
Trading Off Solution Cost for Smaller Runtime in DCOP
Search Algorithms∗

(Short Paper)

William Yeoh Sven Koenig Xiaoxun Sun
Computer Science Department

University of Southern California
Los Angeles, CA 90089, USA

{wyeoh,skoenig,xiaoxuns}@usc.edu

ABSTRACT
Distributed Constraint Optimization (DCOP) is a key tech-
nique for solving multiagent coordination problems. Unfor-
tunately, finding minimal-cost DCOP solutions is NP-hard.
We therefore propose two mechanisms that trade off the so-
lution costs of two DCOP search algorithms (ADOPT and
BnB-ADOPT) for smaller runtimes, namely the Inadmis-
sible Heuristics Mechanism and the Relative Error Mech-
anism. The solution costs that result from these mecha-
nisms are bounded by a more meaningful quantity than the
solution costs that result from the existing Absolute Error
Mechanism since they both result in solution costs that are
larger than minimal by at most a user-specified percentage.
Furthermore, the Inadmissible Heuristics Mechanism exper-
imentally dominates both the Absolute Error Mechanism
and the Relative Error Mechanism for BnB-ADOPT and is
generally no worse than them for ADOPT.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms
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1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a key

technique for solving multiagent coordination problems. Re-
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searchers have therefore developed a variety of DCOP search
algorithms [5, 8, 2, 3], including ADOPT [7] and BnB-
ADOPT [10]. ADOPT is one of the pioneering DCOP search
algorithms that uses a best-first search strategy. BnB-
ADOPT is a variant of ADOPT that uses a depth-first
branch-and-bound search strategy and has been shown to
be faster than ADOPT on several DCOP problems. Finding
minimal-cost DCOP solutions is NP-hard [7], which makes
it advantageous to allow users to trade off between the run-
times of DCOP algorithms and the resulting solution costs.
ADOPT is, to the best of our knowledge, the only DCOP
algorithm with this property. Its Absolute Error Mechanism
allows its users to specify the absolute errors on the solution
costs, for example, that the solution costs should be at most
10 larger than minimal. However, it is often much more
meaningful for users to specify the relative errors on the so-
lution costs, for example, that the solution costs should be at
most 10 percent larger than minimal, which cannot be done
with the Absolute Error Mechanism without knowing the
minimal solution costs a priori. In this paper, we propose
two mechanisms with this property, namely the Relative Er-
ror Mechanism and the Inadmissible Heuristics Mechanism,
and show that the Inadmissible Heuristics Mechanism ex-
perimentally dominates both the Absolute Error Mechanism
and the Relative Error Mechanism for BnB-ADOPT and is
generally no worse than them for ADOPT.

2. DCOP PROBLEMS
A DCOP problem is given by a finite number of variables

with their finite domains and a finite set of constraints. Each
constraint involves two variables and specifies a non-negative
constraint cost as a function of the values of these two vari-
ables. A solution assigns each variable a value from its do-
mains, while a partial solution might not assign values to all
variables. The cost of a solution is the sum of the constraint
costs of all constraints.

DCOP problems can be represented with constraint
graphs, whose vertices are the variables and whose edges are
the constraints. ADOPT and BnB-ADOPT transform con-
straint graphs in a preprocessing step into constraint trees.
Constraint trees are spanning trees of constraint graphs with
the property that edges of the constraint graphs can connect
vertices only with their ancestors or descendants in the con-
straint trees. Figure 1(a) shows the constraint graph of an
example DCOP problem with three variables that can each
be assigned either zero or one, and Figure 1(c) shows the
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Figure 1: Example DCOP Problem
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Figure 2: Search Trees for the Example

constraint costs. Figure 1(b) shows one possible constraint
tree. The dotted line is part of the constraint graph but not
the constraint tree.

