BnB-ADOPT:
An Asynchronous Branch-and-Bound DCOP Algorithm-

William Yeoh Ariel Felner Sven Koenig
Computer Science Information Systems Computer Science
University of Southern Engineering University of Southern

California
Los Angeles, CA 90089, USA
wyeoh@usc.edu

ABSTRACT

Distributed constraint optimization (DCOP) problems are a
popular way of formulating and solving agent-coordination
problems. It is often desirable to solve DCOP problems
optimally with memory-bounded and asynchronous algo-
rithms. We introduce Branch-and-Bound ADOPT (BnB-
ADOPT), a memory-bounded asynchronous DCOP algo-
rithm that uses the message passing and communication
framework of ADOPT, a well known memory-bounded asyn-
chronous DCOP algorithm, but changes the search strategy
of ADOPT from best-first search to depth-first branch-and-
bound search. Our experimental results show that BnB-
ADOPT is up to one order of magnitude faster than ADOPT
on a variety of large DCOP problems and faster than NCBB,
a memory-bounded synchronous DCOP algorithm, on most
of these DCOP problems.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; 1.2.8 [Artificial Intelligence|: Problem Solving,
Control Methods, and Search

General Terms
Algorithms

Keywords

Agent cooperation::distributed problem solving

1. INTRODUCTION

Distributed constraint optimization (DCOP) problems are
a popular way of formulating and solving agent-coordination

*This research was done while Ariel Felner spent his sabbatical at
the University of Southern California, visiting Sven Koenig. This
research has been partly supported by an NSF award to Sven
Koenig under contract 1IS-0350584. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either ex-
pressed or implied of the sponsoring organizations, agencies, com-
panies or the U.S. government.

Cite as: BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP

Algorithm, W. Yeoh, A. Felner, S. KoenigProc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS

2008), Padgham, Parkes, Miiller and Parsons (eds.), May, 12-168, 20

Estoril, Portugal, pp591-598.

Copyright(c) 2008, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Ben-Gurion University
Beer-Sheva, 85104, Israel
felner@bgu.ac.il

California
Los Angeles, CA 90089, USA
skoenig@usc.edu

problems, including scheduling meetings [8], coordinating
unmanned aerial vehicles [14] and allocating targets to sen-
sors [1]. A DCOP problem consists of several agents that
need to take on values so that the sum of the resulting
constraint costs is minimal. Each agent often has only a
fixed amount of memory available. This calls for memory-
bounded DCOP algorithms. The agents have to communi-
cate with each other, but communication is often restricted
to nearby agents. This calls for DCOP algorithms that
restrict communication to agents that share constraints.
DCOPs can be solved quickly if the agents can act inde-
pendently without having to wait for other agents. This
calls for asynchronous DCOP algorithms. ADOPT is a pop-
ular DCOP algorithm that satisfies these three constraints
and uses best-first search to solve DCOP problems optimally
[12]. In this paper, we develop another DCOP algorithm
that satisfies the three constraints and solves DCOP prob-
lems optimally but is faster than ADOPT on many DCOP
problems.

DCOP problems are combinatorial search problems with
depth-bounded search trees. It is known that such search
problems can often be solved faster with memory-bounded
depth-first branch-and-bound search than with memory-
bounded best-first search since memory-bounded best-first
search needs to repeatedly reconstruct partial solutions that
it purged from memory [16]. Consequently, depth-first
branch-and-bound search has been extended to distributed
constraint satisfaction problems [6, 2] and even to DCOP
problems. However, the existing depth-first branch-and-
bound DCOP algorithms are either synchronous (NCBB [3]
and SBB [6]) or broadcast messages and thus do not re-
strict communication to agents that share constraints (AFB
[4]). We therefore introduce Branch-and-Bound ADOPT
(BnB-ADOPT), a memory-bounded asynchronous DCOP
algorithm that uses the message passing and communication
framework of ADOPT to restrict communication to agents
that share constraints. Our experimental results show that
BnB-ADOPT is up to one order of magnitude faster than
ADOPT on a variety of large DCOP problems, namely for
coloring graphs, scheduling meetings and allocating targets
to sensors. It is also faster than NCBB on most of these
DCOP problems.

2. DCOP PROBLEMS

A DCOP problem consists of a finite set of agents with
independent computing power and a finite set of constraints.
Each agent takes on (= assigns itself) a value from its finite

domain. Each constraint involves two agents and specifies
its non-negative constraint cost as a function of the values
of these two agents. A solution is an agent-value assignment
for all agents, while a partial solution is an agent-value as-
signment for a subset of agents. The cost of a solution is the
sum of the constraint costs of all constraints. Solving the
DCOP problem optimally means to determine the cost of
a cost-minimal solution. Each agent needs to decide which
value to take on based on its knowledge of the constraints
that it is involved in and messages that it can exchange with
the other agents. These messages can be delayed by a finite
amount of time but are never lost.

