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ABSTRACT
In many multiagent settings, each agent’s goal is to come out ahead
of the other agents on some metric, such as the currency obtained
by the agent. In such settings, it is not appropriate for an agent to
try to maximize its expected score on the metric; rather, the agent
should maximize its expected probability of winning. In principle,
given this objective, the game can be solved using game-theoretic
techniques. However, most games of interest are far too large and
complex to solve exactly. To get some intuition as to what an opti-
mal strategy in such games should look like, we introduce a simpli-
fied game that captures some of their key aspects, and solve it (and
several variants) exactly.

Specifically, the basic game that we study is the following: each
agenti chooses a lottery over nonnegative numbers whose expec-
tation is equal to its budgetbi. The agent with the highest re-
alized outcome wins (and agents only care about winning). We
show that there is a unique symmetric equilibrium when budgets
are equal. We proceed to study and solve extensions, including set-
tings where agents must obtain a minimum outcome to win; where
agents choose their budgets (at a cost); and where budgets are pri-
vate information.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent systems;
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Game theory, Nash equilibrium, strategic betting, contests, fair bets

1. INTRODUCTION
Agents are often evaluated according to some single-dimensional

metric: for example, the amount of currency the agent has earned,
the number of points the agent has scored, the number of tasks the
agent has completed,etc. In settings with uncertainty, the design of
the agent results in a probability distribution over this metric. The
agent’s designer must optimize this distribution in some way. Most
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often, the designer will choose to maximize the expected score on
the metric (expected amount of currency earned,etc.).

However, maximizing the expectation is not always the optimal
thing to do. Most notably, agents are often in competition with
each other, and the goal is to come out ahead of the other agents.
For example, in the Trading Agent Competition’s Supply Chain
Management game [7], computer programs make decisions about
managing a (simulated) supply chain. Their tasks include negoti-
ating supply contracts, bidding for customer orders, and managing
assembly and shipping. The winning agent is the one that has the
most money in the bank at the end of the game. Another exam-
ple is the AAAI Computer Poker Tournament [19] , where in the
Bankroll Competition the winner is the agent with the most money
in the end. Yet another example is the Penn-Lehman Automated
Trading (PLAT) live competition, in which automated stock trad-
ing agents compete based on real stock market data [13]. (Unlike
the other competitions, this one is no longer active, though appar-
ently not due to lack of interest.) In games such as these, it can be
tempting to try to maximize one’s expected amount of money, but
in fact, the only thing that matters is whether the agent made more
money than the other agents. More recently, agent designers have
started to take this into account (for example, [17]).

As a simple numerical example, suppose that agent 2 will cer-
tainly end up with $50, and agent 1 has a choice between two
strategies. Strategy 1 will give agent 1 $40 with probability 100%;
strategy 2 will give agent 1 $60 with probability 50%, and $10 with
probability 50%. The expected earnings of strategy 2 are $35, so if
agent 1 aims to maximize expected earnings, it will choose strategy
1. However, if the goal is to come out ahead of agent 2, strategy
2 is the better choice, since it results in a 50% probability of win-
ning, whereas strategy 1 results in a guaranteed loss. Situations
such as these, where an agent has a choice between strategies that
give roughly the same expected earnings but very different distri-
butions over earnings, are quite common—for example, the agent
may be able to place various bets in (say) a casino, which will re-
duce the agent’s expected earnings only slightly but vastly increase
the variance.

It should be noted that this is not a criticism of maximizing ex-
pectedutility. Rather, it is a criticism of confusing earnings with
utility. A sensible utility function here would give utility 1 for
a win, and utility 0 for a loss. (Of course, in some settings an
agent may have some residual utility for money, so that the util-
ity function considers both whether the agent won and how much
money the agent has. However, at least in the competitions de-
scribed above, the predominant goal is simply to win.) There are
very powerful axiomatic arguments for maximizing expected util-
ity (for an overview, see [16]), and nothing in this paper conflicts
with maximizing expected utility.
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Once the utility function is correctly defined, we can in princi-
ple solve such strategic settings using game-theoretic solution con-
cepts, for example, minimax strategies and Nash equilibria. How-
ever, games such as the competitions mentioned above are very
complex, and at least using current techniques, it is intractable to
solve for the game-theoretically optimal strategy—although many
creative approaches have been proposed to compute a strategy that
is close to an optimal strategy, both for the Trading Agent Competi-
tion [21, 22, 20] and computer poker [18, 5, 11, 12]). We will make
no attempt at solving them in this paper. Instead, we will study a
much simpler game that nevertheless illustrates many of the key
phenomena in these competitive settings.

The most basic version of the game can be described as follows.
Two agents, Alice and Bob, each have a budget of chips for gam-
bling. They each (simultaneously) place a single bet in (say) a
casino. (We will assume that the outcomes of the bets are inde-
pendent.) Whoever ends up with more chips is named the winner,
and chips are worthless afterwards. What bets should Alice and
Bob place?

To answer this question, we need to know what bets the casino
is willing to accept. Let us assume that, driven by competition, the
casino is willing to accept anyfair bet.1 That is, an agent can buy
anylottery(probability distribution) over nonnegative real numbers
whose expectation is equal to the agent’s budget.

Incidentally, if an agent were able to place asequenceof bets,
where the choice of later bets is allowed to depend on the outcomes
of the agent’s own earlier bets (but not on the outcomes of the other
agent’s bets), this would make no difference to the game, for the
following reason. Any plan (strategy) for betting will result in a
(single) probability distribution over nonnegative numbers with ex-
pectation equal to the agent’s budget, and thus the agent can simply
choose this lottery as a single bet.

