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ABSTRACT often, the designer will choose to maximize the expected score on

In many multiagent settings, each agent’s goal is to come out aheadth(Lmetrlc (expec_te_d _amor:mt of curre_ncy_earrmdl). h imal
of the other agents on some metric, such as the currency obtained, HOWeVer, maximizing the expectation is not always the optima

by the agent. In such settings, it is not appropriate for an agent to th'nﬁ tohdo. Mdosig notablly, agents are Oﬂﬁn Idn ?co?:petl:]lon with
try to maximize its expected score on the metric; rather, the agent each other, and the goal Is to come out ahead of the other agents.

should maximize its expected probability of winning. In principle, For example, in the Trading Agent Competitionk’s Sup_p_ly Chain
given this objective, the game can be solved using game-theoretic'\/I"’ln‘"‘g_ement game [7], computer programs make QeC|S|ons abo_ut
techniques. However, most games of interest are far too large and™2"1ading a (simulated) ;upply chain. Their tasks include negoti-
complex to solve exactly. To get some intuition as to what an opti- ating supply CO“tFaCFSv bidding for _customer prders, and managing
mal strategy in such games should look like, we introduce a simpli- assembly and shipping. The winning agent is the one that has the

fied game that captures some of their key aspects, and solve it (and"0St Mmoney in the bank at the end of the game. Another exam-
several variants) exactly. ple is the AAAI Computer Poker Tournament [19] , where in the

specifically, the basic game that we study is the following: each Bankroll Competition the winner is.the agent with the most money
agent; chooses a lottery over nonnegative numbers whose expec-'n th? end. Yet gnother exe_lr_nple_ IS th? Penn-Lehman Automated
tation is equal to its budget. The agent with the highest re- Tradlng (PLAT) live competition, in which automated stock trad.-
alized outcome wins (and agents only care about winning). We ing agents compete based on real stock market data [13]. (Unlike

show that there is a unique symmetric equilibrium when budgets thelotherdcompeltltlcl)(nsf, _th's one is no longer a(;;uve, Lhough appat:-
are equal. We proceed to study and solve extensions, including set-E"tlY not due to lack of interest.) In gamesdsuc ast fese, it cag e
tings where agents must obtain a minimum outcome to win; where €MPting fo try to maximize one’s expected amount of money, but

agents choose their budgets (at a cost); and where budgets are prii-n fact, the only thing that matters is whether the agent made more
vate information. money than the other agents. More recently, agent designers have

started to take this into account (for example, [17]).
As a simple numerical example, suppose that agent 2 will cer-

Categories and Subject Descriptors tainly end up with $50, and agent 1 has a choice between two
.2.11 Distributed Avtificial Intelligence ]: Multiagent systems;  Strategies. Strategy 1 will give agent 1 $40 with probability 100%;
J.4 [Social and Behaviora| Sciencqs Economics Strategy 2 W|“ giVe agent 1 $60 Wlth prObabI|Ity 50%, and $10 W|th

probability 50%. The expected earnings of strategy 2 are $35, so if
agent 1 aims to maximize expected earnings, it will choose strategy
General Terms 1. However, if the goal is to come out ahead of agent 2, strategy
Economics, Theory 2 is the better choice, since it results in a 50% probability of win-

ning, whereas strategy 1 results in a guaranteed loss. Situations
Keywords such as these, where an agent has a choice between strategies that

give roughly the same expected earnings but very different distri-
Game theory, Nash equilibrium, strategic betting, contests, fair bets butions over earnings, are quite common—for example, the agent

may be able to place various bets in (say) a casino, which will re-
1. INTRODUCTION duce the agent’s expected earnings only slightly but vastly increase
the variance.

It should be noted that this is not a criticism of maximizing ex-
ectedutility. Rather, it is a criticism of confusing earnings with
tility. A sensible utility function here would give utility 1 for

a win, and utility O for a loss. (Of course, in some settings an
agent may have some residual utility for money, so that the util-
ity function considers both whether the agent won and how much
money the agent has. However, at least in the competitions de-
Cite as: Strategic Betting for Competitive Agents, Liad Wagman and-Vin  scribed above, the predominant goal is simply to win.) There are

K/(Ielr}lttigggi;ztegg?ecrhgf(ZtAhl\/llRté gggg'ag;h ?#tggfkggﬁu@%iﬂgspi?d very powerful axiomatic arguments for maximizing expected util-
sons (eds.), May, 12-16., 2008, Estoril, Portugai,w-85é_ ity (for an overview, see [16]), and nothing in this paper conflicts

Copyright(C) 2008, International Foundation for Autonomous Agents and  With maximizing expected utility.
Multiagent Systems (www.ifaamas.org). All rights reserved.