3. BnB-ADOPT

z; | x; | Cost
&) , () 0 0 5
0 1 8
) L) 1|0/ 20
N 1 1 3
) &) fori < j

Figure 1: Example DCOP Problem

DCOP problems can be represented with constraint
graphs, whose vertices are the variables and whose edges
are the constraints. Figure 1(a) shows the constraint graph
of an example DCOP problem with three agents that can
each take on the values zero or one. There is a constraint
between each pair of agents. Figure 1(c) shows the con-
straint costs of the example DCOP problem, which are the
same for all three constraints. Constraint trees are spanning
trees of constraint graphs with the property that edges of the
constraint graphs can connect vertices only with their ances-
tors or descendants in the constraint trees. Sibling subtrees
represent disjoint subproblems of the DCOP problem. Fig-
ure 1(b) shows one possible constraint tree of the example
DCOP problem, where the dotted line is part of the con-
straint graph but not the constraint tree. This constraint
tree is actually a constraint chain and thus there are no dis-
joint subproblems. The operation of DCOP algorithms on
constraint trees can be visualized with search trees. Figure 2
shows a search tree for this constraint tree, where levels 1, 2
and 3 of the search tree correspond to agents x1, 2 and x3,
respectively. Left branches correspond to the agents taking
on the value zero and right branches to the agents taking on
the value one. Each non-leaf node thus corresponds to a par-
tial solution of the DCOP problem and each leaf node to a
solution. Figure 2(a) shows the identifiers of the nodes that
allow us to refer to them easily, and Figure 2(b) shows the
sums of the constraint costs of all constraints that involve
only agents with known values. These sums correspond to
the f-values of an A* search [5] since we assume for simplic-
ity of illustration that all heuristics are zero for our example
DCOP problem. For example, node f corresponds to agent
z1 taking on value one, agent x2 taking on value zero and
agent xs having an unknown value. Thus, the sum of the
constraint costs of all constraints that involve only agents
with known values is 20, namely the cost of the constraint
that involves agents x1 and x2.

ADOPT [12] is a best-first search algorithm. Best-first

592

Figure 2: Search Tree

search expands nodes in the search tree for the first time in
order of increasing f-values until it finds a solution. For our
example DCOP problem, best-first search expands nodes in
the search tree for the first time in the order a, b, ¢, g,
d, e, and o. ADOPT is basically a distributed version of
RFBS [7]. In order to be memory-bounded, it maintains
only a branch from the root node to the currently expanded
node and thus needs to repeatedly reconstruct nodes that it
purged from memory. For example, it has the branch from
a to e in memory when it expands node e but then needs to
have the branch from a to o in memory when it expands node
o. Thus, it needs to reconstruct the part of this branch from
a to g. Depth-first branch-and-bound search, on the other
hand, expands the children of a node in order of increasing f-
values and prunes those nodes whose f-values are no smaller
than the smallest f-value of any leaf node that it has already
observed. It backtracks once all children of a node have
been expanded or pruned. For our example DCOP prob-
lem, depth-first branch-and-bound search expands nodes in
the search tree in the order a, b, d, h, (i), e, (k), (), ¢,
g, and o, where it prunes the nodes in parentheses. It is
memory-bounded without having to repeatedly reconstruct
nodes that it purged from memory but expands some nodes
that a best-first search does not expand, such as node h.
Centralized depth-first branch-and-bound search algorithms
often run faster than centralized best-first search algorithms.
They can be used to solve DCOP problems but typically or-
der the agents completely. Distributed depth-first branch-
and-bound search algorithms might be able to solve DCOP
problems faster by operating on disjoint subproblems con-
currently, as demonstrated by AOBB [10]. One can convert
centralized depth-first branch-and-bound search algorithms
relatively easily into synchronous distributed DCOP algo-
rithms. Asynchronous distributed DCOP algorithms might
be able to solve DCOP problems faster by not having to
synchronize the agents tightly.

We therefore develop BnB-ADOPT, a novel asynchronous
distributed DCOP algorithm that performs depth-first
branch-and-bound search, by using the existing architec-
ture and communication framework of ADOPT, resulting
in an asynchronous distributed version of AOBB [10]. How-
ever, we do not describe BnB-ADOPT as an extension of
ADOPT since this requires the readers to have an in-depth
understanding of ADOPT. Instead, we give a stand-alone
description of BnB-ADOPT that requires no knowledge of
ADOPT, with the intention to create a self-contained and
hopefully easy-to-read overview. In the following, we intro-
duce the notation that we need for describing BnB-ADOPT
and describe some of its key variables, including how they
are updated. We describe a simplified depth-first search ver-
sion of BnB-ADOPT, which we then enhance by performing
branch-and-bound and increasing concurrency. We show the
pseudocode of BnB-ADOPT, outline its correctness proof
and finally describe our experimental results.

3.1 Notation

We use the following notation from ADOPT to de-
scribe BnB-ADOPT: V is the finite set of agents of the
DCOP problem. Dom(a) is the domain of agent a € V.
Vallnit(a) € Dom(a) is the value that we use as initial
value of agent a € V. C(a) C V is the set of children of
agent a in the constraint tree and CD(a) C V is the set of
its descendants (including its children) that it is involved in
constraints with. pa(a) C V is the parent of agent a € V,
A(a) C V is the set of its ancestors (including its parent),
SCA(a) C A(a) is the set of its ancestors (including its
parent) that it or one of its descendants is involved in con-
straints with and CA(a) C SC A(a) is the set of its ancestors
(including its parent) that it is involved in constraints with.