In this paper, we study the equilibria of (then-agent version of)
this game, as well as variants in which agents must end up with
at least a certain number of chips to win; in which agents have
to first buy chips; and in which budgets are private information.
There is good reason to believe that the equilibrium distributions
of these games bear some resemblance to the equilibrium distribu-
tions over earnings in the agent competitions mentioned above. For
example, in the stock trading competition mentioned above, (say)
in the last day of trading, the agent can choose a portfolio that will
result in a particular distribution over earnings at the end of the
day. The expected value of this portfolio at the end of the day will
be roughly the same as its value at the beginning;2 however, the
space of possible distributions is very large, especially if it is pos-
sible to hold derivatives such as call and put options.3 Again, the
goal in the competition is simply to come out ahead of the other
agents. Because the equilibrium distributions in these competitions
are likely to be similar to those in the abstract game(s) in this pa-
per, one can use our results in the following way: when creating an
agent for one of these competitions, choose strategies that produce
approximately the optimal distribution for the game(s) studied in
this paper. Indeed, the equilibrium of our game would suggest to

1Real-world casinos typically have payback rates of at least 90%.
2Unlike in casinos, in the stock market riskier distributions tend to
have a slightlygreaterexpected value.
3One issue here that is not modeled in this paper is that the values of
the agents’ portfolios can be correlated, for example because they
hold the same stock, or because the values of different stocks are
correlated (as they typically are). However, it is at least possible
to create portfolios that are roughly independent, for example by
investing in small companies for which most of the risk is due to
company-specific factors (diversifiable risk).

hold quite risky portfolios in the stock trading competition—which
makes intuitive sense, as the goal is to come out ahead of the others.

While we have motivated our results from a multiagent systems
perspective, they are also relevant to the study of several standard
settings in economics. For example, previous research in economics
has considered the strategic choice of lotteries as a means to char-
acterize incentives for risk-taking in R&D environments. Here, a
choice of technology leads to a distribution over the final qual-
ity (or improvement in quality) of the product, which determines
which firm will dominate the market [1, 4, 6]. Patent races con-
stitute another application, where again the choice of technology
leads to a distribution over the level of innovation, and the patent
is awarded to the agent with the greatest innovation; however, here,
there is typically also a minimum level of innovation that needs to
be reached in order to obtain the patent [8, 9]. (Later in the paper,
we will study the variant of our game where agents must obtain at
least a certain value to win.) Other applications include political
campaigns and arms races.

In a working paper, Dullecket al. [10] (independently) propose
what is effectively the same game as the basic setting that we ini-
tially study in this paper, in a different context. They study all-pay
auctions in which each bidder is budget constrained, has no oppor-
tunity cost for their budget, and has access to a fair insurance mar-
ket. (An all-pay auction is an auction in which each agent must pay
its bid, even if it did not win. For an overview on all-pay auctions,
see [3]. “Access to a fair insurance market” means that agents can
place any fair bet.) Dullecket al. are motivated in part by a result
by Laffont and Robert [15], who study the optimal (revenue maxi-
mizing) auction when bidders face (common knowledge) financial
constraints. Laffont and Robert show that the optimal auction in
this case takes the form of an all-pay auction. Because of the equiv-
alence of the games, all of our results also apply to this particular
type of all-pay auction. It must be admitted that this is not a very
common model of an all-pay auction (especially because bidders
do not care about how much money they have left in the end), and
our results do not seem to have direct applications to more common
all-pay auction models. Dullecket al.consider different questions
from the ones in this paper, and consequently their results are com-
plementary to ours. They give an equilibrium for the case of two
agents whose budgets are not necessarily equal (our Example 2)
and prove that this equilibrium is unique. They also show that with
n agents, an equilibrium exists. In addition, they extend their re-
sults to allow for multiple prizes—a setting that we will not study
in this paper.

The remainder of our paper is organized as follows. In Section 2,
we present the basic game and solve three examples. In Section 3,
we show that when agents have equal budgets, there is a unique
symmetric equilibrium (which we provide explicitly). We exhibit
some properties of this equilibrium, and we also show that under
certain restrictions on the lotteries, the symmetric equilibrium is
the unique equilibrium of the equal-budget game. In Section 4,
we extend our symmetric equilibrium characterization to the case
where agents must surpass a minimum necessary outcome in order
to win. In Section 5, we study an extension of the basic game in
which agents must first select their budgets (which come at a cost).
In Section 6, we study an incomplete-information variant in which
agents do not know the other agents’ budgets.

2. THE BASIC GAME
Let there ben agents, and let agenti ∈ {1, ..., n} be endowed

with budgetbi, which is common knowledge. (In Section 6, we
extend the model to allow private budgets.) The basic game con-
sists of two periods. In the first period, each agent (simultane-
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ously) selects any fair lottery over nonnegative real numbers.4 We
describe a lottery by its cumulative distribution function (CDF)
F (x) : R

≥0 → [0, 1]. That is, for anyx, F (x) is the proba-
bility that the realized lottery outcome is less than or equal tox.
Agent i’s lottery Fi is fair if its expectation is equal tobi, that is,
R ∞

0
xdFi(x) = bi. Thus, apurestrategy for an agent in this game

is any fair lottery over nonnegative numbers. Anymixedstrategy
(consisting of a distribution over lotteries—acompound lotteryin
the [2] framework) can be reduced to a pure strategy by consider-
ing its reduced lottery, the (simple) lottery that generates the same
ultimate distribution over outcomes. Hence, we do not need to con-
sider mixed strategies. (To eliminate any chance of confusion, be-
cause each distribution over outcomes is a pure strategy, there is no
requirement that agents are indifferent among the outcomes in their
supports—in fact, naturally, they will prefer the higher outcomes.)