3. SEARCH TREES AND HEURISTICS
The operation of ADOPT and BnB-ADOPT can be visu-

alized with AND/OR search trees [6]. We use regular search
trees and terminology from A* [4] for our example DCOP
problem since its constraint tree is a chain. We refer to its
nodes with the identifiers shown in Figure 2(a). Its layers
correspond to the variables of our example DCOP problem.
A left branch that enters a layer means that the correspond-
ing variable is set to zero, and a right branch means that the
corresponding variable is set to one. For our example DCOP
problem, the partial solution of node e is (x1 = 0, x2 = 1).
The f∗-value of a node is the minimal cost of any solution
that completes the partial solution of the node. For our
example DCOP problem, the f∗-value of node e is the min-
imum of the cost of solution (x1 = 0, x2 = 1, x3 = 0) [=23]
and the cost of solution (x1 = 0, x2 = 1, x3 = 1) [=15].
Thus, the f∗-value of node e is 15. The f∗-value of the root
node is the minimal solution cost.

ADOPT and BnB-ADOPT use estimated f∗-values,
called f -values, during their searches since the f∗-values
are not known a priori. They calculate the f -values from
user-specified h-values (heuristics), as follows: ADOPT and
BnB-ADOPT calculate the f -value of a node by summing
the costs of all constraints that involve two variables with
known values and adding an h-value that estimates the sum
of the unknown costs of the remaining constraints, similarly
to how A* calculates the f -values of its nodes. For our ex-
ample DCOP problem, if the h-value of node e is 3, then
its f -value is 11, namely the sum of the known cost of the
constraint between variables x1 and x2 [=8], and its h-value
value. The ideal h-values result in f -values that are equal
to the f∗-values. For our example DCOP problem, the ideal
h-value of node e is 15 − 8 = 7. Admissible h-values do not
overestimate the ideal h-values.

4. ADOPT AND BnB-ADOPT
We now give an extremely simplistic description of the op-

eration of ADOPT and BnB-ADOPT to explain the search
principles behind them. For example, we assume that infor-
mation propagation is instantaneous. Complete descriptions
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Figure 3: h-Values for the Example

of ADOPT and BnB-ADOPT can be found in [7, 10].
ADOPT originally used zero h-values but was later ex-

tended [1] to use admissible h-values. BnB-ADOPT was
directly designed to use admissible h-values. We thus as-
sume for now that the h-values are admissible (to be pre-
cise: consistent). For our example DCOP problem, we use
the h-values from Figure 3(a), which result in the f -values
from Figure 2(b).

We visualize the operation of ADOPT and BnB-ADOPT
with search trees, as shown in Figures 4 and 5. The nodes
that are being expanded and their ancestors are shaded
grey. ADOPT and BnB-ADOPT maintain lower bounds
for all grey nodes and their children, shown as the num-
bers in the nodes. ADOPT and BnB-ADOPT initialize the
lower bounds with the f -values and then always set them
to the minimum of the lower bounds of the children of the
nodes. Memory limitations prevent them from maintaining
the lower bounds of the other nodes, shown with crosses in
the nodes. ADOPT and BnB-ADOPT also maintain upper
bounds, shown as ub. They always set them to the smallest
costs of any solutions found so far. Finally, ADOPT main-
tains limits, shown as li.1 It always sets them to b plus the
maximum of the lower bounds lb(r) and the f -values f(r)
of the root nodes [li = b + max(lb(r), f(r))], where b ≥ 0 is
a user-specified absolute error bound. To maintain consis-
tency, we extend BnB-ADOPT to maintain limits with the
exact same definition as above.

ADOPT expands nodes in a depth-first search order (it al-
ways expands the child of the current node with the smallest
lower bound) and backtracks when the lower bounds of all
unexpanded children of the current node are larger than the
limits. This search order is identical to a best-first search or-
der, where one ignores the nodes with crosses and always ex-
pands the fringe nodes with the smallest lower bounds next.
BnB-ADOPT also expands nodes in a depth-first search or-
der (it always expands the child of the current node with
the smallest lower bound) but backtracks when the lower
bounds of all unexpanded children of the current node are
no smaller than the upper bounds.

