents.

More precisely, the start agent AgS passes the given search
instance Inst on to all search agents who create start states
for their search and then perform their searches for a given
time (or a certain number of transitions to new states). The
communication structure Kom consists of a data area for
each agent and each type of information that is commu-
nicated between agents. In [7], four different types of in-
formation were suggested: positive partial solutions, nega-
tive partial solutions, positive control information and nega-
tive control information. Note that partial solutions include
full solutions and in our application we will only exchange
full solutions. Solutions are directly incorporated into the
search states of an agent, while control information affects
the search control of an agent. In our application, the search
processes of the search agents allow only positive informa-
tion to be used (see the next section). But there are search
processes that can make use of negative information, as doc-
umented in [7].

The selection of the information to be shared with other
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Figure 1: A round in TECHS for 3 search agents

agents is done by the mes-function of an agent, which can
change all data areas of all other agents. Since each agent
has its own set of data areas, it is possible to select different
information (within a type) for different agents. The mes-
functions for TECHS are usually implemented by sending
messages to the other agents. The integration of the new
information in the data areas for an agent Agi (that form
the agent’s environment Envi) is done according to the type
of the information. As already stated, the solutions are ap-
propriately added into the search state (if they pass the filter
criterion), while the control information from then on influ-
ences the decisions of the search control of the agent.

The whole search ends if either the (optimal) solution is
found (if it is possible for the search agents to detect this) or
a certain time limit is reached. The end agent collects the
results from all search agents and then either presents the
found solution or the best result found in the given time.
The TECHS approach is a general concept for organizing a
distributed search system. It needs to be instantiated for a
particular application and this instantiation centers around
the search agents.

4. THE SEARCH AGENTS
Optimizing pipeline operations requires working with both,

continuous and discrete variables. As a result, search meth-
ods that evaluate more and more instantiated partial solu-
tions, like Branch-and-Bound or A*, are not easily applica-
ble to this kind of problem. The fact that the quality of a
solution requires a simulation to be determined rules such
approaches completely out, since a partial solution usually
just leads to an error from the pipeline simulator.

Therefore the search methods used for our problem are in-
stantiations of what we call set-based search: a search state
consists of one or several (a set of) solutions and there are
operators that use all or some of the solutions in the current
state to create new solutions. Examples for set-based search
are hillclimbing, simulated annealing, tabu search (all these

use only one solution in a state), genetic algorithms, evo-
lutionary strategies or particle swarm systems (PSS). For
our search agents, that form the IOPO system (Intelligent
Optimization of Pipeline Operations), we have chosen to
use PSS (see [12]).

As in the case of most of the set-based search methods,
the start state of any of our search agents consists of a num-
ber of randomly created solutions (and each agent does this
random creation on its own, resulting in different start states
between the agents). In our experiments (see Section 5), we
used 10 solutions (or particles, as they are called in PSS). A
solution for an instance of the pipeline operations problem
consists of the parts of the vector ~x (see Section 2) that de-
scribe for each compressor station CSi in the instance Inst

its status stati (On/Off) and its control pressure (either
as Psi

or Pdi
), for each block valve BVi its status Bstati

(Open/Closed) and for each control valve CVi its control
pressure (either as Psi

or Pdi
, again). An instance Inst

of the problem itself consists of the network topology (also
called network configuration Conf), that is needed for the
simulator and that provides the CSis, BVis and CVis, flow
requirements at specific points of interest in the pipeline net-
work and a set of boundary conditions for the network that
describe the receipts and deliveries (i.e. location and volume
of gas that goes into or out of the network). In a PSS, we
also create for each particle pi a so-called velocity, which in
our case is a velocity vector ~vi. Again, this vector is initially
created at random.