Agents are often evaluated according to some single-dimensional
metric: for example, the amount of currency the agent has earned,
the number of points the agent has scored, the number of tasks th
agent has completedic. In settings with uncertainty, the design of
the agent results in a probability distribution over this metric. The
agent’s designer must optimize this distribution in some way. Most
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Once the utility function is correctly defined, we can in princi- hold quite risky portfolios in the stock trading competition—which
ple solve such strategic settings using game-theoretic solution con-makes intuitive sense, as the goal is to come out ahead of the others.
cepts, for example, minimax strategies and Nash equilibria. How-  While we have motivated our results from a multiagent systems
ever, games such as the competitions mentioned above are venperspective, they are also relevant to the study of several standard
complex, and at least using current techniques, it is intractable to settings in economics. For example, previous research in economics
solve for the game-theoretically optimal strategy—although many has considered the strategic choice of lotteries as a means to char-
creative approaches have been proposed to compute a strategy thatcterize incentives for risk-taking in R&D environments. Here, a
is close to an optimal strategy, both for the Trading Agent Competi- choice of technology leads to a distribution over the final qual-
tion [21, 22, 20] and computer poker [18, 5, 11, 12]). We will make ity (or improvement in quality) of the product, which determines
no attempt at solving them in this paper. Instead, we will study a which firm will dominate the market [1, 4, 6]. Patent races con-
much simpler game that nevertheless illustrates many of the key stitute another application, where again the choice of technology
phenomena in these competitive settings. leads to a distribution over the level of innovation, and the patent

The most basic version of the game can be described as follows.is awarded to the agent with the greatest innovation; however, here,
Two agents, Alice and Bob, each have a budget of chips for gam- there is typically also a minimum level of innovation that needs to
bling. They each (simultaneously) place a single bet in (say) a be reached in order to obtain the patent [8, 9]. (Later in the paper,
casino. (We will assume that the outcomes of the bets are inde-we will study the variant of our game where agents must obtain at
pendent.) Whoever ends up with more chips is named the winner, least a certain value to win.) Other applications include political
and chips are worthless afterwards. What bets should Alice and campaigns and arms races.

Bob place? In a working paper, Dulleckt al. [10] (independently) propose

To answer this question, we need to know what bets the casinowhat is effectively the same game as the basic setting that we ini-
is willing to accept. Let us assume that, driven by competition, the tially study in this paper, in a different context. They study all-pay
casino is willing to accept anfair bet! That is, an agent can buy  auctions in which each bidder is budget constrained, has no oppor-
anylottery (probability distribution) over nonnegative real numbers tunity cost for their budget, and has access to a fair insurance mar-
whose expectation is equal to the agent’s budget. ket. (An all-pay auction is an auction in which each agent must pay

Incidentally, if an agent were able to placeseguencef bets, its bid, even if it did not win. For an overview on all-pay auctions,
where the choice of later bets is allowed to depend on the outcomessee [3]. “Access to a fair insurance market” means that agents can
of the agent’s own earlier bets (but not on the outcomes of the other place any fair bet.) Dulleckt al. are motivated in part by a result
agent’s bets), this would make no difference to the game, for the by Laffont and Robert [15], who study the optimal (revenue maxi-
following reason. Any plan (strategy) for betting will result in a  mizing) auction when bidders face (common knowledge) financial
(single) probability distribution over nonnegative numbers with ex- constraints. Laffont and Robert show that the optimal auction in
pectation equal to the agent’s budget, and thus the agent can simplythis case takes the form of an all-pay auction. Because of the equiv-
choose this lottery as a single bet. alence of the games, all of our results also apply to this particular