3.2 Key Variables

Consider any agent a € V. Assume that the values of all
ancestors a’ € A(a) are given by the partial solution X* (a
set of agent-value assignments), called the context of agent
a. 0%a(d) is the sum of the constraint costs of all constraints
that involve both agent a and one of its ancestors, under the
assumption that agent a takes on value d and its ancestors
take on their respective values in X°. v%a(d) is the sum of
the constraint costs of all constraints that involve agent a
and/or one of its descendants,’ minimized over the possible
values of its descendants, under the assumption that agent
a takes on value d and its ancestors take on the values in
X2 We use the relationships

aa o d/

X pe i {vx (d)}

Via(d) = 6%<a(d)+ > Yreu@a
a’€C(a)

for all agents a € V, all values d € Dom(a) and all contexts
X of agent a. Solving the DCOP problem optimally means
to determine ~ - for the root agent r in the constraint tree
since v is the sum of the constraint costs of all constraints,
minimized over the possible values of all agents.®

Imagine that every agent a € V stores and updates several
lower and upper bounds, namely lbg(’ﬁl (d), LB%a(d), LB%a,
ub%? (d), UB%a(d) and UB%. for all values d € Dom(a),
all contexts X of agent a, and all children a’ € C(a), main-
taining the “Bound Property”:

’ , ’

lbgég, (d) < 'Yg(aum,d) < Ubgg’g (d)

LB%a(d) £ 7%a(d) < UB%a(d)
LB%. < Tka < UB%a.

It initializes lbg‘{";/(d) = h‘;(";/(d) for admissible heuristics

0< h;ff/(d) < ’yg(,au(a’d) and ub%ﬁl (d) := oo for all values

1Thus7 the constraints involve either both agent a and one of
its ancestors, both agent a and one of its descendants, both a
descendant and an ancestor of agent a, or two descendants of
agent a.

2In other words, 7%a (d) is the smallest increase in the sum of the
constraint costs of all constraints that involve only agents with
known values when one augments the partial solution X® U (a, d)
with agent-value assignments for all descendants of agent a.

3X7 is always {}.

593

d € Dom(a), all contexts X of agent a, and all children a’ €
C(a). It then uses repeatedly the “Update Equations”:

lb;g (d) = max{lbg(’g (d)vLBg(aU(md)}
LB%a(d) = %a(d)+ 3. %3 (d)
a’eC(a)
LB%. = LB%a(d'

X d/eDo'rrL(a){ X ()}
ub%e (d) = min{ub%? (d), UB()I(,GU(a d)}
UB%a(d) = 8%a(d)+ Y ubkd(

a’eC(a)
BYa = B (d
UB% pcin {UB%a(d)}

for all values d € Dom(a), all contexts X¢ of agent a and all
children o’ € C(a), which improve the bounds monotonically
(that is, decrease the upper bounds and increase the lower
bounds) while maintaining the Bound Property.? After a
finite amount of time, LB%. = UB%. for all agents a €
V, all values d € Dom(a) and all contexts X of agent
a. Then, LBY%» = v% = UBX%», which means that the
DCOP problem is solved optimally. Termination is achieved
by sending TERMINATE messages from parents to children
down the constraint tree.

3.3 Simplified Version of BnB-ADOPT

In actuality, every agent a € V stores lb;ﬁl(d)7 LB%.(d),
LB%a, ub}’ﬁl(d), UB%a(d) and UB%. for all values d €
Dom(a) and all children o’ € C(a) but only one context
X® of agent a at a time because it would not be memory-
bounded otherwise. Thus, it can work on only one context
at a time. This context is stored in the variable X, which
makes it unnecessary to index the other variables with X
(although we continue to do so). BnB-ADOPT uses depth-
first search as its search strategy, which ensures that ev-
ery agent needs to work on and thus store only one con-
text at a time. We now give a simplistic description of
how an agent operates. Consider any agent a € V with
context X and value d* € Dom(a). The agent sends
so-called VALUE messages to all children o’ € C(a) with
the context X® U (a,d®). The children return so-called

COST messages with LBEL(IQU(a’da) and UB(;(/aU(ayda). The
agent then uses the Update Equations to improve lb?f (d"),
LB%.(d*), LB%a, ub%% (d*), UB%a(d®), and UB%. and
sends LB%a. and UB%. to its parent in a COST message.
If LB%a(d®) < UB%a(d®), then the agent repeats the pro-
cess. After a finite amount of time, LB%a (d*) = UB%a (d%),
which means that LB%.(d*) and UB%.(d") cannot be im-
proved further. The agent then takes on the new value
d® := arg minge pom(a){LB%a(d)} and repeats the process
until either its context X* changes (because the agent re-
ceives a VALUE message from its parent with a different
context) or LB%a(d) = UB%.(d) for all values d € Dom(a)
and thus LB%« = UB%. after a finite amount of time. Ev-
ery agent a € V takes on every value d € Dom(a) at most

L eaf agents in the constraint tree use the same Update Equa-
tions. Since they do not have children, the sums over their chil-
dren evaluate to zero. For example, LB%.(d) = UB%a(d) =
0%a(d) for all leaf agents a € V, all Values d € Dom(a) and all
contexts X% of agent a.

once until its context X changes or LB%. = UB%.. BnB-

ADOPT thus performs depth-first search.

3.4 Performing Branch-and-Bound

The description so far of how an agent operates is simplis-
tic. We now describe how an agent uses branch-and-bound
search to reduce the runtime. (A more detailed explanation
is given in [15].) Every agent a € V maintains a threshold
TH$%ua, initialized to infinity (Line 17).> The threshold is
used for pruning during the depth-first search, resulting in
the agent not taking on some values. Every agent a € V with
value d* € Dom(a) and context X* operates as described
before until its context changes, with two differences: First,
it uses min{T H%a,UB%.} instead of the larger UB%a(d®)
in the condition that determines whether it should take on a
new value, resulting in the agent not taking on some values.
Consequently, if LB%.(d*) > min{TH%a,UB%a}, then it
takes on the new value d* := argminge pom(a){LB%a(d)}
(Lines 23, 24). Second, when agent a € V sends a VALUE
message to its child a’ € C(a), it now includes not only the
desired context X U (a,d®) but also the desired threshold
min{THo, UB%o} — 6%a(d*) = X s coar.an par D3 (@)
for the child (Line 29). This desired threshold is chosen such
that LB%a(d®) for the agent reaches min{TH%.,UB%.}
and the agent thus takes on a new value when LBg(,aU(ayda)
for the child reaches the desired threshold.