ADOPT and BnB-ADOPT terminate once the limits
(that are equal to b plus the largest known lower bounds on
the minimal solution costs) are no smaller than the upper
bounds (that are equal to the smallest known upper bounds
on the minimal solution costs) [li ≥ ub].2 Thus, ADOPT
and BnB-ADOPT should terminate with solution costs that
are at most b larger than minimal (a fact currently proved
only for ADOPT), which is why we refer to this mechanism
as the Absolute Error Mechanism.

Figures 4(a) and 5(a) show execution traces of ADOPT
and BnB-ADOPT, respectively, with the Absolute Error
Mechanism with b = 0 for our example DCOP problem,
that is, finding the minimal solution costs.

1
li is similar to the threshold of the root agent in ADOPT.

2The unextended BnB-ADOPT terminates when lb(r) = ub.
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Figure 4: Execution Traces of ADOPT

5. RELATIVE ERROR MECHANISM
We argued that it is often much more meaningful for users

to specify the relative error on the solution costs than the
absolute errors, which cannot be done with the Absolute Er-
ror Mechanism without knowing the minimal solution costs
a priori. However, we can easily change the Absolute Er-
ror Mechanism of ADOPT and BnB-ADOPT to a Relative
Error Mechanism. ADOPT and BnB-ADOPT now set the
limits to p times the maximum of the lower bounds lb(r) and
the f -values f(r) of the root nodes [li = p×max(lb(r), f(r))],
where p ≥ 1 is a user-specified relative error bound. ADOPT
and BnB-ADOPT still terminate once the limits (that are
now equal to p times the largest known lower bounds on
the minimal solution costs) are no smaller than the upper
bounds (that are equal to the smallest known upper bounds
on the minimal solution costs). Thus, they should termi-
nate with solution costs that are at most p times larger than
minimal (a fact currently unproved) or, equivalently, at most
(p − 1) × 100 percent larger than minimal, which is why we
refer to this mechanism as the Relative Error Mechanism.
The guarantee of the Relative Error Mechanism with rela-
tive error bound p is thus similar to the guarantee of the
Absolute Error Mechanisms with b equal to p − 1 times the
minimal solution cost, except that the user does not need to
know the minimal solution costs a priori.

Figures 4(b) and 5(b) show execution traces of ADOPT
and BnB-ADOPT, respectively, with the Relative Error
Mechanism with p = 2 for our example DCOP problem. For
example, after ADOPT expands node d in Step 3, the lower
bound [=11] of unexpanded child h of node e is no larger
than the limit [=12]. ADOPT thus expands the child [=h]
with the smallest lower bound in Step 4. The limit is now
no smaller than the upper bound and ADOPT terminates.
However, after ADOPT in Figure 4(a) expands node d in
Step 3, the lower bounds of all unexpanded children of node
d are larger than the limit. ADOPT backtracks repeatedly
and expands node c next and terminates eventually in Step
6. Thus, ADOPT with the Relative Error Mechanism with
p = 2 terminates two steps more quickly than in Figure 4(a)
since it switches contexts less often, but with a solution cost
that is 2 larger.

6. INADMISSIBLE HEURISTICS
MECHANISM

The h-values should be close to the ideal h-values since
runtimes of search methods are then small. One therefore