In this paper, we study the equilibria of (theagent version of) type of all-pay auction. It must be admitted that this is not a very
this game, as well as variants in which agents must end up with common model of an all-pay auction (especially because bidders
at least a certain number of chips to win; in which agents have do not care about how much money they have left in the end), and
to first buy chips; and in which budgets are private information. our results do not seem to have direct applications to more common
There is good reason to believe that the equilibrium distributions all-pay auction models. Dullecht al. consider different questions
of these games bear some resemblance to the equilibrium distribu-from the ones in this paper, and consequently their results are com-
tions over earnings in the agent competitions mentioned above. Forplementary to ours. They give an equilibrium for the case of two
example, in the stock trading competition mentioned above, (say) agents whose budgets are not necessarily equal (our Example 2)
in the last day of trading, the agent can choose a portfolio that will and prove that this equilibrium is unique. They also show that with
result in a particular distribution over earnings at the end of the n agents, an equilibrium exists. In addition, they extend their re-
day. The expected value of this portfolio at the end of the day will sults to allow for multiple prizes—a setting that we will not study

be roughly the same as its value at the beginditgwever, the in this paper.
space of possible distributions is very large, especially if it is pos-  The remainder of our paper is organized as follows. In Section 2,
sible to hold derivatives such as call and put optidrgain, the we present the basic game and solve three examples. In Section 3,

goal in the competition is simply to come out ahead of the other we show that when agents have equal budgets, there is a unique
agents. Because the equilibrium distributions in these competitions symmetric equilibrium (which we provide explicitly). We exhibit
are likely to be similar to those in the abstract game(s) in this pa- some properties of this equilibrium, and we also show that under
per, one can use our results in the following way: when creating an certain restrictions on the lotteries, the symmetric equilibrium is
agent for one of these competitions, choose strategies that produceahe unique equilibrium of the equal-budget game. In Section 4,
approximately the optimal distribution for the game(s) studied in we extend our symmetric equilibrium characterization to the case
this paper. Indeed, the equilibrium of our game would suggest to where agents must surpass a minimum necessary outcome in order
to win. In Section 5, we study an extension of the basic game in

!Real-world casinos typically have payback rates of at least 90%. mhécgcﬁgﬁrgs&uss:ﬂsr:ne:ﬁgﬂﬂ;&;ﬁ%ﬁiﬂggmgﬁx i&::\?vr?ic:: ?\t)'
2Unlike in casinos, in the stock market riskier distributions tend to ' Y P ;
have a slightlygreaterexpected value. agents do not know the other agents’ budgets.

30One issue here thatis not modeled in this paper is that the values of

the agents’ portfolios can be correlated, for example because they2. THE BASIC GAME
hold the same stock, or because the values of different stocks are .

correlated (as they typically are). However, it is at least possible _Let there ben agent_s, and let agente {1,...,n} be er_ldowed

to create portfolios that are roughly independent, for example by With budgetb;, which is common knowledge. (In Section 6, we
investing in small companies for which most of the risk is due to extend the model to allow private budgets.) The basic game con-
company-specific factors (diversifiable risk). sists of two periods. In the first period, each agent (simultane-
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ously) selects any fair lottery over nonnegative real numbaite
describe a lottery by its cumulative distribution function (CDF)
F(z) : R=° — [0,1]. Thatis, for anyz, F(z) is the proba-
bility that the realized lottery outcome is less than or equat.to
Agenti’s lottery F; is fair if its expectation is equal tb;, that is,

J57 zdFi(x) = b;. Thus, apurestrategy for an agent in this game

is any fair lottery over nonnegative numbers. Amyxedstrategy
(consisting of a distribution over lotteries—eampound lotteryn

the [2] framework) can be reduced to a pure strategy by consider-
ing itsreduced lotterythe (simple) lottery that generates the same
ultimate distribution over outcomes. Hence, we do not need to con-
sider mixed strategies. (To eliminate any chance of confusion, be-

andb., and without loss of generality suppose that< b.. Sup-
pose that ager’s strategyF» is the uniform lotteryU|0, 2b2].
First, we note that similarly to Example 1, there is no reason for
agentl to select a lottery that places probability on outcomes strictly
larger than2b,. Thus, agent’s problem is to selecE; to maxi-
mize 72 ;2 dF (z) subject tof’** zdFi (z) = bi. As before,
any F; that satisfies the constraint constitutes a best-response for

agentl. Now, consider the following compound lottefy :

1. Choose the lottery that with probability /> generates outcome
b2, and with probabilityl — b, /b2 generates outconte

2. If outcomeb, was generated, then subsequently choose the lot-

cause each distribution over outcomes is a pure strategy, there is ndery U[0, 2b2].
requirement that agents are indifferent among the outcomes in their Formally, £ (x) = 1 —b1/bg + (b1 /be)(/2b2) over[0, 2b]. That

supports—in fact, naturally, they will prefer the higher outcomes.)

