
A Broader Picture of the Complexity of Strategic Behavior
in Multi-Winner Elections

Reshef Meir, Ariel D. Procaccia, Jeffrey S. Rosenschein

School of Engineering and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel
{reshef24, arielpro, jeff}@cs.huji.ac.il

ABSTRACT
Recent work by Procaccia, Rosenschein and Zohar [14] es-
tablished some results regarding the complexity of manipu-
lation and control in elections with multiple winners, such
as elections of an assembly or committee; that work pro-
vided an initial understanding of the topic. In this paper, we
paint a more complete picture of the topic, investigating four
prominent multi-winner voting rules. First, we characterize
the complexity of manipulation and control in these voting
rules under various kinds of formalizations of the manipula-
tor’s goal. Second, we extend the results about complexity
of control to various well-known types of control. This work
enhances our comprehension of which multi-winner voting
rules should be employed in various settings.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Voting

1. INTRODUCTION
Game theory is chiefly concerned with the reaction of ra-

tional entities to incentives. These entities can, naturally,
be people (who, in practice, may not act rationally), but,
alternatively, can be computational agents, driven by pris-
tine calculations of utility. The theory of social choice, in
particular, has long struggled with the following problem:
is it possible to prevent strategic behavior on the part of
the participants in an election (the voters, or the authority
conducting the election)?

Cite as: A Broader Picture of the Complexity of Strategic Behavior in
Multi-Winner Elections, R. Meir, A. D. Procaccia and J. S. Rosenschein,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In an election the voters are asked to report their pref-
erences over candidates. A voter is said to manipulate the
election when he reports false preferences, in an attempt
to influence the outcome of the election. The election’s re-
sult is determined by a voting rule, which designates a win-
ning candidate given the voters’ preferences. The Gibbard-
Satterthwaite theorem [9] asserts that any voting rule which
cannot be manipulated must be a dictatorship, i.e., there is
one voter who dictates the outcome of the election.1 A con-
siderable body of work has been devoted to circumventing
this theorem. Some of the approaches considered in eco-
nomics are restrictions of the agents’ preferences, or assum-
ing that money is available, which leads to mechanism design
solutions.

An equally sinister setting is the one where the author-
ity controlling the election, referred to as the chairman, at-
tempts to control the outcome of the election by tampering
with the list of registered voters or the slate of candidates.
For instance, the chairman might register additional voters
who support his favorite candidate, or demolish the compe-
tition by disqualifying some of the candidates.

1.1 A Computational Approach
In a series of important papers, Bartholdi, Tovey and

Trick [2, 3] have argued that computational complexity can
be a barrier against strategic behavior in elections. Indeed,
although manipulation and control may be possible in the-
ory, in practice they can amount to solving NP-hard prob-
lems, suggesting that the voters or the chairman might as
well avoid cheating altogether.

Indeed, in the context of manipulation, the well-known
Single Transferable Vote (STV) rule has long been known
to be NP-hard to manipulate [1]. More recent papers show
that common voting rules can be enhanced in a way that
makes them hard to manipulate [4, 7], or that prominent
rules are hard to manipulate in alternative settings, such as
manipulation by coalitions of voters (see, e.g., [6]).

The computational aspects of control have also received
attention, for the same reasons mentioned above. Inspired
by Bartholdi, Tovey and Trick [3], very recent papers have
extended their results to various types of control and a va-
riety of voting rules [11, 10, 8].

1This is a simplification, as the theorem requires some as-
sumptions. Most importantly, there must be at least 3 can-
didates, and the domain of the agents’ preferences is the
domain of all possible linear orders over the candidates.

(eds.),May,12-16.,2008,Estoril,Portugal,pp.991-998.

991

1.2 Multi-winner elections and our results
The purpose of multi-winner elections is to choose a com-

mittee or assembly (for instance, elections for parliament).
A multi-winner voting rule maps the preferences of the vot-
ers to subsets of candidates, and effectively specifies the com-
position of the assembly. We note that this structured set-
ting, where voters essentially have preferences over subsets
of candidates, is related to recent work on combinatorial
voting (see, e.g., Lang [12] and the references listed there).

Now, the properties that are considered especially desir-
able with respect to multi-winner voting rules are not neces-
sarily the ones usually sought in single-winner voting rules,
and therefore different rules are usually investigated. The
four prominent rules we shall examine here are Single Non-
Transferable Vote (SNTV), Bloc voting, Approval, and Cu-
mulative voting (for more details, see Section 2).

Some results have recently been established by Procac-
cia, Rosenschein and Zohar [14] regarding the complexity of
manipulation and control in multi-winner elections. These
results can be summarized as follows:

In. . . Manipulation Control (Add Voters)

SNTV P P
Bloc P NP-c
Approval P NP-c
Cumulative NP-c NP-c

All the results hold for a very general formulation of the com-
putational problems. The manipulator/chairman assigns
utilities to different candidates; can he manipulate/control
the election in a way that the total (additive) utility of the
set of winners is above a given threshold? Our first goal is
to extend all these results to more restricted questions. Is
it possible to include a favorite candidate in the set of win-
ners? Perhaps it is possible to determine completely the set
of winners? Or maybe it is possible to just include as many
favorite candidates as possible among the winners?