often multiplies admissible h-values of A* with a constant
c ≥ 1, which trades off between the runtime of A* and the re-
sulting path length. The resulting paths are at most c times
larger than minimal [9]. We let ADOPT and BnB-ADOPT
use the exact same mechanism. We therefore assume that
the h-values are derived from admissible (to be precise: con-
sistent) h-values by multiplying them with a constant c ≥ 1,
which can result in inadmissible h-values. For our exam-
ple DCOP problem, we use the h-values from Figure 3(b),
which are derived from the admissible h-values by multiply-
ing them with 2 and result in the f -values from Figure 2(c).
We also assume that ADOPT and BnB-ADOPT use no er-
ror bounds, that is, either the Absolute Error Mechanism
with b = 0 or the Relative Error Mechanism with p = 1.
Then, ADOPT and BnB-ADOPT terminate once the lower
bounds of the root nodes (that can now be at most c times
larger than the minimal solution costs and thus are no longer
lower bounds on the minimal solution costs, despite their
name) are no smaller the upper bounds (that are equal to
the smallest known upper bounds on the minimal solution
costs). Thus, ADOPT and BnB-ADOPT should terminate
with solution costs that are at most c times larger than mini-
mal (a fact currently unproved). Therefore, the Inadmissible
Heuristics Mechanism shares the advantages of the Relative
Error Mechanism.

Figures 4(c) and 5(c) show execution traces of ADOPT
and BnB-ADOPT, respectively, with the Inadmissible
Heuristics Mechanism with c = 2 for our example DCOP
problem. ADOPT terminates two steps more quickly than
in Figure 4(a) since it switches contexts less often, but with
a solution cost that is 2 larger.

7. EXPERIMENTAL RESULTS
We now compare the runtimes and solution costs of

ADOPT and BnB-ADOPT with the Absolute Error Mech-
anism, the Relative Error Mechanism and the Inadmissible
Heuristics Mechanism on graph coloring problems with 10
vertices, density 2 and constraint costs that are chosen from
0 to 10,000 uniformly at random [1]. We use DP2 as ad-
missible h-values [1]. We measure the runtimes in cycles [7]
and normalize them by dividing them by the runtimes of
finding the minimal solution costs. Similarly, we normalize
the solution costs by dividing them by the minimal solution
costs. We vary the relative error bounds (equal to the worst
acceptable solution costs, normalized by dividing them by
the minimal solution costs) from 1.0 to 4.0. We use the
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Figure 5: Execution Traces of BnB-ADOPT
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Figure 6: Experimental Results

relative error bounds both as the relative error bounds for
the Relative Error Mechanism and the multipliers for the
admissible h-values for the Inadmissible Heuristics Mecha-
nisms. We pre-calculate the minimal solution costs and use
them to calculate the absolute error bounds for the Absolute
Error Mechanism from the relative error bounds.

Figures 6(a-b) plot the normalized solution costs as a func-
tion of the relative error bounds. They show that the nor-
malized solution cost increases as the relative error bound
increases. However, the normalized solution costs are signif-
icantly smaller than the relative error bounds guaranteed by
ADOPT and BnB-ADOPT, as seen already for our DCOP
example problem. Figures 6(c-d) plot the normalized run-
times as a function of the relative error bounds. They show
that the normalized runtime decreases as the relative er-
ror bound increases. Figures 6(e-f) plot the dependence of
the normalized runtimes and the normalized solution costs.
They show that the Inadmissible Heuristics Mechanism ex-
perimentally dominates both the Absolute Error Mechanism
and the Relative Error Mechanism for BnB-ADOPT and is
generally no worse than them for ADOPT.

8. CONCLUSIONS
We investigated three mechanisms that trade off the so-

lution costs of two DCOP search algorithms (ADOPT and
BnB-ADOPT) for smaller runtimes, namely the existing Ab-
solute Error Mechanism, the new Relative Error Mechanism
and the new Inadmissible Heuristics Mechanism. The so-
lution costs that result from the two new mechanisms are
bounded by a more meaningful quantity than the solution
costs of the existing mechanism, since they both result in so-
lution costs that are larger than minimal by at most a user-
specified percentage. Furthermore, the Inadmissible Heuris-
tics Mechanism dominates both the Absolute Error Mecha-
nism and the Relative Error Mechanism for BnB-ADOPT.
In general, we expect our mechanisms to apply to other
DCOP search algorithms as well since all of them perform
search and thus benefit from using h-values to focus their
searches.
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