is, agentl’s lottery has a probability mass @t (p is amass poinof

In the second period, each lottery’s outcome is randomly selected a cumulative distribution functio®’ if lim. .o F'(p +¢€) — F(p —

according to its corresponding probability distribution. The agent

€) > 0.) Lottery F; satisfies the constraint, and is thus a best re-

whose outcome is the highest wins. For now, we assume that agent%ponse tak». Now, consider agerit’s problem given that agerit

only care about winning. Thus, without loss of generality, we as-
sume that an agent gets utilityfor winning and0 for not winning,

usesF;. With probabilityl — b, /b2, agent 1 gets (and given this,
agent2 wins with probability1, as long as ager2tdoes not have a

so that the game is zero-sum. (In Section 5, we extend the modelmass point af), and with probabilityb /b, agent2 faces the lot-

to allow costly budgets.) Ties are broken (uniformly) at random.
This gives rise to the followingx anteexpected utility for agent
P Ui(Fi, Fy) = 15 I, Fj(z)dFi(x). We will be interested

in the Nash equilibriaﬁ* = (FY, Fy, ..., F};) of the simultaneous
move game.

Example 1. Consider the game between two agemtand?2, with
identical budgetd. Agent1’s expected utility from playingF;
given that ageng selectsF is [° Fu(x)dF(z). Suppose that

F5 is uniform over|0, 2b], so thatFx(x) = z/2b for z € [0, 2b]
andF;(z) = 1 for z > 2b. Then, there is no reason for agdrio
select a lottery that places positive probability on outcomes strictly
larger than2b. This is because any probability placed ab@be
can be shifted down tb without lowering agent’s probability of
winning. Then, to make the lottery fair again, mass elsewhere can
be shifted up, which can only improve agers expected utility.

It follows that agent 1's problem is to select a distributibn so

as to maximizey; f02b zdF (z) subject to the fairness condition

(henceforthbudget constraint fo% zdFy(z) = b. We note that the
integral in the objective must equéalfor any F; that satisfies the
budget constraint. HencanysuchF; constitutes a best-response
to agent2’s strategy. Thus, it is an equilibrium for each agent to
select the uniform lottery/[0, 2b]. Moreover, because this is a two-
agent zero-sum game, lottek}0, 2b] is also a minimax strategy;
it guarantees the agent an expected utility of at lé@8t This is
in contrast to the trivial strategy of just holding on to one’s budget
b, which can lead to an arbitrarily low expected utility: for any
€ (0,1), the opponent can put probabilityon 0 and probability
1—eonb/(1—¢), so that the opponent wins with probability- €.

Example 2. Now, consider two agents with different budgeis,

tery U0, 2b2]. Since we have already determined thd6, 2b,] is

a best response agairisf0, 2b,], it follows thatU |0, 2b,] is a best
response againgt;. Thus, we have found an equilibrium. Again,
because this is a two-agent zero-sum game, the agents’ strategies
are also minimax strategies. Figure 1 shows the equilibrium strate-
gies graphically.

Cumulative Density

Outcome

2b,
Figure 1: Equilibrium strategies in Example 2

Since agent has a chance of winning only if it won its initial
gamble, after which it has the same budget as ageits prob-
ability of winning is b1 /2b2. We note that agerit’s equilibrium
strategy does not depend bn(as long a$: < b2). In contrast,
agentl’s equilibrium strategy does depend bn because it places
an initial, all-or-nothing gamble to “even the odds” and reégh
[10] also study Examples 1 and 2, and show that the equilibrium
described here is the unique equilibrium in each case.

*If negative lottery outcomes are allowed, then an agent can placeExample 3. Now, suppose there are three agents with identical

an infinitesimal mass on an extremely negative outcome, and dis-

tribute the rest of its mass on large positive outcomes. As a resullt,
no equilibrium would exist.