In addition, Procaccia et al. have only looked at one spe-
cific type of control, control by adding voters. We extend
the results to three other types of control (introduced in
Bartholdi et al. [3]), namely control by removing voters, by
adding candidates, and by removing candidates. Impatient
readers can jump directly to a summary of our results, avail-
able below as Tables 1 and 2.

2. PRELIMINARIES
We now introduce some notation, as well as the four multi-

winner voting rules that we shall investigate.
Let the set of voters be V = {v1, v2, . . . vn}; let the set of

candidates be C = {c1, c2, . . . cm}. We denote the number
of seats in the assembly—the number of candidates to be
elected—by k ∈ N.

Multi-winner voting rules differ from single-winner rules
in the properties that they are expected to satisfy. A major
concern in multi-winner elections is proportional representa-
tion: a faction that consists of a fraction X of the population
should be represented by approximately a fraction X of the
seats in the assembly. This property is not satisfied by (gen-
eralizations of) many of the rules usually considered with
respect to single-winner elections.

So, here we examine four of the prevalent multi-winner
voting rules. In all four, the candidates are awarded points

by the voters, and the candidates with the most points win
the election.

• Single Non-Transferable Vote (SNTV): each voter gives
one point to a favorite candidate.

• Bloc voting : each voter gives one point to each of k
candidates.

• Approval voting : each voter can approve or disapprove
any candidate; an approved candidate is awarded one
point, and there is no limit to the number of candidates
a voter can approve.

• Cumulative voting : allows voters to express intensities
of preferences, by asking them to distribute a fixed
number of points among the candidates. We denote
the fixed pool of points by L.

Scoring rules are a prominent family of voting rules. A
voting rule in this family is defined by a real vector ~α =
〈α1, . . . , αm〉, where αl ≥ αl+1 for l = 1, . . . ,m − 1. Each
voter reports a ranking of the candidates, thus awarding α1

points to the top-ranked candidate, α2 points to the second
candidate, and in general αl points to the candidate ranked
in place l. Note that SNTV is the scoring rule defined by
the vector 〈1, 0, . . . , 0〉, and Bloc is the scoring rule defined
by vector 〈1, . . . , 1, 0, . . . , 0〉, where the number of 1’s is k.

3. MANIPULATION
Manipulation in voting is considered to be any scenario in

which a voter reveals false preferences in order to improve
the outcome of the election. This has various negative con-
sequences; not only do voters spend valuable computational
resources determining which lie to employ, but worse, the
outcome may not be one that reflects the social good. Pre-
sumably, a voting rule which is hard-to-manipulate a priori
precludes such undesirable behavior. A general definition
of the manipulation problem in multi-winner elections was
given in Procaccia et al. [14]:

Definition 3.1. In the (k-winner) Manipulation prob-
lem, we are given a set C of candidates, a set V of voters and
their ballots, the number of winners k ∈ N, a utility function
u : C → Z, and an integer t ∈ Z. We are asked whether a
single additional voter (the manipulator) can cast his vote in
a way that in the resulting election,

P
c∈W u(c) ≥ t, where

W is the set of winners of size k.

Remark 3.2. The Manipulator’s utility function is im-
plicitly assumed to be additive. One can consider more elab-
orate utility functions, such as the ones investigated in the
context of combinatorial auctions, but that is beyond the
scope of this paper.

Procaccia et al. [14] have established that this problem is
tractable in SNTV, Bloc, and Approval, but that it is NP-
complete in Cumulative voting. Although Cumulative vot-
ing has emerged as the winner in this complexity-theoretic
competition, one might argue that the general formulation
of the problem given above makes manipulation harder. In-
deed, the manipulator might have the following, more spe-
cific, goals in mind.

1. The manipulator has a specific candidate whom he is
interested in seeing among the winners.

992

2. The manipulator has a favorite subset of candidates,
and he is interested in seeing all of them among the
winners.

3. The manipulator has a favorite subset of candidates,
and he is interested in seeing as many as possible of
them among the winners.

Notice that the third setting is a special case of Defini-
tion 3.1—indeed, simply restrict u to be a boolean-valued
function, i.e., u : C → {0, 1}. Furthermore, the second set-
ting is a special case of the third since, if D ⊆ C is the
favorite subset, we can set

u(c) = 1⇔ c ∈ D

and t = |D|. The first is a special case of the second when
|D| = 1.

Remark 3.3. In all manipulation and control problems,
we assume tie-breaking is adversarial to the manipulator or
chairman, i.e., ties are broken in favor of candidates with
lower utility. This is a standard assumption, made in many
of the papers on these topics [6, 14].

The next proposition gives a negative answer to the ques-
tion of whether Manipulation in Cumulative voting is still
hard in the abovementioned settings. Indeed, we put for-
ward an algorithm that decides the problem under any boolean-
valued utility function.