The context of the agent changes when its parent sends it
a VALUE message with a context X different from its con-
text. The agent then changes its context to X, changes its
threshold to the threshold in the VALUE message, initializes
lbg(";/ (d) == h&;il (d) and ub%ff/(d) := oo and uses the Up-
date Equations to initialize LB%a (d), UB%a(d), LB%. and
UB%- for all values d € Dom/(a) and all children a’ € C(a),

takes on the new value d* := argminge pom(a){LB%a(d)}
and repeats the process.
3.5 Increasing Concurrency

The description so far of how an agent operates is still
simplistic since BnB-ADOPT does not synchronize agents
tightly. BnB-ADOPT uses the following techniques to in-
crease CONCUrrency:

First, the agents use reduced contexts, that are subsets of
the contexts described so far. Consider an agent a € V with
context X; that contains the agent-value assignments for all
ancestors a’ € A(a). Then, 7%, = 7%, where Xo C X,
is the subset of agent-value assignments for all ancestors
a’ € SCA(a) that it or one of its descendants is involved
in constraints with. Thus, in the implemented version of
BnB-ADOPT, the agents use these reduced contexts.

Second, the agents propagate contexts differently than de-
scribed so far. In the implemented version of BnB-ADOPT,
an agent sends VALUE messages to all descendants that
it is involved in constraints with (although the thresholds
are used only by its children) (Lines 29,30). These VALUE
messages contain the value of the sending agent rather than
the desired context of the receiving agent. Every receiving
agent changes the value of the sending agent in its context
to the one in the VALUE message if it is more recent (Line
33). Agents still send COST messages to their parents but
the COST messages now include the context of the send-

5The threshold of the root agent 7 in the constraint tree is always
infinity.

594

ing agent (Line 31). Every receiving agent then changes the
values of the agents in its context to the ones in the COST
message if they are more recent (Line 42). The VALUE and
COST messages together allow agents to update the values
of all ancestors that they or their descendants are involved
in constraints with, which make up exactly their context. To
implement this scheme, the agents need to determine which
values are more recent: the ones contained in VALUE or
COST messages or the ones in their context. To this end,
all agents maintains their own counters, called ID, and in-
crement them whenever they change their values (Lines 16,
25). All contexts now contain agent-value-ID assignments.
The VALUE messages contain the value of the sending agent
and its ID (Lines 29, 30). The receiving agent of VALUE
or COST messages changes the values of those agents in
its context to the ones in the messages whose values in the
messages have larger IDs than their values in its context.

Third, agents can no longer assume that their children
send bounds in their COST messages for the desired con-
texts. Thus, in the implemented version of BnB-ADOPT,
agents check whether the contexts in COST messages are
the desired contexts (Line 47). If not, they ignore the COST
messages since they are irrelevant for improving the bounds
for their contexts.

Fourth, if the contexts of agents change, the desired con-
texts of some of their children can now remain unchanged
since the context of a child of an agent can be a strict subset
of the context of the agent augmented by the agent-value as-
signment for the agent itself. Thus, if the context of an agent
a € V changes in the implemented version of BnB-ADOPT,
it needs to check for which children o’ € C(a) it needs to
initialize lb;ff/(d) and ubg(’il (d) for all values d € Dom(a)
(Lines 44, 45, 46). If the context of the agent changes due
to a COST message from its child, it might be able to use

the bounds in the COST message to initialize lbg(";,(d) and

ub‘;(’z/ (d) for the value d € Dom/(a) that the agent takes on in
the context in the COST message (Lines 47, 48, 49). Then,
the agent uses the Update Equations to initialize LB%.(d),
UB%a(d), LB%a and UB%a for all values d € Dom(a) and
takes on the new value d* := arg minge pom(a){LB% (d)}.

3.6 Pseudocode

shows the BnB-ADOPT pseudocode of
every agent. The pseudocode uses the predicate
Compatible(X, X/) _‘El(a,d,ID)EX,(a’,d’,ID’)EX’ (a =a A
d # d') that determines whether two contexts are com-
patible by checking that they do not make the same
agent take on different values. It also uses the procedure
PriorityMerge(X, X') that executes X' := {(a’,d’,ID’) €
X' | ~3@aipex(a = d)} U {(d,d,ID") € X' |
3(a7d,1D)Ex(a =d ANID < [D/)} @] {(a,d,ID) e X |
J(a’,a/,1p"yex’ (@ = ' AID > ID')} and thus replaces the
agent-value-ID assignments in the second context with more
recent ones for the same agents from the first context.
Initially, BnB-ADOPT calls Start() for every agent a € V.
The code is identical for every agent except that the vari-
able a is a “self” variable that points to the agent itself. All
agents use the same code. Leaf agents in the constraint tree
do not have children and thus do not send VALUE or TER-
MINATE messages. The root agent does not have a parent
and thus does not send COST messages. When an agent a
receives a VALUE message from one of its ancestors then the

Figure 3

procedure Start ()

{01} X% :={(d’, Vallnit (a’),0) | a’ € SCA(a)};
{02} ID":=0;

{03} forall a’ € C(a), d € Dom(a)

{04} InitChild (a’, d);

{05} InitSelf ();

{06} Backtrack ();

{07} loop forever

{08} if (message queue is not empty)

{09} while (message queue is not empty)
{10} pop msg off message queue;