The search control of an agent stores the best solution
(~xB) found so far. A search agent creates its next search
state in the following manner (if its environment has not
changed): for each particle pi, which represents the solution
~xi and the velocity ~vi, we also remember its best ancestor
solution ~xBPi

. Then we create for each pi its successor par-
ticle (which we will call also pi) as follows. The new solution
~xnew

i is computed by

~x
new
i = ~xi + ~vi. (2)
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If this solution is a valid solution and better than ~xBPi
(using

the network simulation to evaluate the gas consumption of
this solution to determine its validity and quality), then ~xnew

BPi

= ~xnew
i , else ~xnew

BPi
= ~xBPi

. Finally,

~v
new
i = W~vi + C1r1(~xBPi

− ~xi) + C2r2(~xB − ~xi), (3)

where W is a weight parameter controlling the influence of
the previous velocity, C1 is the so-called cognitive learning
factor, C2 the so-called social learning factor and r1,r2 ∈
[0, 1] are random values chosen by the search control. So, we
have the ancestors of a particle influence it two ways (via the
old velocity and the best ancestor, so far) and the rest of the
particles influence it in form of the best particle overall. Note
that the elements of ~x that represent the discrete variables
will only be transformed into discrete values (by rounding)
for the simulator, within a particle we work with real values.

With several agents, their cooperation leads to some modi-
fication of how the next state of a search agent is computed.
Let us first look at what the agents communicate to each
other. As stated in the last section, for PSS we have only
found ways to make use of positive information. This means
that Kom contains for each agent Agi two data areas, let us
call them posconi and possti. In posconi, the other search
agents’ mesj-functions put their best solution found so far,
i.e. ~xBj

, when they select the information to be communi-
cated after a round of search. In possti, the other search
agents’ mesj-functions put the best k1 solutions they found
during the last round (in our experiments, k1 was 2). While
at first glance the information in posconi seems to be re-
dundant, this is not the case for two reasons. Both reasons
are related to the usage Agi makes of this information in its
environment.

Firstly, the information in posconi is filtered by choos-
ing from it the best solution overall and then this solution
replaces the agent’s ~xBi

(if it is better than the agent’s pre-
vious best solution). This means that we have changed the
search control of the agent (that now selects a different ve-
locity adjustment). The information in possti is also filtered
by selecting the best k2 solutions in possti (in our experi-
ments, k2 was 3). The selected k2 solutions are then used to
replace the k2 worst current solutions in Agi’s state, essen-
tially moving the ”position” of these k2 particles to different
(and hopefully better) places. The velocities of the particles
are not changed with this substitution and the best ancestor
of each particle is only updated if the new solution is bet-
ter. By not touching the velocities, different agents might
use the same solutions from their posstis, but will produce
different successors for the effected particles, if the velocities
were different. So, the use agents make of their posconi and
possti data areas is different.

But the second reason makes the need for two areas even
more obvious. New values for the posstis are not produced
after every round, only every few rounds (where ”few” in our
experiments meant every 3 rounds). Updating the search
states of the agents after every round would quickly achieve
that the agents search the same area of the search space,
thus resulting quickly in a lot of redundant search steps.
While the usage of the information in the posconis only es-
tablishes a common ”direction” for the particles, using the
possti’s after every round will move k2 particles to or near
this best solution, without exploring solutions situated be-
tween the current positions and this best area. It should
be noted that making use of possti has also positive effects,

namely ”rescuing” search agents that explore bad local op-
tima and have their particles converged to this optimum by
moving some particles elsewhere. Balancing the positive and
negative effects of the use of possti requires some calibration
of the system, which is how we determined the number of
rounds between using possti in our experiments.

There is one additional aspect of our search agents that
needs to be mentioned, namely how they make use of the
hydraulic simulator that provides them with the evaluation
of the quality of a solution, respectively identifies solutions
that are not valid. The simulator used by our system is
proprietary to TransCanada and therefore had to be treated
like a blackbox. More precisely, each search agent starts the
simulator in an own process each time it needs to evaluate a
solution. The solution is written in a file that is given to the
simulator as a command-line parameter and the simulator
writes its result in another file that is consulted by the search
agent after the simulator process terminated. This is far
from optimal and causes some problems regarding effective
use of the given hardware platform, but we were still able
to produce good results.

5. EXPERIMENTAL EVALUATION
In this section, we summarize the results of a series of

experiments demonstrating the performance of the IOPO
system when applied to the problem of optimizing Tran-
sCanada’s pipeline operations. In addition, we present the
effect that the use of a multi-agent search system has, espe-
cially with regard to multi-core multi-processor technology
as an underlying hardware platform.