In the second period, each lottery’s outcome is randomly selected
according to its corresponding probability distribution. The agent
whose outcome is the highest wins. For now, we assume that agents
only care about winning. Thus, without loss of generality, we as-
sume that an agent gets utility1 for winning and0 for not winning,
so that the game is zero-sum. (In Section 5, we extend the model
to allow costly budgets.) Ties are broken (uniformly) at random.
This gives rise to the followingex anteexpected utility for agent
i:5 Ui(Fi, F−i) =

R ∞

0

Q

j 6=i
Fj(x)dFi(x). We will be interested

in the Nash equilibria~F ∗ = (F ∗
1 , F ∗

2 , ..., F ∗
n) of the simultaneous

move game.

Example 1. Consider the game between two agents,1 and2, with
identical budgetsb. Agent 1’s expected utility from playingF1

given that agent2 selectsF2 is
R ∞

0
F2(x)dF1(x). Suppose that

F2 is uniform over[0, 2b], so thatF2(x) = x/2b for x ∈ [0, 2b]
andF2(x) = 1 for x > 2b. Then, there is no reason for agent1 to
select a lottery that places positive probability on outcomes strictly
larger than2b. This is because any probability placed above2b
can be shifted down to2b without lowering agent1’s probability of
winning. Then, to make the lottery fair again, mass elsewhere can
be shifted up, which can only improve agenti’s expected utility.
It follows that agent 1’s problem is to select a distributionF1 so
as to maximize1

2b

R 2b

0
xdF1(x) subject to the fairness condition

(henceforthbudget constraint)
R 2b

0
xdF1(x) = b. We note that the

integral in the objective must equalb for any F1 that satisfies the
budget constraint. Hence,anysuchF1 constitutes a best-response
to agent2’s strategy. Thus, it is an equilibrium for each agent to
select the uniform lotteryU [0, 2b]. Moreover, because this is a two-
agent zero-sum game, lotteryU [0, 2b] is also a minimax strategy;
it guarantees the agent an expected utility of at least1/2. This is
in contrast to the trivial strategy of just holding on to one’s budget
b, which can lead to an arbitrarily low expected utility: for any
ǫ ∈ (0, 1), the opponent can put probabilityǫ on0 and probability
1−ǫ onb/(1−ǫ), so that the opponent wins with probability1−ǫ.

Example 2. Now, consider two agents with different budgets,b1

4If negative lottery outcomes are allowed, then an agent can place
an infinitesimal mass on an extremely negative outcome, and dis-
tribute the rest of its mass on large positive outcomes. As a result,
no equilibrium would exist.
5Technically, the expression is only well-defined if the distributions
are continuous, that is, they have no mass points. In a slight abuse
of notation, we use the same expression for distributions with mass
points (as is common in the literature). It should be noted that (for
example) in the two-agent case, if agent2 has a mass point atx,
so thatF2(x) > limǫ→0 F2(x − ǫ), then the probability for1 of
winning given that it obtains outcomex is not F2(x), but rather
limǫ→0 F2(x− ǫ) + (F2(x)− limǫ→0 F2(x− ǫ))/2. This is only
relevant if agent1 also has a mass point atx.

andb2, and without loss of generality suppose thatb1 < b2. Sup-
pose that agent2’s strategyF2 is the uniform lotteryU [0, 2b2].
First, we note that similarly to Example 1, there is no reason for
agent1 to select a lottery that places probability on outcomes strictly
larger than2b2. Thus, agent1’s problem is to selectF1 to maxi-
mize

R 2b2

0
x

2b2
dF1(x) subject to

R 2b2

0
xdF1(x) = b1. As before,

any F1 that satisfies the constraint constitutes a best-response for
agent1. Now, consider the following compound lotteryF1:

1. Choose the lottery that with probabilityb1/b2 generates outcome
b2, and with probability1 − b1/b2 generates outcome0.

2. If outcomeb2 was generated, then subsequently choose the lot-
teryU [0, 2b2].

Formally,F1(x) = 1− b1/b2 + (b1/b2)(x/2b2) over[0, 2b]. That
is, agent1’s lottery has a probability mass at0. (p is amass pointof
a cumulative distribution functionF if limǫ→0 F (p + ǫ) − F (p −
ǫ) > 0.) Lottery F1 satisfies the constraint, and is thus a best re-
sponse toF2. Now, consider agent2’s problem given that agent1
usesF1. With probability1− b1/b2, agent 1 gets0 (and given this,
agent2 wins with probability1, as long as agent2 does not have a
mass point at0), and with probabilityb1/b2, agent2 faces the lot-
tery U [0, 2b2]. Since we have already determined thatU [0, 2b2] is
a best response againstU [0, 2b2], it follows thatU [0, 2b2] is a best
response againstF1. Thus, we have found an equilibrium. Again,
because this is a two-agent zero-sum game, the agents’ strategies
are also minimax strategies. Figure 1 shows the equilibrium strate-
gies graphically.

2

F1

1

Outcome

Cumulative Density

2F

2b

Figure 1: Equilibrium strategies in Example 2

Since agent1 has a chance of winning only if it won its initial
gamble, after which it has the same budget as agent2, its prob-
ability of winning is b1/2b2. We note that agent2’s equilibrium
strategy does not depend onb1 (as long asb1 ≤ b2). In contrast,
agent1’s equilibrium strategy does depend onb2, because it places
an initial, all-or-nothing gamble to “even the odds” and reachb2.
[10] also study Examples 1 and 2, and show that the equilibrium
described here is the unique equilibrium in each case.