Proposition 3.4. Manipulation in Cumulative voting
with any boolean-valued utility function u : C → {0, 1} is in
P.

Proof. Let s[c] be the score of candidate c ∈ C before
the manipulator has cast his vote, and s∗[c] be c’s score
when the manipulator’s vote is taken into account. Assume
without loss of generality that s[c1] ≥ s[c2] ≥ . . . ≥ s[cm].
Let D = {d1, d2, . . .} be the set of desirable candidates d ∈
C with u(d) = 1, and again assume these are sorted by
nonincreasing scores.

Informally, we are going to find a threshold thresh such
that pushing t candidates above the threshold guarantees
their victory. Then we will check whether it is possible to
distribute L points such that at least t candidates pass this
threshold, where L is the number of points available to each
voter.

Formally, consider Algorithm 1 (w.l.o.g. k ≥ t, otherwise
manipulation is impossible). The algorithm clearly halts in
polynomial time. It only remains to prove the correctness
of the algorithm.

Lemma 3.5. The above algorithm correctly decides Ma-
nipulation in Cumulative voting with any boolean-valued
utility function.

Proof. Denote by Ŵ = {c1, . . . , ck} the k candidates
with highest score (sorted) before the manipulator’s vote,
and by W the final set of k winners. The threshold can-
didate cj∗ partitions Ŵ into two disjoint subsets: Ŵu =

{c1, . . . , cj∗−1}, Ŵd = {cj∗ , . . . , ck}. By the maximality of
j∗, it holds that:

|Ŵu ∩D|+ |Ŵd| = |Ŵu ∩D|+ (k + 1− j∗) = t. (1)

Note that S is the exact number of votes required to push
t desirable candidates above the threshold. Now, we must

Algorithm 1 Decides Manipulation in Cumulative voting
with boolean valued utility

1: j∗ ← max{j : |{c1, c2, . . . , cj−1} ∩ D| + k + 1 − j ≥
t and cj /∈ D} . j∗ exists, since the condition holds for
the first candidate not in D

2: thresh← s[cj∗]
3: S ←

Pt
j=1 max{0, thresh + 1− s[dj]}

4: if S ≤ L then
5: return true
6: else
7: return false
8: end if

show that the manipulator can cast his vote in a way that
the winner set W satisfies |W ∩D| ≥ t if, and only if, L ≥ S.

Suppose first that S ≤ L. Then it is clearly possible
to push t desirable candidates above thresh. Ŵu ∩ D were
above the threshold already; it follows that Ŵd was replaced
entirely by desirable candidates.

Let W = {w1, . . . , wk} be the set of new winners. In

particular, we can write W = Ŵu] {wj∗ , . . . , wk}. Ŵu

contains |Ŵu ∩D| desirable candidates, while {wj∗ , . . . , wk}
consists purely of desirable candidates. By Equation (1):

|W ∩D| = |Ŵu ∩D|+ |{wj∗ , . . . , wk}|

= |Ŵu ∩D|+ |Ŵd|
= t

Conversely, suppose S > L. We must show that the ma-
nipulator cannot distribute L points in a way that t candi-
dates from D are among the winners.

Clearly there is no possibility to push t desirable candi-
dates above thresh. Consider some ballot cast by the manip-
ulator, and assume w.l.o.g. that the manipulator distributed
points only among the candidates in D. Denote the new set
of winners by W = Wu]Wd, where

Wu = {c ∈ C : s∗[c] > thresh}

Wd = {c ∈ C : s∗[c] ≤ thresh}.
We claim that

|Wu ∩D| = k − t, (2)

where D = C \D. Indeed, by Equation (1)

|Ŵu ∩D| = t− k − 1 + j∗.

Since no votes were awarded to candidates in D,

|Wu ∩D| = |Ŵu ∩D| = |Ŵu| − |Ŵu ∩D|
= (j∗ − 1)− (t− k − 1 + j∗)

= k − t

Denote by F the set of candidates that were pushed above
the threshold. Formally:

F = {c ∈ D : s[c] ≤ thresh and s∗[c] > thresh}

Thus:

Wu = Ŵu] F.
Let w∗ be the new position of candidate cj∗ when the

candidates are sorted by nonincreasing s∗[c]. It holds that

w∗ = j∗ + |F |.

993

We now claim that

|Wd ∩D| ≥ 1. (3)

Recall that there are less than t desirable candidates above
the threshold, thus:

|Wu ∩D| < t ⇒
|Ŵu ∩D|+ |F | = |Wu ∩D| < t = |Ŵu ∩D|+ k + 1− j∗ ⇒

|F | < k + 1− j∗ ⇒
w∗ = j∗ + |F | < j∗ + k + 1− j∗ = k + 1 ⇒

w∗ ≤ k ⇒
cj∗ ∈Wd ⇒
|Wd ∩D| ≥ 1

By combining Equations (2) and (3), we finally obtain:

|W ∩D| = k − |W ∩D|
= k − (|Wu ∩D|+ |Wd ∩D|)
≤ k − (k − t+ 1)

= t− 1

< t

The proof of Proposition 3.4 is completed.