5Technically, the expression is only well-defined if the distributions

budgetsd, and consider the lottery such thatF'(z) = (Sb)*%x%
over [0, 3b]. Given that agent8 and3 employ strategy’, there is
no reason for agent to allocate mass to outcomes larger ti3an

are continuous, that is, they have no mass points. In a slight abuselhus, agent’s problem is to seleck’ to maximize

of notation, we use the same expression for distributions with mass

points (as is common in the literature). It should be noted that (for
example) in the two-agent case, if agénhas a mass point at,

so thatFs(z) > lime_.o F2(x — €), then the probability fol of
winning given that it obtains outcomeis not F»(x), but rather
lime—,0 Fa(z — €) + (F2(x) — lime—o Fo(z — €))/2. This is only
relevant if agent also has a mass pointat
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[2 F2(2)dFi(z) = & [2° zdFy(z) subject tof" zdFy ()

b. As in Example 1, any lottery that satisfies the constraint is a best
response. In particular, playing is a best response for agent
Hence,(F, F, F) is a symmetric equilibrium. In Section 3.2 we
will illustrate how symmetric equilibrium strategies change as the
number of agents increases.



3. CHARACTERIZING EQUILIBRIA OF
THE EQUAL-BUDGET GAME

In this section, we will study the case where alhgents have
the same budgét > 0. We refer to this setting as tregjual-budget
game We will show that this game has a unique symmetric equi-
librium. We also show that under certain conditions on the set of
strategies, there are no other equilibria.

3.1 Properties of best responses

In this subsection, we prove that any best response in our setting
(even in games with unequal budgets) must have certain properties.

These properties will be useful in the remainder of this section,
where we analyze the equilibria of the equal-budget game.

Consider agent. Let F_;(x) be the probability that all agents
other thani obtain an outcome below: F_;(z) = [[,_, Fj(z).
The first three lemmas show that:ifs best-responding, thef_;
must be linear in the support . (If this is not the case, thenis
better off changing its distribution, as we will show.) For given
1 < x2 < xz3, Lemma 1 considers what happens if agént
shifts probability from (around}- to x; andzs, in an expectation-
preserving way. If agent is best-responding, this cannot leave
them better off, and this imposes some constraintg’on

LEMMA 1. Considerz:, z2, z3 € RZ° such thatz; < z2 <
3. Suppose thak’_; is continuous at:2, and letF; be a best re-
sponse fok to F._;. If 5 is in the suppoftof F;, then the following
inequality holds:

(w2 — 1) F_i(w3) + (x3 — z2) Fi(r1) < (w3 — 1) F_i(2)

Due to space constraint, we omit all the proofs; a full version is

LEMMA 4. Given F_;, suppose that there is no strategy for
such that; wins with probabilityl. Then the support of any best
response strateg¥; for i has an upper bound.

The intuition behind Lemma 4 is the following. Shifting proba-
bility mass that is placed on sufficiently large outcomes downwards
slightly will not decrease the probability of winning significantly.
Doing so will allow the agent to shift mass on lower outcomes up-
wards, where this is more fruitful.

3.2 Symmetric equilibria with equal budgets

In the remainder of this section, we restrict attention to the equal-
budget game. First, in this subsection, we characterize the sym-
metric equilibria of this game. The results we obtained in Sub-
section 3.1 assume thét_; is continuous (at certain points). The
following lemma and corollary establish that in a symmetric equi-
librium, this assumption is trivially satisfied.

LEMMA 5. Consider the equal-budget case. Suppose that the
strategy profile in which all agents play lottery constitutes a
(symmetric) equilibrium. TheR" has no mass points.

Intuitively, if F' had a mass point, then an agent would find it ben-
eficial to deviate by shifting this mass up infinitesimally (to avoid
a tie) and shifting mass down elsewhere. Siftes a cumulative
distribution function with no mass point§; is continuous.F_; is

the product of continuous functions, and is thus continuous as well.
We thus have the following corollary:

COROLLARY 1. In the equal-budget game, suppose that the
strategy profile in which all agents play constitutes a symmetric
equilibrium. ThenF' is continuous. Furthermores_; is continu-

available upon request. Nevertheless, to get some intuition for why ous for alli.

Lemma 1 is true, suppose that has mass points at;, z2, xs.
Suppose we modify; by shiftinge mass frome, to 21 andzs. To

preserve the expected value of the distribution, it must be that the

mass shifted ta:; is e(zs —z2) /(23 — 1), and the mass shifted to
z3ise(x2—x1)/(x3—x1). Since we assumel is a best response,
this modification cannot have increased the probability thvans.
Hence, it must be thak_;(z2)e > F_;(x1)e(zs — x2)/(zs —
x1) + F_i(x3)e(x2 — x1)/(xs — x1), which is equivalent to the

We now showO is in the support of any symmetric-equilibrium
strategy.