Example 3. Now, suppose there are three agents with identical
budgetsb, and consider the lotteryF such thatF (x) = (3b)−

1

2 x
1

2

over [0, 3b]. Given that agents2 and3 employ strategyF , there is
no reason for agent1 to allocate mass to outcomes larger than3b.
Thus, agent1’s problem is to selectF1 to maximize
R 3b

0
F 2(x)dF1(x) = 1

3b

R 3b

0
xdF1(x) subject to

R 3b

0
xdF1(x) =

b. As in Example 1, any lottery that satisfies the constraint is a best
response. In particular, playingF is a best response for agent1.
Hence,(F, F, F ) is a symmetric equilibrium. In Section 3.2 we
will illustrate how symmetric equilibrium strategies change as the
number of agents increases.
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3. CHARACTERIZING EQUILIBRIA OF
THE EQUAL-BUDGET GAME

In this section, we will study the case where alln agents have
the same budgetb > 0. We refer to this setting as theequal-budget
game. We will show that this game has a unique symmetric equi-
librium. We also show that under certain conditions on the set of
strategies, there are no other equilibria.

3.1 Properties of best responses
In this subsection, we prove that any best response in our setting

(even in games with unequal budgets) must have certain properties.
These properties will be useful in the remainder of this section,
where we analyze the equilibria of the equal-budget game.

Consider agenti. Let F−i(x) be the probability that all agents
other thani obtain an outcome belowx: F−i(x) =

Q

j 6=i
Fj(x).

The first three lemmas show that ifi is best-responding, thenF−i

must be linear in the support ofFi. (If this is not the case, theni is
better off changing its distribution, as we will show.) For given
x1 < x2 < x3, Lemma 1 considers what happens if agenti
shifts probability from (around)x2 to x1 andx3, in an expectation-
preserving way. If agenti is best-responding, this cannot leave
them better off, and this imposes some constraints onF−i.

LEMMA 1. Considerx1, x2, x3 ∈ R
≥0 such thatx1 ≤ x2 ≤

x3. Suppose thatF−i is continuous atx2, and letFi be a best re-
sponse fori toF−i. If x2 is in the support6 ofFi, then the following
inequality holds:
(x2 − x1)F−i(x3) + (x3 − x2)F−i(x1) ≤ (x3 − x1)F−i(x2)

Due to space constraint, we omit all the proofs; a full version is
available upon request. Nevertheless, to get some intuition for why
Lemma 1 is true, suppose thatFi has mass points atx1, x2, x3.
Suppose we modifyFi by shiftingǫ mass fromx2 to x1 andx3. To
preserve the expected value of the distribution, it must be that the
mass shifted tox1 is ǫ(x3−x2)/(x3−x1), and the mass shifted to
x3 is ǫ(x2−x1)/(x3−x1). Since we assumedFi is a best response,
this modification cannot have increased the probability thati wins.
Hence, it must be thatF−i(x2)ǫ ≥ F−i(x1)ǫ(x3 − x2)/(x3 −
x1) + F−i(x3)ǫ(x2 − x1)/(x3 − x1), which is equivalent to the
expression in the Lemma. (The formal proof addresses the general
case whereFi does not necessarily have mass points.)

Whereas Lemma 1 considers shifting probability mass from out-
comex2 tox1 andx3, Lemma 2 considers the opposite. Intuitively,
if outcomesx1 andx3 are in the support ofFi, then agenti should
not find it profitable to redistribute mass from (around)x1 andx3

to x2 in an expectation-preserving way.

LEMMA 2. Considerx1, x2, x3 ∈ R
≥0 such thatx1 ≤ x2 ≤

x3. Suppose thatF−i is continuous atx1 andx3, and letFi be a
best response fori to F−i. If x1 andx3 are in the support ofFi,
then the following inequality holds:
(x2 − x1)F−i(x3) + (x3 − x2)F−i(x1) ≥ (x3 − x1)F−i(x2)

Lemma 3 follows immediately from Lemmas 1 and 2, establishing
thatF−i must be linear in the support ofFi if i is best-responding.

LEMMA 3. Considerx1, x2, x3 ∈ R
≥0 such thatx1 ≤ x2 ≤

x3. Suppose thatF−i is continuous at these outcomes and letFi

be a best response fori to F−i. If x1, x2, andx3 are in the support
of Fi, then the following equality holds:
(x2 − x1)F−i(x3) + (x3 − x2)F−i(x1) = (x3 − x1)F−i(x2)

Finally, we prove that the support of any best-response strategy has
an upper bound (unless the agent can win with probability1).
6In our use of the word “support”, the support is a closed set, that
is, we include all the limit points in the support.

LEMMA 4. GivenF−i, suppose that there is no strategy fori
such thati wins with probability1. Then the support of any best
response strategyFi for i has an upper bound.

The intuition behind Lemma 4 is the following. Shifting proba-
bility mass that is placed on sufficiently large outcomes downwards
slightly will not decrease the probability of winning significantly.
Doing so will allow the agent to shift mass on lower outcomes up-
wards, where this is more fruitful.

3.2 Symmetric equilibria with equal budgets
In the remainder of this section, we restrict attention to the equal-

budget game. First, in this subsection, we characterize the sym-
metric equilibria of this game. The results we obtained in Sub-
section 3.1 assume thatF−i is continuous (at certain points). The
following lemma and corollary establish that in a symmetric equi-
librium, this assumption is trivially satisfied.

LEMMA 5. Consider the equal-budget case. Suppose that the
strategy profile in which all agents play lotteryF constitutes a
(symmetric) equilibrium. ThenF has no mass points.

Intuitively, if F had a mass point, then an agent would find it ben-
eficial to deviate by shifting this mass up infinitesimally (to avoid
a tie) and shifting mass down elsewhere. SinceF is a cumulative
distribution function with no mass points,F is continuous.F−i is
the product of continuous functions, and is thus continuous as well.
We thus have the following corollary:

COROLLARY 1. In the equal-budget game, suppose that the
strategy profile in which all agents playF constitutes a symmetric
equilibrium. ThenF is continuous. Furthermore,F−i is continu-
ous for alli.

We now show0 is in the support of any symmetric-equilibrium
strategy.

LEMMA 6. Consider the equal-budget game. Suppose that the
strategy profile in which all agents playF constitutes a symmetric
equilibrium, and that the greatest lower bound of the support ofF
is l. Thenl = 0.