{11} When Received (msg);

{12} Backtrack ();

procedure InitChild (a’, d)
13}y %9 (d) == h® (d);
{14} ub“’a/(d) 1= 00;

procedure InitSelf ()

. ’
{15} d® = arg minge pom(a (5°(d) + X urcoe 07 ()};
{16} ID®:=1D"+1,
{17} TH® := oc;

procedure Backtrack ()

{18} forall d € Dom(a) ,
{19} LB(d) :=6"(d) + X yrec(a) 0" /(d);
{20} UB®(d) := 6%(d) + 2 o co(a) ub™® (d);
{21} LB := mingepom(a){LB*(d)};
{22} UB* := n]indEDonL(a){UBa (d)};
{23} if (LB%(d*) > min{TH*,UB"})
{24} d® := argminge pom(a){LB*(d)} (pick the previous d* if
possible);
{25} ID® := ID £ 1;
{26} if ((a is root and UB® = LB®) or termination message received)
{27} Send (TERMINATE) to each a’ € C(a);
{28} terminate execution;
{291 Send (VALUE, a, d®, ID®, min{TH®, UB®} — 6°(d®)
— 2 areC(a).all £l 15" (d*)) to cach o’ € C(a);
{30} Send (VALUE, a, d*, ID%, o0) to each a’ € CD(a) \ C(a);
{31} Send (COST, a, X%, LB*, UB®) to pa(a) if a is not root;
procedure When Received (VALUE, p, d?, ID?, THP?)
{32} X' :=X%
{33} PriorityMerge ((p,d?,ID?), X%);
{34} if (!Compatible (X', X))
{35} forall o’ € C(a), d € Dom(a)
{36} if (p € SCA(a"))
{37} InitChild (a’, d);
{38} InitSelf ();
{39} if (p = pa(a))
{40} TH® .= THP;
procedure When Received (COST, ¢, X¢, LB, UB®)
{41} X' := X%
{42} PriorityMerge (X°, X%);
{43} if (ICompatible (X', X%))
{44} forall o’ € C(a), d € Dom(a)
{45} if (\Compatible ({(a”,d”,ID") € X' | a" € SCA(a’)},X*))
{46} InitChild (a’,d);
{47} if (Compatible (X°, X%))
{48} 1b*¢(d) := max{lb*°(d), LB} for the unique (a’,d,ID) € X°
with a’ = a;
{49} ub®¢(d) := min{ub®°(d), UB®} for the unique (a’,d,ID) € X°
with a’ = a;
{50} if (!Compatible (X', X%))
{51} InitSelf ();

procedure When Received (TERMINATE)
{52} record termination message received;

Figure 3: Pseudocode of BnB-ADOPT

595

“When Received” handler for VALUE messages gets called
with p being the sending ancestor, d” being the value of the
sending ancestor, I D? being the ID of the sending ances-
tor, and T H? being the desired threshold for agent a if the
sending ancestor is its parent (and infinity otherwise). When
agent a receives a COST message from one of its children
then the “When Received” handler for COST messages gets
called with ¢ being the sending child, X being the context of
the sending child, and LB and U B¢ being the lower bound
LB%. and upper bound U B%-, respectively, of the sending
child. Finally, when agent a receives a TERMINATE mes-
sage then the “When Received” handler for TERMINATE
messages gets called without any arguments. An execution
trace of the pseudocode is given in [15].

Overall, BnB-ADOPT uses the message passing and com-
munication framework of ADOPT. It uses the same VALUE,
COST and TERMINATE messages as ADOPT; the same
strategy to update the context of an agent based on VALUE
messages from its ancestors and COST messages from its
children; the same semantics for the lower and upper bounds
164 (d), LB%«(d), LB%a, ub%® (d), UB%.(d) and UB%a;
and the same Update Equations to update the lower and
upper bounds. However, BnB-ADOPT uses a different se-
mantics for the threshold than ADOPT since it uses the
threshold for pruning while ADOPT uses it to reconstruct
partial solutions that it purged from memory. Thus, it uses a
different threshold initialization (Line 17), threshold propa-
gation (Line 29), threshold update (Line 40) and termination
condition (Line 26). Also, it maintains IDs that indicate the
recency of agent-value assignments and contexts that con-
tain agent-value-ID assignments.

3.7 Correctness and Completeness Proofs

DEFINITION 1. Contexts are correct iff all of the IDs in
the agent-value-1D assignments of the contexts correspond to
the current IDs of the agents, which implies that all values in
the agent-value-1D assignments also correspond to the values
that the agents currently take on (= their current values).

LEMMA 1. For an agent a € V with the property that
both the current context X of itself and the current con-
texts of its ancestors o’ € SCA(a) are correct and no
longer change, LB%a(d) and LB%.« are monotonically non-
decreasing, UB%a(d) and UB%a are monotonically non-
increasing, LB%a(d) < UB%a(d) and LB%« < 7%« <
UB%a for all values d € Dom(a).

DEFINITION 2. The potential of an agent a € V is
> depom(ayiUB%a(d) — LB%a(d)} for its current context
X,

THEOREM 1. For an agent a € V' with the property that
both the current context X of itself and the current con-
texts of its ancestors ' € SCA(a) are correct and no longer
change, its potential is monotonically non-increasing and
decreases by more than a positive constant every time it
changes its value.