Remark 3.6. The proof shows that the manipulation of
Cumulative voting by a coalition of (even weighted) vot-
ers, as in Conitzer et al. [6], is tractable under a boolean-
valued utility function. This follows by simply joining the
(weighted) score pools of all the voters in the coalition.

SNTV and Bloc voting, which are both scoring rules, are
known to be easy to manipulate under a general utility func-
tion [14]. The next proposition establishes that this is true
for any scoring rule, under a boolean-valued utility function.

Proposition 3.7. Let P be a scoring rule defined by the
parameters ~α = 〈α1, . . . , αm〉. Manipulation in P with
any boolean-valued utility function u : C → {0, 1} is in P.

Proof. Let ~α = 〈α1, . . . , αm〉 be the parameters of the
scoring rule in question. Denote the score of each candidate
c ∈ C, before the manipulator has cast his vote, by s[c]. Let
J be the manipulator’s preference profile, given by:

J = cj1 � cj2 � . . . � cjm

Suppose some candidate c ∈ C was ranked in place l by the
manipulator, c = cjl . Denote the final score of candidate c,
according to the manipulator’s profile J , by:

sJ [c] = s[c] + αl

Finally, denote the winner set that results from the manip-
ulator’s ballot J by WJ .

Lemma 3.8. Given C′ ⊆ C, |C| = k, it is possible to
determine in polynomial time if there exists J s.t. C′ = WJ .

Proof. Denote C′ = {c′1 . . . c′k},

C′′ = C \ C′ = {c′′1 , . . . c′′m−k},

where both C′, C′′ are sorted by nondecreasing score s[c].
Let

J ∗ = c′1 � c′2 � . . . � c′k � c′′1 � . . . � c′′m−k

This preference profile ranks the players in C′ first, while
giving more points to candidates with lower initial score.
Candidates from C′′ are ranked next, and the same rule ap-
plies. The intuition is that we would like the candidates in
C′ to have a high-as-possible, more or less balanced, score.
Likewise, we would like the candidates in C′′ to have a low-
as-possible balanced score. This strategy generalizes the al-
gorithm of Bartholdi et al. [2].

We claim that there exists J s.t. C′ = WJ iff C′ = WJ ∗ . If
C′ = WJ ∗ then obviously there exists J s.t. C′ = WJ . Con-
versely, suppose there exists some J# such that C′ = WJ# .
Without loss of generality, this holds (by the adversarial tie
breaking assumption)2 iff

∀c′ ∈ C′, c′′ ∈ C′′, sJ# [c′′] < sJ# [c′]. (4)

We argue that it is possible to obtain J ∗ from J# by
iteratively transposing pairs of candidates, without changing
the winner set. Indeed, we distinguish between three cases:

1. ∃j1, j2 ∈ {1, 2, . . . , k} such that s[c′j1] > s[c′j2] , but in

J# it holds that c′j1 � c′j2 . Now, transpose the rank-

ings of c′j1 and c′j2 in J#, i.e., consider the preference

profile which is identical to J# except that the places
of c′j1 and c′j2 are switched. Denote by W the new set
of winners.

The score of c′j2 increased, so he is certainly still in W .
Moreover, the new final (possibly lower) score of c′j1 is:

s[c′j1] + αj2 ≥ s[c
′
j2] + αj2 = sJ# [c′j2]

By (4) we have that:

∀c′′ ∈ C′′, sJ# [c′′] < sJ# [c′j2]

Therefore, c′j1 ∈ W even after the transposition. We
conclude that it still holds that C′ = W .

2. ∃j1, j2 ∈ {1, 2, . . . ,m − k} such that s[c′′j1] > s[c′′j2],

but in J# it holds that c′′j1 � c
′′
j2 . A similar argument

holds in this case.

3. ∃c′ ∈ C′, c′′ ∈ C′′ such that in J# it holds that c′′ � c′.
Clearly the desirable candidate c′ can only rank higher
if we transpose the two candidates.

Using the three types of transpositions, we can replace a
couple of candidates at each step until we obtain J ∗ from
J#. In each such step it remains true that C′ = W , thus
C′ = WJ ∗ .

Lemma 3.9. Given C′ ⊆ C, C′ ≤ k, it is possible to de-
termine in polynomial time if there exists J s.t. C′ ⊆WJ .

Proof. Let C′ ⊆ C, |C′| = k′ < k. We add to C′ the
k−k′ candidates from C′′ with the highest score (according
to s[c]), and denote this new set of size k by C∗. According
to Lemma 3.8, we can determine efficiently if there exists J
such that C∗ = WJ .

We argue that it is enough to check C∗. Indeed, assume
that there exists J such that C′ ⊆ WJ . Let c ∈ C \WJ
such that there exists c′ ∈ WJ with s[c′] < s[c]. Now, if we

2Tie breaking works against candidates with utility 1 (which
are the ones we ultimately care about), but in favor of can-
didates in C′ with utility 0. However, for ease of exposition,
we do not deal with such borderline cases here.