To give some intuition, consider the following. If all agents playing
F constitutes a symmetric equilibrium andl > 0, then an agent’s
expected utility given that it obtained an outcome in a close neigh-
borhood ofl is near0. Hence, it is beneficial to reallocate mass in
a neighborhood ofl to 0 and to some higher outcomes, contrary to
the equilibrium assumption. We are now ready to derive the main
result of this section.

THEOREM 1. The equal-budget game has a unique symmetric
equilibrium. It is for all agents to select the following lottery:

F (x) = (nb)−
1

n−1 x
1

n−1 (1)

over support[0, nb].

If all agents use the lottery described in (1), then for every agent
i, F−i is the uniform distribution over[0, nb]. Hence, any lottery
over outcomes in[0, nb] is a best response. Figure 2 shows how the
symmetric equilibrium strategy changes with the number of agents.

A random variable that is of particular interest is themaximum
outcome. This variable is especially interesting when we interpret
the game as a model for competitive R&D, where lotteries corre-
spond to technologies that can be used and outcomes correspond
to qualities of products. In this setting, the maximum outcome
corresponds to the quality of the best product—the one that will
dominate the market. The cumulative distribution of the maximum
outcome in equilibrium is(F (x))n, and its expectation is:

E[xmax] =

Z nb

0

xd(F (x))n =
n2b

2n − 1
>

nb

2
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Cumulative Density

2 F3 F4F

Outcome

5b

F5

Figure 2: Cumulative distribution of symmetric equilibrium
strategy for different values ofn, given equal budgetsb = 5.

This expectation is quite high, in the following sense. Suppose that
we did not impose any strategic constraints onFi. Then,E[xmax] ≤
E[

P

i
xi] =

P

i
E[xi] = nb. That is, the expected value of the

maximum outcome in equilibrium is within a factor2 of the high-
est expectation that can be obtained without any equilibrium con-
straint. (Incidentally, without the equilibrium constraint one can in
fact come arbitrarily close to achievingnb, as follows. LetFi be
the distribution that places1− ǫ mass on0, andǫ mass onb/ǫ. The
probability that at least one agent will receiveb/ǫ is 1 − (1 − ǫ)n,
hence the expected quality of the product is(b/ǫ)(1 − (1 − ǫ)n),
which asǫ → 0 converges tonb.) Moreover, even if one can shift
budgets among agents (in addition to prescribing their strategies),
it still holds thatE[xmax] ≤ nb. By contrast, if each agent uses
the degenerate strategy that places all the probability mass onb, we
would haveE[xmax] = b.

3.3 Uniqueness of the symmetric equilibrium
Is the symmetric equilibrium unique, or do asymmetric equilib-

ria exist? In this subsection, we show that under mild restrictions
on the strategy space, the former is the case. (We currently do not
know whether these restrictions are necessary for this to be true.)
Specifically, we consider the following restrictions:(A1) Supports
have no gaps,(A2) Fi has no mass points for alli ∈ {1, ..., n}.
The next lemma shows that if (A1) holds, then all agents have0 in
their support.

LEMMA 7. Suppose that~F ∗ = (F ∗
1 , F ∗

2 , ..., F ∗
n) is an equi-

librium strategy profile of the equal-budget game and that (A1) is
satisfied. Then0 is in the support ofF ∗

i for all i ∈ {1, 2, ..., n}.

We are now ready to present the main result of this subsection.

THEOREM 2. Given (A1) and (A2), the unique equilibrium of
the equal-budget game is the symmetric equilibrium described in
Theorem 1.

4. EXTENSION: MINIMUM OUTCOME
REQUIREMENT

In this section, we add one feature to the equal-budget game
from the previous section: in order to win, agents must end up
with an outcome that is at least as high as some threshold. In other
words, the winning agent must obtain the highest outcome among
all agents, as well as reach or exceed some minimum outcome. If
no agent reaches this threshold, then no agent receives anything.
(We note that the game is no longer zero-sum.) Let us denote this
threshold byr, wherer > 0. For example, in a stock trading com-
petition, there may a specification that if a contestant does not out-
perform a risk-free asset, then the contestant cannot win. Similarly,
in a trading agent competition, there may be a specification that if

no agent has positive profit (which does sometimes happen: for ex-
ample, in the early rounds of the 2003 Supply Chain Management
TAC, as described in [14]), then nobody wins. Also, in the patent
race application from economics, a minimum level of innovation
must be reached or surpassed for a patent to be granted.

We wish to solve for the symmetric equilibrium of this modified
equal-budget game. We will make use of the following observa-
tions. First, it is never in agents’ interest to select lotteries that
place mass on outcomes in(0, r). This is because outcomes in this
interval can never lead to winning, so an agent would always be
better off reallocating mass from this interval to0 and to outcomes
larger thanr. Second, Lemmas 3, 4, and 6 still hold in this context.
Moreover, Lemma 3 can be extended to hold at0 even whenF−i

is discontinuous there, because outcomes close to0 can never lead
to winning whenr > 0. (We call this the "extended" Lemma 3.)
Third, Lemma 5 also holds, but only over outcomes that are at or
abover. Agents may have a mass point at0.

4.1 The two-agent equal-budget game with a
minimum necessary outcome

Let us begin by solving for the symmetric equilibrium of the
two-agent equal-budget game. By the above discussion, for some
h ≥ r, the support of the symmetric strategy will be contained in
{0} ∪ [r, h]. (Let h be the smallest number for which this holds.)
The next lemma shows thatr must be in the support.

LEMMA 8. Consider the equal-budget game with a minimum
necessary outcome ofr. Suppose that the strategy profile in which
all agents playF constitutes a symmetric equilibrium. LetS denote
the support ofF , and letl be the greatest lower bound ofS − {0}.
Thenl = r.