Research on optimization of pipeline operations is a very
competitive area, as significant improvements in operations
can generate commercial advantage over competitors. There-
fore we cannot reveal detailed information so as not to com-
promise any advantages that TransCanada currently has.
This means that we are only allowed to report on a limited
number of pipeline sub-networks, we cannot reveal the real
cost of solutions, and the level of detail about the pipeline
system studied in these experiments has been restricted to
a very high level description. Due to the proprietary nature
of the information, further detail cannot be disclosed in this
paper.

Existing software tools are unable to handle block valves
which have only two states, fully opened or fully closed. In
addition to this, the limited number of available decision
variables restrict the area of the network that can be sim-
ulated. As consequence at TransCanada, the established
practice involves the use of in-house developed simulation
software to analyze pipeline operations and determine the
operating configuration that will optimize fuel consumption
on the pipeline system. After an initial solution is obtained,
this solution usually is not directly applicable, so the user
needs to make adjustments to the input and repeat the pro-
cess several times with adjusted input before an acceptable
solution is found. A major shortcoming of the established
method is the significant amount of human interaction and
intervention and therefore the significant time and effort re-
quired to successively iterate to a solution.

Due to these problems, TransCanada has been actively
researching methods and evaluating commercial products
to improve upon the current practice. TransCanada sup-
ported the research presented in [2] and [3], which devel-
oped the MOGA method that used Genetic Algorithms to
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Table 1: Comparison of the three systems with re-
gard to run time (wall clock time)

Instance MOGA Commercial Method IOPO

SN1/HF 0:25:00 0:05:31 0:04:19
SN1/MF 0:26:15 0:05:38 0:02:32
SN1/LF 0:23:00 0:05:27 0:01:59
SN2/HF 107:46:00 0:43:09 0:29:02
SN2/MF 107:49:01 0:49:43 0:27:06
SN2/LF 99:14:00 0:49:09 0:28:19

Table 2: Comparison of the three systems with
regard to solution quality (Commercial Method =
100%)

Instance MOGA Commercial Method IOPO

SN1/HF 101 100 99
SN1/MF 104 100 104
SN1/LF 102 100 102
SN2/HF 90 100 86
SN2/MF 96 100 88
SN2/LF 92 100 86

solve the problem fully and automatically. However, this
research was not able to provide the run-time performance
that TransCanada needs. This research used hydraulic sim-
ulation software developed in-house at TransCanada. Our
work also uses the same hydraulic simulator.

In addition to the MOGA research activities, TransCanada
has been evaluating the suitability of commercial optimiza-
tion software for the purpose of optimizing fuel usage on the
pipeline system. For the purpose of this paper the commer-
cial software is referred to as the commercial method. Sim-
ilar to the in-house developed method, shortcomings have
been encountered with the commercial method of fuel op-
timization: it too requires a significant amount of human
intervention to successively iterate to a solution, the user
needs to find a hydraulically valid and feasible simulation
result as a starting point for the optimization software and
some pipeline components, such as block valves, cannot be
modeled as decision variables in the optimization method.
We will use this commercial method as comparison point
in our experiments to reflect the state-of-the-art in the field
and to add to the protection of TransCanada’s proprietary
information. Neither the commercial nor the MOGA opti-
mization methods have been developed to take advantage of
the multi-core hardware.

The experiments we report in the following have been run
on a 2 Dual Core Xeon 5160 3.00 GHz workstation with 2
GB of RAM running Windows XP as the operating system.
Each search agent in IOPO has its own process, with one of
these processes also realizing the start and end agent. The
communication structure Kom was done by having the mesi

send messages between the processes. IOPO is implemented
in C.