LEMMA 6. Consider the equal-budget game. Suppose that the
strategy profile in which all agents play constitutes a symmetric
equilibrium, and that the greatest lower bound of the suppo#f of
isl. Thenl = 0.

To give some intuition, consider the following. If all agents playing

expression in the Lemma. (The formal proof addresses the generall” constitutes a symmetric equilibrium and> 0, then an agent's

case wherd’; does not necessarily have mass points.)

Whereas Lemma 1 considers shifting probability mass from out-
comezs to x1 andzs, Lemma 2 considers the opposite. Intuitively,
if outcomesr; andzs are in the support of’;, then agent should
not find it profitable to redistribute mass from (around)andzx;
to 2 in an expectation-preserving way.

LEMMA 2. Considerz;,z2, 3 € RZ% such thatr; < z» <
x3. Suppose thak_; is continuous atr; andzs, and letF; be a
best response farto F_;. If z; andzs are in the support of;,
then the following inequality holds:

(x2 —x1)F_i(x3) + (x3 — x2) F_i(x1) > (3 — x1) F_i(x2)

Lemma 3 follows immediately from Lemmas 1 and 2, establishing
that F_; must be linear in the support & if 7 is best-responding.

LEMMA 3. Considerz;, z2,z3 € RZ% such thatr; < z» <
r3. Suppose thaf’_; is continuous at these outcomes and gt
be a best response foto F_;. If z1, z2, andzs are in the support
of F;, then the following equality holds:

(x2 —z1)F_i(z3) + (x5 — x2) F_i(z1) = (x5 — x1) F_i(x2)

expected utility given that it obtained an outcome in a close neigh-
borhood ofl is near0. Hence, it is beneficial to reallocate mass in
a neighborhood of to 0 and to some higher outcomes, contrary to
the equilibrium assumption. We are now ready to derive the main
result of this section.

THEOREM 1. The equal-budget game has a unique symmetric
equilibrium. It is for all agents to select the following lottery:

F(z) = (nb)” wTam 1
over suppor{0, nb.

If all agents use the lottery described in (1), then for every agent
i, F_; is the uniform distribution ovef0, nb]. Hence, any lottery
over outcomes ifi0, nb] is a best response. Figure 2 shows how the
symmetric equilibrium strategy changes with the number of agents.

A random variable that is of particular interest is timaximum
outcome. This variable is especially interesting when we interpret
the game as a model for competitive R&D, where lotteries corre-
spond to technologies that can be used and outcomes correspond
to qualities of products. In this setting, the maximum outcome
corresponds to the quality of the best product—the one that will

Finally, we prove that the support of any best-response strategy hasjominate the market. The cumulative distribution of the maximum

an upper bound (unless the agent can win with probahi)ity

®In our use of the word “support”, the support is a closed set, that
is, we include all the limit points in the support.
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outcome in equilibrium igF(x))", and its expectation is:

nb n2b nb
ElTmas] = F(z))" = o
o] = [ wdP@) = i >




Cumulative Density

) Outcome

i b 20 3b 4b 5b o
Figure 2: Cumulative distribution of symmetric equilibrium
strategy for different values ofn, given equal budgets = 5.

This expectation is quite high, in the following sense. Suppose that
we did not impose any strategic constraintgonThen,E[zmaz] <
E[}",z:i] = >, Flz;]) = nb. Thatis, the expected value of the
maximum outcome in equilibrium is within a fact@rof the high-

est expectation that can be obtained without any equilibrium con-
straint. (Incidentally, without the equilibrium constraint one can in
fact come arbitrarily close to achievingh, as follows. LetF; be

the distribution that places— e mass or0, ande mass orb/c. The
probability that at least one agent will receby& is1 — (1 — ¢)",
hence the expected quality of the productlige)(1 — (1 — €)™),
which ase — 0 converges tab.) Moreover, even if one can shift
budgets among agents (in addition to prescribing their strategies),
it still holds thatE[zm..] < nb. By contrast, if each agent uses
the degenerate strategy that places all the probability massmm
would haveE [zmaz] = b.

3.3 Uniqueness of the symmetric equilibrium

Is the symmetric equilibrium unique, or do asymmetric equilib-
ria exist? In this subsection, we show that under mild restrictions

no agent has positive profit (which does sometimes happen: for ex-
ample, in the early rounds of the 2003 Supply Chain Management
TAC, as described in [14]), then nobody wins. Also, in the patent
race application from economics, a minimum level of innovation
must be reached or surpassed for a patent to be granted.