Intuitively, the reason for this result is as follows. Supposel > r.
Then, outcomes in a close neighborhood ofl have a significant
chance of leading an agent to winning only if all other agents obtain
outcome0. Because of this, outcomer provides almost the same
probability of winning as these outcomes. Thus, shifting mass from
a neighborhood ofl to r does not have a large impact on an agent’s
probability of winning, while it allows the agent to shift some mass
to higher outcomes. For sufficiently small neighborhoods ofl, do-
ing so increases the agent’s probability of winning. Therefore,r
must be the greatest lower bound ofS − {0}.

Lemmas 3, 5, and 8 imply that any symmetric equilibrium strat-
egy has the formF (x) = a + cx over [r, h], wherea andc are
positive constants. Furthermore, this strategy may place a mass
m > 0 at 0 (so thatF (r) = m). The following claim establishes
that for x ∈ [r, h], F (x) must lie on a line originating from the
origin.

CLAIM 1. In the two-agent equal-budget game with a minimum
necessary outcome ofr, there is somec so that forx ∈ [r, h],
F (x) = cx. (That is,a = 0.)

SinceF (r) = m, it holds thatm = cr. In addition, sinceF (h) =
1, we have thath = c−1. Finally, the budget constraint requires
R c−1

r
xdF (x) = b. Substituting forF in the constraint and rear-

ranging, we obtainc(b, r) =

√
b2+r2−b

r2 . Thus, the unique candi-
date symmetric equilibrium strategy is for each agent to select the
lottery specified by

F (x) =

8

>

>

>

>

<

>

>

>

>

:

√
b2+r2−b

r
if 0 ≤ x < r

√
b2+r2−b

r2 x if r ≤ x ≤ r2√
b2+r2−b

1 if x > r2√
b2+r2−b

(2)
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It remains to verify that (2) indeed constitutes an equilibrium strat-
egy. To check this, suppose agent1 employs strategyF . Given this,
agent2 would not find it optimal to place mass on outcomes higher
than c(b, r)−1. Thus, agent2’s problem is to choose lotteryF2

to maximize
R c(b,r)−1

r
F (x)dF2(x) = c(b, r)

R c(b,r)−1

r
xdF2(x)

subject to
R c(b,r)−1

0
xdF2(x) = b. For anyF2 that satisfies the

constraint and places no mass on(0, r),
R c(b,r)−1

r
xdF2(x) equals

b, so the objective becomesc(b, r) · b. Hence, any suchF2 is a
best response, includingF . Figure 3 shows how the symmetric
equilibrium strategy varies asr increases.

Outcome

1

Cumulative Density

r=0 r=20r=10r=5

0.5

0.75

0.25

Figure 3: Cumulative distribution of symmetric equilibrium
strategies for different values ofr, given equal budgetsb = 5.

We can observe the following facts about the equilibrium strate-
gies from (2) and Figure 3. First, asr approaches0, c−1(b, r)
approaches2b, so that we converge to the equilibrium of Example
1. Second,c(b, r) is decreasing inr, so that, asr grows larger, the
cumulative distribution of the lottery chosen over outcomes larger
thanr becomes flatter. Meanwhile, the massm at 0 approaches1.
Thus, the equilibrium strategy becomes ever riskier asr increases.

4.2 Then-agent equal-budget game with a min-
imum necessary outcome

We now extend the equilibrium result ton agents.

THEOREM 3. In the n-agent equal-budget game with a mini-
mum necessary outcome ofr, the unique symmetric equilibrium
strategy is for each agent to playF described by

F (x) =

8

<

:

m(b, r) if x < r

(c(b, r)x)
1

n−1 if x ∈ [r, (c(b, r))−1]
1 if x > (c(b, r))−1

wherem(b, r) = (c(b, r)r)
1

n−1 andc(b, r) is implicity and uniquely

defined by1
n
(c−1 − c

1

n−1 r
n

n−1 ) = b.

As in the two-agent game, it can be verified thatc(b, r) is in-
creasing inr. Also, asr approaches0, c(b, r) approaches1/nb,
so thatF becomes the unique symmetric equilibrium strategy de-
scribed in Theorem 1. Figure 4 shows how the symmetric equilib-
rium strategy changes asn increases.

Figure 4 resembles Figure 2 (where there is no minimum out-
come requirement). One additional effect that the minimum out-
come requirement introduces is that asn gets larger, the mass that
the equilibrium strategy places on0 increases—in fact, this mass
converges to1 asn → ∞.

5. EXTENSION: COSTLY BUDGETS
In this section, we study a variant in which agents can choose

their budgets at the beginning of the game, and each budget comes

Outcome

Cumulative Density

1
2 3FF 4F F5

0.5

0.75

0.875

0.625

20 3010
0

Figure 4: Cumulative distribution of symmetric equilibrium
strategies for different values ofn, given equal budgetsb = 5
and r = 10.

at a cost. After the budgets have been chosen, the game proceeds
as before. Thus, in the first period, agents choose their budgetsbi;
in the second period, they choose their lotteriesFi (whose expec-
tation must equalbi); and in the third period, outcomes are drawn
from the lotteries and the winner is determined. An agent’s util-
ity is −bi if it does not win, andD − bi if it does win, whereD
is a constant. Agents try to maximize expected utility. This vari-
ant is especially natural in many of the applications in economics,
where agents must make some initial investment. We only consider
the 2-agent case, and we also do not consider the possibility of a
minimum necessary outcome.