5.1 Comparison of IOPO with other systems
Our first series of experiments is documented by Tables 1

and 2. We looked at two different pipeline subnetworks
within TransCanada’s pipeline network. These subnetworks,
SN1 and SN2, represent the smallest subnetwork (SN1),

Table 3: Runtime comparison for different numbers
of agents for SN2 instances (in minutes, on 2 Dual
Core machine)

Instance 1 agent 2 agents 3 agents 4 agents

SN2/HF 54 33 31 30
SN2/MF 50 29 28 27
SN2/LF 56 33 31 29

with 6 compressor stations and one control valve resulting
in 13 decision variables, and one of the largest subnetworks
(SN2), with 20 compressor stations, 8 control valves and 3
block valves, resulting in 53 decision variables. Both subnet-
works represent actual divisions of the network that are op-
timized separately in TransCanada’s current practices (nat-
urally, the subnets connect to other subnets, but the bound-
ary conditions between the subnets are negotiated by human
operators). For each subnetwork, we have 3 instances of flow
requirements, namely a high flow (HF), a low flow (LF) and
a medium flow (MF). For the wall clock time for the commer-
cial method we added to the system run time the estimated
worst case interaction time for an experienced user, which
was for SN1 5 minutes and for SN2 40 minutes. For IOPO,
we report in both tables the average over 10 runs (due to the
heavy use of random factors in the search). While MOGA
also uses random factors, we performed only one run for each
entry, due to the very long runtimes for SN2.

As Table 1 shows, IOPO and the commercial method need
approximately the same time to produce their results, IOPO
fully automatically, not requiring a user providing a valid so-
lution and using 4 search agents (one for each available core).
MOGA’s run time for large networks is far too long to meet
TransCanada’s requirements to support pipeline operations
on a day-to-day basis.

Results to measure the solution quality in terms of fuel
consumption were normalized using the commercial method
as reference (100%). Note that this means that smaller val-
ues represent better solutions. If we look at the solution
quality in Table 2, then the three systems are quite compa-
rable for the small network SN1. But IOPO is substantially
better for the large network (that naturally requires much
more gas in its operation than the small network). For the
SN2/MF instance the IOPO fuel consumption is 12 percent
lower than the commercial method which would amount to
an operating cost reduction of $ 28.7 Million per year for the
combined cost of fuel gas and the environmental impact of
CO2 emissions, at current market prices.

5.2 Evaluation of the multi-agent/hardware
platform aspect

Our next series of experiments aim at evaluating the multi-
agent aspect of our IOPO system, more precisely the influ-
ence of the number of agents used on the results. We con-
centrate our analysis only on the search instances for SN2,
since the runtimes for SN1 are too short to see any signif-
icant changes. As stated in our introduction, a big draw
towards using multi-agent search approaches for hard opti-
mization problems in industry is the seemingly obvious fit
for multi-processor multi-core workstations in order to use
the number of available processors to speed-up the search.
In order to analyze this aspect of our system, we run ex-
perimental series for 1,2,3 and 4 agents in IOPO where for
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Table 4: Runtime comparison for different numbers
of agents for SN2 instances (in minutes, on network
of 4 Pentium IIIs)

Instance 1 agent 2 agents 3 agents 4 agents

SN2/HF 240 125 92 69
SN2/MF 220 116 82 63
SN2/LF 225 132 83 65

each number of agents the total number of solutions created
(and therefore the number of calls of the simulator) were the
same, namely 4000 (which was also the number used for the
experiments in the previous subsection). This means that
with one agent this agent does 400 updates of the 10 par-
ticles, with 2 agents we have each agent do 200 updates of
their 10 particles and so on. For 2,3 and 4 agents we fit their
searches into 10 rounds, so that for two agents the commu-
nication between the agents takes place every 20 updates up
to communicating after every 10 updates for 4 agents. This
way, the communication overhead is essentially the same for
each number of agents and we can get a good picture re-
garding the utilization of the processors by IOPO. As in the
previous subsection, we report the average runtime over 10
runs.

Table 3 shows the results of the experimental series de-
scribed above. As can be seen, the results are rather disap-
pointing. While using 2 agents gives us quite some speed-up,
adding the 3rd and the 4th agent does not really accom-
plish a lot. The question from the multi-agent perspective
is now, if this disappointing outcome is due to the multi-
agent search approach, i.e. TECHS, or due to the combi-
nation of this approach with a multi-processor multi-core
hardware platform. While we did not use all of the features
of TECHS as described in [7] (by not using heterogeneous
search agents we definitely reduced the possibility for syn-
ergetic effects), and it is a well-known fact that for each co-
operative search scheme and each problem instance there is
a maximum number of processors beyond which no gains in
speed can be achieved, we nevertheless were not convinced
that this number is 2 for all the search instances we were
looking at. Therefore we suspected the hardware platform
to be the problem and in order to prove this we switched to
a network of 4 old Pentium III machines (with 256 MB of
RAM each) that we had available.