994

transpose, in the ranking J , the candidates c and c′, clearly
c becomes a winner while c′ becomes a loser. Therefore, it
is possible to make C∗ the set of winners.

To complete the proof of the proposition, we denote by D
the set of candidates whose utility is 1. The total utility is at
least t iff there is a subset of D of size t that can be included
in W . Let C′ be the t candidates with the highest score s[c]
in D. By similar arguments as before, if this subset cannot
win then no other subset of D of size t can. By Lemma 3.9
we can efficiently find out whether it is possible to include
C′ in W .

4. CONTROL
In the control setting, we assume that the authority con-

trolling the election (hereinafter, the chairman) has the power
to tweak the election’s electorate or slate of candidates in a
way that might change the outcome. This is also a form of
undesirable strategic behavior, but on the part of a behind-
the-scenes player who is not supposed to take an active part
in the election.

Procaccia et al. [14] have explored one type of control,
namely control by adding voters. In this setting, the chair-
man might add voters who support his candidate, but the
number of voters he can add without alerting attention to
his actions is limited. The problem is formally defined as
follows:

Definition 4.1. In the problem of Control by Adding
Voters, we are given a set C of candidates, a set V of
registered voters, a set V ′ of unregistered voters, the number
of winners k ∈ N, a utility function u : C → Z, and integers
r, t ∈ N. We are asked whether it is possible to register at
most r voters from V ′ such that in the resulting election,P

c∈W u(c) ≥ t, where W is the set of winners, |W | = k.

It is known that Control by Adding Voters is tractable
in SNTV, and NP-complete in Bloc voting, Approval vot-
ing, and Cumulative voting. As in Section 3, we will be
interested in seeing if these results still hold in the special
cases mentioned above (that is, if the results are true when
the chairman only wants to get a specific candidate elected,
wants the set of winners to be exactly a given set, or wants
a given subset of candidates to be included in the set of
winners).

Even more importantly, we would like to extend our re-
sults to some of the different types of control, first considered
in Bartholdi et al. [3].

Definition 4.2. In the problem of Control by Remov-
ing Voters, we are given a set C of candidates, a set V of
registered voters, the number of winners k ∈ N, a utility
function u : C → Z, and integers r, t ∈ N. We are asked
whether it is possible to remove at most r voters from V
such that in the resulting election,

P
c∈W u(c) ≥ t, where

W is the set of winners, |W | = k.

Another possible misuse of the chairman’s authority is
tampering with the slate of candidates. Removing candi-
dates is obviously helpful, but even adding candidates can
sometimes tip the scales in the direction of the chairman’s
favorite.

Definition 4.3. In the problem of Control by Adding
Candidates, we are given a set C of registered candidates,

a set C′ of unregistered candidates, a set V of voters, the
number of winners k, a utility function u : C ∪C′ → Z, and
integers r, t ∈ N. All voters have preferences over all can-
didates C ∪ C′. We are asked whether it is possible to add
at most r candidates C′′ from C′, such that in the resulting
elections on C ∪ C′′,

P
c∈W u(c) ≥ t, where W is the set of

winners, |W | = k.

Definition 4.4. In the problem of Control by Removing
Candidates, we are given a set C of candidates, a set V of
voters, the number of winners k, a utility function u : C →
Z, and integers r, t ∈ N. We are asked whether it is possible
to remove at most r candidates from C′, such that in the
resulting elections

P
c∈W u(c) ≥ t, where W is the set of

winners, |W | = k.

Some clarification is in order. In the context of scoring
rules, the assumption in the above two problems is that
the voters have rankings of all the candidates in C ∪ C′.
Therefore, if some candidates are added or removed, the
voters’ preferences over the new set of candidates are still
well-defined. The same goes for Approval: each voter ap-
proves or disapproves every candidate in C ∪ C′. However,
in the context of Cumulative voting, the problems of control
by adding/removing candidates are not well-defined. In-
deed, one would require a specification of how the voters
distribute their points among every possible subset of candi-
dates, and this would require a representation of exponential
size.3 Consequently, we do not consider control by adding
or removing candidates in Cumulative voting.

4.1 Controlling the Set of Voters
As noted above, our agenda in this subsection is two-fold:

determining whether the results of Procaccia et al. [14] sur-
vive the transition from general utility functions to boolean-
valued utility, and extending the results to control by remov-
ing voters.

We start with SNTV. Procaccia et al. [14] show that Con-
trol by Adding Voters in SNTV is in P, even under a
general utility function (and therefore, obviously, for any re-
stricted boolean-valued function). We show that the same
is true for Control by Removing Voters.

Proposition 4.5. Control by Removing Voters in SNTV
under any utility function is in P.

Proof. We will provide a polynomial-time reduction from
Control by Removing Voters in SNTV to Control by
Adding Voters in SNTV. Since Control by Adding Voters
in SNTV is in P, this is sufficient to prove the proposition.

Given an instance (V, r, t, k, C, u) of Control by Remov-
ing Voters, define an equivalent instance

(U,U ′, r∗, t∗, k∗, C∗, u∗)

of Control by Adding Voters. Set:

3It is possible to imagine compact representations, but that
is beyond the scope of this paper.