Proof: The potential of agent a is monotonically non-
increasing since LB%.(d) is monotonically non-decreasing
and UB%.(d) is monotonically non-increasing for all val-
ues d € Dom(a) according to Lemma 1. Agent a
changes from its current value d* to a new value only if

Minge pom(a){LB%a(d)} < LB%a(d*). Thus, LB%a(d")
must have strictly increased from the point in time when the
agent changed to d to the point in time when it changes
from d® to a new value since the LB%.a(d) are monoton-
ically non-decreasing for all values d € Dom(a) accord-
ing Lemma 1. Thus, its potential decreases by more than
a positive constant since the LB%.(d) are monotonically
non-increasing and the UB%.(d) are monotonically non-
decreasing. The positive constant is the smallest possible
increase of LB%.(d*), which is bounded from below by the
greatest common divisor of all constraint costs and heuris-
tics. (If all constraint costs and heuristics are integers, it is
at least one.) m

THEOREM 2. No agent can change its value an infinite
number of times.

Proof by contradiction: Choose an agent a € V that
changes its value an infinite number of times but all of whose
ancestors a’ € SC A(a) change their values only a finite num-
ber of times. Then, there exists a point in time when they
do not change their values any longer. Furthermore, there
exists a (later) point in time when both the current con-
text of agent a and the current contexts of its ancestors
a’ € SCA(a) are correct and no longer change since all mes-
sages are delivered with finite delay. Every time agent a
changes its value, its potential decreases by more than a pos-
itive constant towards minus infinity according to Theorem
1. On the other hand, its potential cannot become nega-
tive since LB%a(d) < UB%a(d) for all values d € Dom(a)
according to Lemma 1, which is a contradiction. Thus, no
agent can change its value an infinite number of times. ®

THEOREM 3. UB%« = LB%. ecventually holds for all
agents a € V' and their current contexts X*.

Proof: Every agent changes its value only a finite num-
ber of times according to Theorem 2. Then, there exists
a point in time when all agents do not change their values
any longer. Furthermore, there exists a (later) point in time
when the current contexts of all agents are correct and no
longer change since all messages are delivered with finite
delay.

Assume that, at this point in time, agent a € V is a
leaf agent (induction basis). Then, LB%.(d) = 0%(d)
UB%a(d) for its current context X* and all values d €
Dom(a). Thus, LB%« = UB%a«. Now assume that agent
a € V is not a leaf agent but all of its children o’ € C(a)

satisfy LB“IG/ = UB;’(/EI for their current contexts X¢ (in-
duction step). Thus, eventually LB%.(d*) = UB%a(d%)
for its current value d” and its current context X“. Since
agent a does not change its current value d* at this point
in time, it must be that LB%«(d®) < min{TH%.,UB%.}
or LB%a(d") = minge pom(a){LB%a(d)}. The first disjunct
implies that min{TH%.,UB%.)} < UB%« < UB%.(d%)
LB%a(d*) < min{TH%a,UB%.}, which is a contradiction.
The second disjunct implies that UB%« < UB%.(d%) =
LB%a(d") = mingepom(a){LB%a(d)} = LB%« and thus
LB%« = UB%. since LB%. < UB%. according to Lemma
1. m

THEOREM 4. BnB-ADOPT terminates with the cost of a
cost-minimal solution.

596

Proof: Eventually, UB%. = LB%. for all agents a € V and
their current contexts, X*. In particular, UB%» = LB~
for the root agent r and BnB-ADOPT terminates. BnB-
ADOPT terminates with the cost of a cost-minimal solution
since LB%» < v%r < UBY%+ according to Lemma 1 and thus
LB%r =% =UB%-. 1

4. EXPERIMENTAL EVALUATION

| Q

" Aunit

Figure 4: Example: Scheduling Meetings

ansors
o o OO
O ® - N ;Qi\itnTargets
O 8 8.0 .
P ——~__Constraints
o OO0

Figure 5: Example: Allocating Targets

We now compare BnB-ADOPT to two other memory-
bounded DCOP algorithms that also restrict communica-
tion to agents that share constraints, namely ADOPT and
NCBB. NCBB is a memory-bounded synchronous branch-
and-bound DCOP algorithm with the unusual feature that
an agent can take on a different value for each one of its chil-
dren. We compare BnB-ADOPT, ADOPT and NCBB on
a variety of DCOP problems, namely for scheduling meet-
ings, allocating targets to sensors and coloring graphs, using
DP2 [1] as admissible heuristics. We use the number of non-
concurrent constraint checks (NCCCs) [11] as our evaluation
metric. NCCCs are a weighted sum of processing and com-
munication time. Every agent a € V maintains a counter
NCCC*®, which is initialized to zero. It assigns NCCC* :=
NCCC*+1 every time it performs a constraint check to ac-
count for the time it takes to perform the constraint check.
It assigns NCCC*® := maX{NC’C’C“,NC’CC’a/ + ¢} every
time it receives a message from agent a’ € V to account for
the time it takes to wait for agent a’ to send the message
(NCCC’“/) and the transmission time of the message (c).
We use ¢ = 0 to simulate fast communication and ¢ = 1000
to simulate slow communication. The number of NCCCs
then is the largest counter value of any agent.