Table 4 presents the results with these Pentium III ma-
chines. As can be seen, adding a 3rd and 4th agent (i.e. pro-
cessor) now has still quite an impact on the runtimes, ruling
out the TECHS approach as sole problem. We can not ex-
pect linear improvements when adding more agents/proces-
sors in our setting, simply because with a smaller number of
particle updates the mesi-function of an agent does have to
choose from less results, thus providing less useful informa-
tion to other agents, respectively really useful information
later during a run. Therefore the results of Table 4 reflect
well the behavior we expect from a homogeneous version of
TECHS.

But why does changing from the multi-processor multi-
core platform to a multi-computer platform produce a so
different behavior? While we were able to assign the search
agents to different cores, we do not know what the operating
system does with the simulator processes. But even more
important, all cores do share the same periphery, i.e. mem-

Figure 2: Variance in solution quality over 10 runs
for different numbers of agents (HF instance)

Figure 3: Variance in solution quality over 10 runs
for different numbers of agents (MF instance)

ory that is not on the processor chip and access to the file
system. Given the fact that the pipeline simulations produce
substantial file traffic and also require significant memory,
this might produce system level bottlenecks that result in
the observed disappointing behavior. This will require ad-
ditional research and at the moment we have to accept the
fact that we might have to include systems level program-
ming into the search agents to overcome this. And therefore
we have to be careful what we promise industry when sug-
gesting the use of multi-agent search for hard optimization
problems.

While the utilization of the available processors is not a
strong point of IOPO (at least for a multi-processor multi-
core hardware problem), speed-up is not the only thing that
is of interest for our industry partner. Most set-based search
approaches make considerable use of random factors, so that
two runs of a system using such approaches usually lead to
two different solutions being found as the best solution of a
run. How much runs vary with this regard is of quite some
importance for a user. Therefore we compared the results
from Table 3 with regard to how much the runs vary in their
solution quality.

Figures 2, 3 and 4 give a graphical representation of the
variance in solution quality in our experiments5. As the
figures show, using more agents has a positive effect here for
all number of agents, since the variance is reduced with each

5Again, we have to conceal the real values of the solutions
to not endanger TransCanada’s competitive edge; the x-axis
does not meet the y-axis at y=0 in these figures
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Figure 4: Variance in solution quality over 10 runs
for different numbers of agents (LF instance)

agent added to the system. This means that the quality of
the solutions produced by IOPO is more predictable with
more agents used, which from an economical and planning
point of view is a very important observation.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an application of a homoge-

neous version of the TECHS concept for multi-agent coop-
erative search to the problem of optimizing pipeline opera-
tions. Our resulting system, IOPO, was able to solve several
instances of a complex pipeline subnetwork of TransCanada
with at least 10 percent less consumption of gas for opera-
tions, fully automatically, in a time comparable to the time
needed by the commercially available system that requires
human interaction. The use of a multi-agent approach also
showed to be advantageous with regard to reducing the so-
lution quality variance between several runs of the system,
which is an important criterion for industrial users of search
systems.

While the current trend in hardware towards multi-proces-
sor multi-core workstations could serve as an attractor for
industry to multi-agent concepts, our experiments show that
such an argument can have problems for some applications,
since there is significant potential for bottlenecks on the sys-
tems level. A cluster of workstations still seems to present
a more suitable platform for applications with a profile like
our IOPO system.

The research reported in this paper is just a first step in
exploiting the potential that multi-agent cooperative search
has for solving hard optimization problems in industry. The
previous applications of the TECHS concept (see [7] and
[6]) reported synergetic effects for the case of heterogeneous
agents. While there are no tree-based or graph-based search
methods that can be applied to our application problem,
other set-based search approaches could provide enough het-
erogeneity to boost IOPO’s performance. This research will
be continued to use IOPO instances for different connected
pipeline subnetworks of the TransCanada system. The re-
sults would reinforce the viability and robustness of IOPO,
and the potential for deployment of the system.
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