995

C∗ = C

r∗ = r

t∗ = t−
X
c∈C

u(c)

k∗ = |C| − k
u∗(c) = −u(c)

U ′ = V

For each voter v, let f(v) be the candidate that voter
v ranks first; f(v) gives all the relevant information about
voter v’s ballot. The ballots of the voters in U are defined
by the following rule. For each candidate c ∈ C,

|{v ∈ U : f(v) = c}| = |V | − |{v ∈ V : f(v) = c}|

We claim that (V, r, t, k, C, u) is in Control by Remov-
ing Voters iff (U,U ′, r∗, t∗, k∗, C∗, u∗) is in Control by
Adding Voters.

Let U ′′ be the subset of voters selected by the chairman
from U ′ = V . Denote by s[c], s∗[c] the final score of candi-
date c in the election obtained by removing or adding voters,
respectively. It holds that:

s[c] = |{v ∈ V : f(v) = c}| − |{v ∈ U ′′ : f(v) = c}|.

Furthermore,

s∗[c] = |{v ∈ U : f(v) = c}|+ |{v ∈ U ′′ : f(v) = c}|
= |V | − |{v ∈ V : f(v) = c}|+ |{v ∈ U ′′ : f(v) = c}|
= |V | − (|{v ∈ V : f(v) = c}| − |{v ∈ U ′′ : f(v) = c}|)
= |V | − s[c]

Hence for all c, c′ ∈ C:

s∗[c] ≥ s∗[c′] ⇔ s[c] ≤ s[c′]

We conclude that the k∗ = |C|−k winners of the constructed
instance are exactly the |C| − k losers of the original in-
stance.4 That is, if W are the winners in the given instance
and W ∗ the winners in the constructed instance, we have
that W ∗ = C \W .

Finally,X
c∈W

u(c)− t =
X

c∈C\W∗

u(c)− (t∗ +
X
c∈C

u(c))

= −
X

c∈C\W∗

u∗(c) +
X
c∈C

u∗(c)− t∗

=
X

c∈W∗

u∗(c)− t∗

Thus, for any choice of subset U ′′ to be removed or added,P
c∈W u(c) ≥ t if, and only if,

P
c∈W∗ u

∗(c) ≥ t∗. We con-
clude that the given instance is a “yes” instance iff the con-
structed instance is a “yes” instance.

We now tackle the other three voting rules. The results
in Procaccia et al. [14], although formulated for a general
utility function, actually establish the following lemma.

4This conclusion also takes into account the adversarial tie-
breaking assumption.

Lemma 4.6. [14] Control by Adding Voters in Bloc
voting, Approval voting, and Cumulative voting is NP-hard,
even when the chairman simply wants to exclude a distin-
guished candidate.

It is possible to provide a generic reduction that estab-
lishes the hardness of Control by Adding Voters in all
three rules, even when the voters just want to include a spe-
cific candidate among the winners. This, as usual, shows
hardness in all the special cases we discussed.

Proposition 4.7. Control by Adding/Removing Vot-
ers in Bloc voting, Approval voting, and Cumulative voting
is NP-hard, even when the chairman simply wants to in-
clude a distinguished candidate.

Proof. Omitted due to space constraints.

Notice that the result for Approval follows from Hemas-
paandra et al. [10]: constructive control by adding voters
is known to be hard even in single-winner elections. Inter-
estingly, they also show that in single-winner elections de-
structive control is easy, in contrast with our multi-winner
results.

4.2 Controlling the Set of Candidates
We now turn to the problem of controlling the set of can-

didates. As noted at the beginning of this section, this prob-
lem is ill-defined when it comes to Cumulative voting, so in
the following we restrict ourselves to SNTV, Bloc voting,
and Approval voting.

First, we recall that Bartholdi et al. [3] show that control
by adding/removing candidates in SNTV is NP-complete,
even in single winner elections (in particular, even when the
chairman wants to include a single candidate among the
winners). This result extends to Bloc voting:

Proposition 4.8. Control by Adding/Removing Can-
didates in Bloc voting is NP-complete, even in single-winner
elections.

Proof. Simply consider the case of k = 1.

Although Approval voting seems more complicated than
SNTV, surprisingly it is much easier to control by tampering
with the set of candidates.

Proposition 4.9. Control by Adding Candidates in
Approval is in P, under any utility function.

Proof. We will actually solve the following problem: can
the chairman add exactly r candidates, in a way that all
the added candidates become winners, and the utility is at
least t? Solving this problem entails that the chairman can
also solve the original problem, as he can simply run the
algorithm for every s ≤ r.

First note that each candidate in c ∈ C,C′ has a fixed
number of points s[c], regardless of the participation of any
other candidate. The chairman selects a subset D ⊆ C′,
|D| = r, and the winners are the k candidates in C] D
with the highest score. Therefore, it is only effective to add
candidates that will actually be winners.