4.1 Domain: Coloring Graphs

“Coloring graphs” involves coloring the vertices of a graph,
taking restrictions between the colors of adjacent vertices
into account. The agents are the vertices, their domains are
the colors, and the constraints are between adjacent vertices.
We vary the number of vertices from 5 to 15 and the density,
defined as the ratio between the number of constraints and
the number of agents, from 2 (sparse graphs) to 3 (dense

Graph Coloring, Density =2,
Communication Cost =0

e

Graph Coloring, Density = 2,
Communication Cost = 1000

e

1.E+05 4 1.E+08

(——ADOPT
—4—BnB-ADOPT
-=-NcBB

——ADOPT

--NCBB

1.E+04 1E+07

—4-BnB-ADOPT|

e

NCCC
NCCC

1.E+03 4 1.E+06

1.E+02

ol

Q
8 1E+04
2

Graph Coloring, Density = 3,
Communication Cost =0

(——ADOPT
—4BnB-ADOPT|

1.E+05

Graph Coloring, Density = 3,
Communication Cost = 1000

——ADOPT
4 BnB-ADOPT

-=-nCBB

1.E+06 1E+09

LE+05 1E+08
Q
S 1E+07
2

1.E+03 1E+06

1.E+05

5 6 7 8 9 10 11 12 13 14 5 6 7 8
Number of Variables Number of Variables

9 10 11 12 13 14

1.E+02

7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
Number of Variables Number of Variables

() (b)

(c) (d)

Sensor Network,
Communication Cost =0

Sensor Network,
Communication Cost = 1000

1.E+06 1E+09

Meeting Scheduling,
Communication Cost =0

Meeting Scheduling,
Communication Cost = 1000

1.E+07 1E+09

Number of Targets Number of Targets

1.E+05 o 1E+08 —+—-ADOPT LE+06 —-ADoPT 1E+08
- BnB-ADOPT —BnB-ADOPT
4 | -
§ 1.E+04 § 1E+07 NCBB § 1.E+05 NCBB é 1E+07
Z 1E+03 3 Z LE+06 Z 1E+04 Z LE+06 ——ADOPT
1E+02 § 1E+05 1E+03 1E+05 { ~&=BnB-ADOPT]
~=-NCBB
1.E+01 —— LE+04 +———F———————— 1E+02 ¢ T T " 1E+04 T T "
4 5 6 7 8 9 10 11 12 13 14 15 4 5 6 7 8 9 10 11 12 13 14 15 5 10 15 20 5 10 15 20

Number of Meetings Number of Meetings

(e) (f)

() (h)

Sensor Network (4 Targets),
Communication Cost =0
1.E+05
1.E+04
Q
8 1E+03
z

1E+02
—4BnB-ADOPT

1E+01

——ADOPT :

Q
8 LE+05
z

Sensor Network (4 Targets),
Communication Cost = 1000

T

——ADOPT
- BnB-ADOPT

1.E+06

1.E+04

05 0.6 0.7 0.8

Weight

0.9

1

0.5 0.6 0.7

Weight

0.8 0.9 1

®

©)

Figure 6: Experimental Results

graphs). Each agent always has three possible values. All
costs are randomly generated from 0 to 10,000. We average
the experimental results over 50 DCOP problem instances
with randomly generated constraints.

4.2 Domain: Scheduling Meetings

“Scheduling meetings” involves scheduling meetings be-
tween the employees of a company, taking restrictions in
their availability as well as their priorities into account. The
agents are the meetings, their domains are the time slots
when they can be held, and the constraints are between
meetings that share participants [8]. Figure 4 shows a hi-
erarchical organization with four units of a supervisor and
their three subordinates, such as supervisor 2 with their
three subordinates 5, 6 and 7. In each unit, we assume
five possible meetings: one of the entire unit (2, 5, 6, 7), two
parent-child meetings (2, 5 and 2, 7), and two sibling-sibling
meetings (5, 6 and 6, 7). We vary the number of meetings
from 5 (1 unit) to 20 (4 units) . We always use 8 time slots.
The cost of assigning a time slot to a meeting that has at
least one participant who has another meeting during the
same time slot is infinity (to be precise: 1,000,000) since
the same person cannot attend more than one meeting at a
time. The cost of a non-scheduled meeting is 100. All other
costs are randomly generated from 0 to 100. We average the
experimental results over 50 DCOP problem instances.

4.3 Domain: Allocating Targets to Sensors

“Allocating targets to sensors” involves assigning targets
to sensors in a sensor network, taking restrictions in the
availability of the sensors, restrictions in the number of sen-
sors that need to track each target, and priorities of the
targets into account. The agents are the targets, their do-

597

mains are the time slots when they can be tracked, and the
constraints are between adjacent targets [8]. Figure 5 shows
a sensor network where the targets are located on a grid
and each target is surrounded by 4 sensors, all of which are
needed to track the target. We vary the number of targets
from 4 to 15. The cost of assigning a time slot to a tar-
get that is also assigned to an adjacent target is infinity (to
be precise: 1,000,000) since the same sensor cannot track
both targets during the same time slot. The cost of targets
that are not tracked during any time slot is 100. All other
costs are randomly generated from 0 to 100. We average the
experimental results over 50 DCOP problem instances.

4.4 Experimental Results

Figure 6(a-h) shows our experimental results for the three
domains. The figure shows that BnB-ADOPT is faster than
NCBB, and NCBB is faster than ADOPT - although the
DCOP problems need to be sufficiently large for this state-
ment to be true in some cases. The following exceptions ex-
ist. NCBB is faster than BnB-ADOPT, and BnB-ADOPT
is faster than ADOPT for coloring dense graphs with fast
communication. BnB-ADOPT and NCBB are equally fast
and faster than ADOPT for coloring dense graphs with slow
communication and for coloring sparse graphs and allocat-
ing targets to sensors with fast communication. Thus, BnB-
ADOPT is at least as fast as both ADOPT and NCBB in
all cases but one.