To solve this game, we apply backward induction. Suppose agent
i has chosen budgetbi in the first period. To solve the subgame
starting at the second period, we make use of the equilibrium de-
rived in Example 2 (which, by the work of Dullecket al. [10], is
unique). Assume without loss of generality thatb1 ≤ b2. (Even
though the game is symmetric at the beginning, the agents may
choose different budgets in the first period.) From Example 2, we
know that it is an equilibrium for agent1 to select lotteryF1(x) =
1−b1/b2+(b1/b2)(x/2b2) and for agent2 to select lotteryF2(x) =
x/2b2, both with supports[0, 2b2]. (In fact, these are minimax
strategies.) Given this, we can analyze the first period. Since the
game is symmetric between agents at this point, it will suffice to
focus on agent1. Given that agent2 has decided on budgetb2 > 0,
agent1’s expected utility as a function ofb1 is given by

E[u1(b1, b2)] =

(

b1
2b2

D − b1 if b1 ≤ b2

(1 − b2
2b1

)D − b1 if b1 > b2

Whenb1 ≤ b2, agent1’s expected utility is linear inb1. Hence, it
will choose to setb1 ≥ b2 wheneverD > 2b2. Furthermore, by
differentiating the expected utility function whenb1 > b2, it can be
shown thatb1 =

p

b2D/2 maximizes expected utility, given that
D > 2b2. (We note that in this case, indeed,b1 =

p

b2D/2 > b2.)
Moreover, it will choose to setb1 = 0 wheneverD < 2b2, because
in this case, any other budget will give it a negative expected util-
ity. Finally, whenD = 2b2, any b1 ∈ [0, D/2] is optimal. To
summarize, agent1’s (set-valued) best-response function is

b1(b2) =

8

>

>

<

>

>

:

{0} if b2 > D
2

[0, D

2
] if b2 = D

2

{
q

b2D

2
} if 0 < b2 < D

2

We note that ifb2 = 0, agent1 would want to choose an infinites-
imally small budget in order to win, so the best response is not
well-defined in this case. Figure 5 shows the agents’ best-response
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curves. (To eliminate any chance of confusion, we note that the

b1
D/2

D/2

b2(b1)

b1(b2)

b2

Figure 5: Best-response curves in budget selection stage

variables on the axes of this graph are budgets, not probabilities;
this graph is not intended to show mixed-strategy equilibria.) The
best-response curves intersect at(D/2, D/2). The unique sub-
game perfect pure-strategy equilibrium of this game is thus for both
agents to choose a budget ofD/2 in the first period, and select the
uniform lottery over[0, D] in the second. Each agent’s expected
utility is 0 in equilibrium. This is reminiscent of the equilibrium
of a common-value sealed-bid all-pay auction, where both agents
choose their bids uniformly at random from[0, D] (whereD is the
common value), leading to an expected utility of0 for each agent.
We emphasize that while the equilibria are similar, the games are
quite different.

6. EXTENSION: PRIVATE BUDGETS
In this section, we consider an incomplete-information setting,

where agents do not know the other agents’ budgets. We con-
sider then-agent case, but do not consider the possibility of a
minimum necessary outcome or costly budgets. Suppose that for
every j ∈ {1, ..., n}, agentj’s (nonnegative) budget is selected
by Nature according to some commonly known prior, described
by the CDFWj(b). Thus, this is a Bayesian game, and we will
use Bayes-Nash equilibrium as our solution concept. Suppose that
agentj 6= i chooses lotteryGj

b when endowed with budgetb, and
consider agenti’s problem. Givenbi, agenti selects lotteryF to
maximize

Z ∞

0

...

Z ∞

0

Y

j 6=i

Gj

bj
(x)dF (x)dW1(b1)...

...dWi−1(bi−1)dWi+1(bi+1)...dWn(bn)

subject to
R ∞

0
xdF (x) = bi. Since agent i’s expected utility is

bounded by1, Fubini’s Theorem allows us to change the order of
integration in the objective function, which is hence equivalent to

Z ∞

0

h

Z ∞

0

...

Z ∞

0

Y

j 6=i

Gj

bj
(x)dW1(b1)...

...dWi−1(bi−1)dWi+1(bi+1)...dWn(bn)
i

dF (x)

(3)

Here, the bracketed expression in (3) gives theex antecumulative
distribution over the maximum outcome of all agents other thani,
evaluated atx. Hence, the bracketed term has a role that is anal-
ogous to the role ofF−i(x) earlier in the paper: whereas before
the uncertainty derived only from the other agents’ strategies, now
it derives both from the other agents’ strategies and from Nature’s
choice of their budgets. In order to use our previous techniques
for deriving equilibria, we would need this expression to be pro-
portional tox. This is illustrated by the following two examples

of prior distributions and corresponding strategies that constitute
symmetric equilibria:

1. Consider the two-agent game with identical priorW = U [0, h]
for someh > 0. One equilibrium is for both agents to acquire the
degenerate lottery atb when endowed with a budgetb. (This is be-
cause given these strategies, the distribution over the other agent’s
outcome is uniform over[0, h], hence any strategy that uses only
outcomes in[0, h] is a best response.)

2. For someb > 0, let bL = 1
2
b andbH = 3

2
b. In a two-agent

game with an identical priorP (bi = bL) = 1
2

andP (bi = bH) =
1
2
, i ∈ {1, 2}, the strategy that choosesU [0, b] when bi = bL

andU [b, 2b] whenbi = bH , constitutes a symmetric equilibrium.
(This is because given these strategies, the distribution over the
other agent’s outcome is uniform over[0, 2b], hence any strategy
that uses only outcomes in[0, 2b] is a best response.)