Say indeed that D ⊆ W . Regardless of the identity of
the candidates in D, the winners from C are exactly the
|C| − r candidates with the highest score in C. Since r is
fixed and (without loss of generality) r ≤ k, the total score

996

of the winners from C is also fixed, and we only need to
optimize D, i.e., select the best r candidates from C′ that
can be made to be winners.

Lemma 4.10. Let C = {c1, . . . , cm} be sorted by nonin-
creasing score, then by nondecreasing utility, s[cj] ≥ s[cj+1]
for all j = 1, . . . ,m − 1, and if s[cj] = s[cj+1] then u(cj) ≤
u(cj+1). Let W be the set of winners after the candidates
D ⊆ C′ have been added. Then D ⊆ W iff for all d ∈ D,
one of the following holds:

1. s[d] > s[ck−r+1].

2. s[d] = s[ck−r+1] and u(d) < u(ck−r+1).

Proof. Assume first that D ⊆ W . Among the k candi-
dates with highest score, at least r are not from C. Thus, at
least r candidates among the highest-scoring k candidates in
C are excluded from W ; the candidates {ck−r+1, . . . , ck} are
certainly excluded from the set of winners. Since candidates
with lower score are excluded first, and equality is broken
in favor of candidates with lower utility, we have that either
∀c ∈W , s[ck−r+1] < s[c], or an equality holds and the utility
of c is lower; in particular, this is true for any d ∈ D ⊆W .

Conversely, suppose that for all d ∈ D, either condition
1 or condition 2 holds. Then exactly k candidates are pre-
ferred (by the voting rule and the tie-breaking mechanism)
to ck−r+1: {c1, . . . , ck−r}, as well as the candidates in D.
Thus these are the k winners.

Denote thresh(r) = s[ck−r+1]. By Lemma 4.10, it is suffi-
cient to consider the candidates

{c ∈ C′ : s[c] > thresh(r) or s[c] = thresh(r) ∧
u(c) < u(ck−r+1)}.

Clearly, it is possible to achieve a utility of t iff this is ac-
complished by adding the r candidates with highest utility
in this set.

Proposition 4.11. Control by Removing Candidates
in Approval is in P, under any utility function.

Proof. We describe an immediate polynomial-time re-
duction from Control by Removing Candidates in Ap-
proval to Control by Adding Candidates in Approval.
We reduce the versions of the problems where exactly r can-
didates are to be removed/added. As noted in the proof of
Proposition 4.9, this is sufficient.

Let (C, V, k, u, r, t) be an instance of Control by Re-
moving Candidates in Approval (with exact r). Set:

C∗ = ∅
C′∗ = C

r∗ = |C| − r

We claim that (C∗, C′∗, V, k, u, r∗, t) is an equivalent in-
stance of Control by Adding Candidates in Approval.
Indeed, adding r∗ candidates from C to the empty set is
clearly equivalent to removing r = |C| − r∗ candidates from
C.

5. CONCLUSIONS
The analysis in this paper has focused on the complexity

of manipulating and controlling four simple voting schemes
that are often considered in the context of multi-winner elec-
tions: SNTV, Bloc voting, Approval voting, and Cumulative
voting. We have mainly concentrated on answering the im-
portant questions that were left open by Procaccia et al. [14].

It was previously known that the multi-winner manipula-
tion problem is tractable in the first three rules, but hard in
Cumulative voting. Here we examined the complexity of the
problem when the manipulator has a boolean-valued func-
tion (which is a generalization of, for example, the setting
where the manipulator wants one candidate to be included
among the winners). We showed that in this setting, manip-
ulation is tractable even in Cumulative voting. Moreover, we
have established that when the utility function is boolean-
valued, the manipulation of any scoring rule is easy.

At this point we wish to direct the reader’s attention to
Table 1, which summarizes our results regarding manipu-
lation. A left (respectively right) implication arrow in the
table means that the result in the cell is implied by the re-
sult in the left (respectively right) cell. Notice that in the
case of boolean-valued utilities, manipulation is tractable in
all four voting schemes analyzed in this paper. This is not
the case, however, with Single Transferable Vote (STV).

The (single-winner) version of STV works as follows. The
voters report rankings of the candidates. The election pro-
ceeds in rounds. In the first round, the candidate whom
the least number of voters ranked first is eliminated. The
voters who voted for the eliminated candidate transfer their
votes to the second candidate in their ranking. The election
proceeds this way for m− 1 rounds, until only a single can-
didate prevails. This voting rule can easily be generalized
to multi-winner elections, by holding only m − k rounds.
In practice, STV is used for multi-winner elections, but is
more complicated (different counting methods and quotas
are employed), and herein lies one of its main weaknesses.
Nevertheless, STV’s weakness is also its strength: due to this
voting rule’s complexity, it is also NP-hard to manipulate,
even in single winner elections [3]. To conclude this point,
our results show that the four prevalent multi-winner voting
rules are susceptible to manipulation, if the manipulator is
bent on simply including a candidate or a favorite subset
among the winners. In settings where this is a concern, a
multi-winner version of STV may be considered appropriate.