BnB-ADOPT and ADOPT differ only in their search
strategy. ADOPT uses memory-bounded best-first search
and thus exploits the heuristics well but needs to repeatedly
reconstruct partial solutions that it purged from memory, es-
pecially if the heuristics are poorly informed. BnB-ADOPT
uses depth-first branch-and-bound search and thus does not

DCOP Algorithm H Search Strategy ‘ Synchronization

Communication ‘ Topology

SBB [6 DFBnB synchronous

ADOPT best-first asynchronous

NCBB [3 DFBnB synchronous

AFB [4] DFBnB asynchronous

BnB-ADOPT DFBnB asynchronous
Table 1:

exploit the heuristics quite as well but does not have to re-
peatedly reconstruct partial solutions that it purged from
memory. Thus, ADOPT benefits from well informed heuris-
tics. This intuition explains why ADOPT can be faster than
BnB-ADOPT for small DCOP problems. We confirm our in-
tuition with an additional experiment on small DCOP prob-
lems for allocating four targets to sensors, where we vary the
quality of the heuristics. We use h’ = w x h for 0.5 <w < 1,
where h are the heuristics used before. Indeed, ADOPT
can be faster than BnB-ADOPT for large values of w, that
is, well informed heuristics. The runtime of ADOPT de-
pends much more on the informedness of the heuristics than
the runtime of BnB-ADOPT since ADOPT relies on the
heuristics more than BnB-ADOPT. BnB-ADOPT tends to
be faster than ADOPT for small values of w, that is, poorly
informed heuristics. Thus, BnB-ADOPT has great potential
as a DCOP algorithm since heuristics are often poorly in-
formed for difficult DCOP problems, such as problems with
large numbers of agents, large numbers of values, large num-
bers of constraints and large variations in constraint costs.

5. CONCLUSIONS

We introduced BnB-ADOPT, a memory-bounded asyn-
chronous DCOP algorithm that uses the message pass-
ing and communication framework of ADOPT but changes
the search strategy from best-first search to depth-first
branch-and-bound search (DFBnB). Figure 1 shows how
the properties of BnB-ADOPT compare to those of other
memory-bounded DCOP algorithms. Our experimental re-
sults showed that BnB-ADOPT was up to one order of mag-
nitude faster than ADOPT on a variety of large DCOP prob-
lems (since ADOPT uses memory-bounded best-first search
and thus needs to repeatedly reconstruct partial solutions
that it purged from memory) and faster than NCBB on most
of these DCOP problems (since NCBB is synchronous and
agents are thus often idle while waiting for activation mes-
sages from other agents). It is future work to improve BnB-
ADOPT and ADOPT further, for example, to reduce the
number of messages sent. It is also future work to compare
BnB-ADOPT to additional DCOP algorithms. We have not
compared BnB-ADOPT to DPOP [13] in this paper since
DPOP is not memory-bounded, which can make its appli-
cation infeasible in domains where each agent has only a
limited amount of memory available, such as for allocating
targets to sensors. We have not compared BnB-ADOPT to
OptAPO [9] in this paper since OptAPO is partially central-
ized, which can make its application infeasible in domains
with privacy concerns, such as for scheduling meetings. We
have not compared BnB-ADOPT to SBB [6] in this paper
since it has already been shown that ADOPT outperforms
SBB [12]. These comparisons as well as the comparison of
BnB-ADOPT to AFB [4] are topics of future work.

598

constraint chain
constraint tree
constraint tree
constraint chain
constraint tree

point-to-point with neighbors
point-to-point with neighbors
point-to-point with neighbors
broadcast
point-to-point with neighbors

Properties of DCOP Algorithms

6. REFERENCES

[1] S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques
for acceleratmg the DCOP algorithm ADOPT. In
Proceedings of AAMAS, pages 1041-1048, 2005.

C. Bessiere, A. Maestre, and P. Messeguer. Distributed
dynamic backtracking. In Proceedings of the Distributed
Constraint Reasoning Workshop, pages 9—-16, 2001.

A. Chechetka and K. Sycara. No-commitment branch and
bound search for distributed constraint optimization. In
Proceedings of AAMAS, pages 1427-1429, 2006.

A. Gershman, A. Meisels, and R. Zivan. Asynchronous
forward-bounding for distributed constraints optimization.
In Proceedings of ECAI pages 103-107, 2006.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics,
SSC4(2):100-107, 1968.

K. Hirayama and M. Yokoo. Distributed partial constraint
satisfaction problem. In Principles and Practice of
Constraint Programming, pages 222-236, 1997.

R. Korf. Linear-space best-first search. Artificial
Intelligence, 62(1):41-78, 1993.

R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and

P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed event scheduling. In
Proceedings of AAMAS, pages 310-317, 2004.

R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
Proceedings of AAMAS, pages 438—445, 2004.

R. Marinescu and R. Dechter. AND/OR branch-and-bound
for graphical models. In Proceedings of IJCAI, pages
224-229, 2005.

A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing performance of distributed constraints
processing algorithms. In Proceedings of the Distributed
Constraint Reasoning Workshop, pages 86—93, 2002.

P. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1-2):149-180,
2005.

A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In Proceedings of IJCAI, pages
1413-1420, 2005.

N. Schurr, S. Okamoto, R. Maheswaran, P. Scerri, and

M. Tambe. Evolution of a teamwork model. In R. Sun,
editor, Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social Simulation, pages 307-327.
Cambridge University Press, 2005.

[15] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An
asynchronous branch-and-bound DCOP algorithm. In
Proceedings of the Distributed Constraint Reasoning
Workshop, 2007.

W. Zhang and R. Korf. Performance of linear-space search
algorithms. Artificial Intelligence, 79(2):241-292, 1995.

(2]

3]

[4

[9

(10]

(11]

(12]

(13]

14]

(16]