More generally, a strategy profile~G∗ = (G∗1, ..., G∗n), for
which for everyi ∈ {1, ..., n} the bracketed term in (3) is propor-
tional tox for all x that are used ini’s supports, constitutes an equi-
librium. This is because, as in the complete-information case, the
objective function reduces to the constraint for every agent. Hence,
any strategy that satisfies the constraint is a best response, includ-
ing that suggested by~G∗. For example, if the prior over all agents’
budgets isW , with expectationk, then a strategyG that satisfies

Z nk

0

Gb(x)dW (b) = (nk)−
1

n−1 x
1

n−1 (4)

for all x ∈ [0, nk], constitutes a symmetric equilibrium. In order to
obtain such a strategy, we need to be able totransformthe prior dis-
tribution W into another distribution. Specifically, we need strat-
egyG to map budgets in the support of the priorW to fair lotteries,
so that the ensuing (expected) distribution over outcomes is as in
(4). Let us say that prior CDFW is transformableinto another
CDF J if there exists a strategyG such that the ensuing distribu-
tion isJ . The following theorem provides necessary conditions for
a priorW to be transformable into a CDFJ .

THEOREM 4. Consider a CDFW and a CDFJ , with supports
contained inR

≥0. Suppose thatW is transformable intoJ . Then
for anyb in the support ofW , the following two inequalities must

hold:7
R b

0
xdW (x) ≥

R J−1(W (b))

0
xdJ(x), and

R ∞

b
xdW (x) ≤

R ∞

J−1(W (b))
xdJ(x).

Specifically, consider the case where the prior over each agent’s
budget isW , with expectationk. In order for there to exist a strat-

egyG that satisfies
R nk

0
Gb(x)dW (b) = (nk)−

1

n−1 x
1

n−1 for all
x ∈ [0, nk] (and hence constitutes a symmetric equilibrium), The-
orem 4 tells us that for any budgetb in the support ofW , it is
necessary thatE

W
[x|0 ≤ x ≤ b] ≥ k(W (b))n−1 andE

W
[x|x >

b] ≤ k
Pn−1

j=0 (W (b))j . It is an open question whether these con-
ditions are also sufficient for the strategy to be transformable in the
desired way. However, the following theorem does provide a (more
limited) sufficient condition:

THEOREM 5. Consider a 2-agent private-budget game in which
both agents’ budgets are distributed according to a commonly known

7If J has mass points, thenJ−1(W (b)) is not necessarily defined.

In this case,
R J−1(W (b))

0
xdJ(x) should be interpreted to integrate

x only over the lowestW (b) mass ofJ . Lettingy be the point such
thatJ(y) > W (b) andJ(y − ǫ) < W (b) for all ǫ > 0, a more
precise expression would be

R y

0
xdJ(x) − (J(y) − W (b))y. The

interpretation of
R ∞

J−1(W (b))
xdJ(x) is similar.
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CDF W with expectationk. If the support ofW is a subset of
[k/2, 3k/2], thenW is transformable intoU [0, 2k] (and hence a
symmetric equilibrium exists).

Intuitively, if W ’s support is a subset of[k/2, 3k/2], then given any
budget, an agent can choose a fair lottery over outcomesk/2 and
3k/2. SinceW has expectationk, choosing such lotteries results
in a mass of1/2 at each of these outcomes. The agent can sub-
sequently select lotteryU [0, k] given outcomek/2, andU [k, 2k]
given outcome3k/2. The resulting distribution over outcomes is
U [0, 2k].

7. CONCLUSIONS
In many multiagent settings, each agent’s goal is to come out

ahead of the other agents on some metric, such as the currency ob-
tained by the agent. Examples include trading agent competitions,
computer poker tournaments, stock trading competitions,etc. In
such settings, it is not appropriate for an agent to try to maximize
its expected score on the metric; rather, the agent should maximize
its expected probability of winning. In principle, given this ob-
jective, the game can be solved using game-theoretic techniques.
However, the games above are far too large and complex to solve
exactly. To get some intuition as to what an optimal strategy in
such games should look like, we introduced a simplified game that
captures some of their key aspects, and solved it (and several vari-
ants) exactly. We expect that the equilibria of the large games will
display some similarity to the equilibria obtained in this paper.

Specifically, the basic game that we studied is the following:
each agenti chooses a lottery over nonnegative numbers whose
expectation is equal to its budgetbi. The agent with the highest
realized outcome wins (and agents only care about winning). We
began by solving a few examples. Then, we studied the case where
each agent has the same budget. We showed that there is a unique
symmetric equilibrium, in which each agent chooses a lottery that
randomizes over a continuum of monetary outcomes. The expec-
tation of the highest realized outcome in this equilibrium is within
a factor2 of what could be obtained if all agents cooperated to
maximize the expectation of the highest realized outcome. We also
showed that under some restrictions on the lotteries, the symmetric
equilibrium is the unique equilibrium of the equal-budget game.

We proceeded to study variants of the basic game. First, we
extended our symmetric equilibrium characterization to the case
where agents must surpass a minimum necessary outcome in or-
der to win. Next, we studied a game in which agents first choose
their budgets, which come at a cost. We found the unique pure-
strategy subgame perfect equilibrium of this game, which gives the
agents an expected utility of0. Then, we introduced an incomplete-
information model in which agents do not know the other agents’
budgets—a common situation. We showed that our complete-
information techniques can be applied to this setting if it is possible
to transformthe prior over budgets into the appropriate distribution
over outcomes. We gave a necessary condition as well as a (more
restrictive) sufficient condition for this to be possible.

Future research can take a number of specific technical direc-
tions. The most obvious directions are to extend our results to
the setting of unequal budgets, as well as to investigate whether
the symmetric equilibrium is the unique equilibrium of the equal-
budget game (without any restrictions on the lotteries). Another
important direction is to consider lottery spaces that are restricted
(for example, allowing only lotteries over a discretized space), or
extended with unfair lotteries. Even more generally, we can allow
agents to choose lotteries that are correlated with each other. Yet
another direction is to consider versions of these games in which
agents may observe other agents’ budgets over time. We can also

consider different utility functions: for example, the agent may also
derive some utility from coming in second place. Finally, in the
private-budgets setting, we left as an open question whether our
necessary condition is also sufficient.
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