Table 2 summarizes our results regarding control. Notice
that with respect to control, all results are true for the three
types of utility functions that appear in the table. Previ-
ous work indicated that control by adding voters is easy in
SNTV but hard in the other three rules. In this paper, we
have shown that these results extend to control by removing
voters. Surprisingly, the situation has turned on its head
when it comes to control by adding or removing candidates:
here it is Approval voting that is easy to control, while other
rules are hard. Therefore, while the results of Procaccia et
al. [14] indicated a clear hierarchy of resistance to strategic
behavior, our extended results shatter this conception. We
conclude one has to adopt a voting rule ad hoc, depending
on whether control by tampering with the set of voters, or
with the set of candidates, is the major concern.

Finally, we wish to connect this work with the ongoing
discussion of worst-case versus average-case complexity of
manipulation and control in elections. A strand of recent

997

Manipulation

In. . . Include candidate Boolean utility General utility

SNTV P ⇐ P ⇐ P [14]

Bloc P ⇐ P ⇐ P [14]

Approval P ⇐ P ⇐ P [14]

Cumulative P ⇐ P NP-c [14]

STV NP-c [1] ⇒ NP-c ⇒ NP-c

Table 1: The complexity of manipulation in multi-winner elections

Control

In. . . Add/Remove Voters Add/Remove Candidates

Include candidate Boolean utility General utility Include candidate Boolean utility General utility

SNTV P [10] ⇐ P ⇐ P NP-c [3] ⇒ NP-c ⇒ NP-c

Bloc NP-c ⇒ NP-c ⇒ NP-c NP-c ⇒ NP-c ⇒ NP-c

Approval NP-c [10] ⇒ NP-c ⇒ NP-c P ⇐ P ⇐ P
Cumulative NP-c ⇒ NP-c ⇒ NP-c Irrelevant Irrelevant Irrelevant

Table 2: The complexity of control in multi-winner elections

research argues that worst-case hardness is not a strong
enough guarantee of resistance to strategic behavior, by show-
ing that manipulation problems that are known to be NP-
hard are tractable according to different average-case no-
tions [5, 13, 15]. However, these works are still highly incon-
clusive. Therefore, worst-case complexity of manipulation
and control remains an important benchmark for compar-
ing different voting rules, and still inspires a considerable
and steadily growing body of work [6, 11, 10, 8].

6. ACKNOWLEDGMENT
This work was partially supported by Israel Science Foun-

dation grant #898/05. Ariel Procaccia is supported by the
Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities.

7. REFERENCES
[1] J. Bartholdi and J. Orlin. Single transferable vote

resists strategic voting. Social Choice and Welfare,
8:341–354, 1991.

[2] J. Bartholdi, C. A. Tovey, and M. A. Trick. The
computational difficulty of manipulating an election.
Social Choice and Welfare, 6:227–241, 1989.

[3] J. Bartholdi, C. A. Tovey, and M. A. Trick. How hard
is it to control an election? Mathematical and
Computer Modelling, 16:27–40, 1992.

[4] V. Conitzer and T. Sandholm. Universal voting
protocol tweaks to make manipulation hard. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 781–788, 2003.

[5] V. Conitzer and T. Sandholm. Nonexistence of voting
rules that are usually hard to manipulate. In
Proceedings of the Twenty-First National Conference
on Artificial Intelligence, pages 627–634, 2006.

[6] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate?
Journal of the ACM, 54:1–33, 2007.

[7] E. Elkind and H. Lipmaa. Hybrid voting protocols and
hardness of manipulation. In 16th Annual
International Symposium on Algorithms and
Computation, Lecture Notes in Computer Science,
pages 206–215. Springer-Verlag, 2005.

[8] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra,
and J. Rothe. Llull and Copeland voting broadly resist
bribery and control. In The 22nd National Conference
on Artificial Intelligence, pages 724–730, 2007.

[9] A. Gibbard. Manipulation of voting schemes.
Econometrica, 41:587–602, 1973.

[10] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Anyone but him: The complexity of precluding an
alternative. Artificial Intelligence, 171(5–6):255–285,
2007.

[11] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Hybrid elections broaden complexity-theoretic
resistance to control. In Proceedings of the 20th
International Joint Conference on Artificial
Intelligence, pages 1308–1314, 2007.

[12] J. Lang. Vote and aggregation in combinatorial
domains with structured preferences. In Proceedings of
the Twentieth International Joint Conference on
Artificial Intelligence, pages 1366–1371, 2007.

[13] A. D. Procaccia and J. S. Rosenschein. Junta
distributions and the average-case complexity of
manipulating elections. Journal of Artificial
Intelligence Research, 28:157–181, February 2007.

[14] A. D. Procaccia, J. S. Rosenschein, and A. Zohar.
Multi-winner elections: Complexity of manipulation,
control and winner-determination. In Proceedings of
the Twentieth International Joint Conference on
Artificial Intelligence, pages 1476–1481, 2007.

[15] M. Zuckerman, A. D. Procaccia, and J. S.
Rosenschein. Algorithms for the coalitional
manipulation problem. In The ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 277–286, 2008.

998