We wish to solve for the symmetric equilibrium of this modified
equal-budget game. We will make use of the following observa-
tions. First, it is never in agents’ interest to select lotteries that
place mass on outcomes(ity, 7). This is because outcomes in this
interval can never lead to winning, so an agent would always be
better off reallocating mass from this intervalG@@nd to outcomes
larger thanr. Second, Lemmas 3, 4, and 6 still hold in this context.
Moreover, Lemma 3 can be extended to hold &ven whenF_;
is discontinuous there, because outcomes cloSectm never lead
to winning whenr > 0. (We call this the "extended" Lemma 3.)
Third, Lemma 5 also holds, but only over outcomes that are at or
abover. Agents may have a mass pointat

4.1 The two-agent equal-budget game with a
minimum necessary outcome

Let us begin by solving for the symmetric equilibrium of the
two-agent equal-budget game. By the above discussion, for some
h > r, the support of the symmetric strategy will be contained in
{0} U [r, h]. (Leth be the smallest number for which this holds.)
The next lemma shows thatmust be in the support.

LeEmMA 8. Consider the equal-budget game with a minimum
necessary outcome of Suppose that the strategy profile in which
all agents playF' constitutes a symmetric equilibrium. Lgtlenote
the support of’, and let! be the greatest lower bound §f— {0}.
Thenl = r.

Intuitively, the reason for this result is as follows. Suppbser.
Then, outcomes in a close neighborhood! dfave a significant
chance of leading an agent to winning only if all other agents obtain
outcome0. Because of this, outcomeprovides almost the same

on the strategy space, the former is the case. (We currently do notProbability of winning as these outcomes. Thus, shifting mass from

know whether these restrictions are necessary for this to be true.)
Specifically, we consider the following restriction#i1) Supports
have no gaps(A2) F; has no mass points for alle {1,...,n}.

The next lemma shows that if (A1) holds, then all agents l@aive
their support.

LEMMA 7. Suppose thaf™* = (Fy, F5,...,F}) is an equi-
librium strategy profile of the equal-budget game and that (Al) is
satisfied. The® is in the support of;* for all i € {1,2,...,n}.

We are now ready to present the main result of this subsection.

THEOREM 2. Given (A1) and (A2), the unique equilibrium of
the equal-budget game is the symmetric equilibrium described in
Theorem 1.

4. EXTENSION: MINIMUM OUTCOME
REQUIREMENT

In this section, we add one feature to the equal-budget game
from the previous section: in order to win, agents must end up

with an outcome that is at least as high as some threshold. In otherranging, we obtair(b, )

words, the winning agent must obtain the highest outcome among
all agents, as well as reach or exceed some minimum outcome. If
no agent reaches this threshold, then no agent receives anything
(We note that the game is no longer zero-sum.) Let us denote this
threshold byr, wherer > 0. For example, in a stock trading com-

petition, there may a specification that if a contestant does not out-
perform a risk-free asset, then the contestant cannot win. Similarly,
in a trading agent competition, there may be a specification that if
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a neighborhood ofto » does not have a large impact on an agent’s
probability of winning, while it allows the agent to shift some mass
to higher outcomes. For sufficiently small neighborhoods db-

ing so increases the agent's probability of winning. Therefore,
must be the greatest lower bound%f- {0}.

Lemmas 3, 5, and 8 imply that any symmetric equilibrium strat-
egy has the forn¥’(z) = a + cx over[r, h], wherea andc are
positive constants. Furthermore, this strategy may place a mass
m > 0 at0 (so thatF'(r) = m). The following claim establishes
that forz € [r, h], F(z) must lie on a line originating from the
origin.

CLaim 1. Inthe two-agent equal-budget game with a minimum
necessary outcome of there is some: so that forz € [r,h],
F(z) = cz. (Thatis,a = 0.)

SinceF'(r) = m, it holds thatm = cr. In addition, since’(h) =

1, we have thah = ¢~'. Finally, the budget constraint requires
N ' zdF(z) = b. Substituting forF’ in the constraint and rear-
7“’2;*;2_” Thus, the unique candi-

date symmetric equilibrium strategy is for each agent to select the
lottery specified by

: 2,2 .
VO 0<z<r
\Vb2+r2—b . 2
F(;[;) = T if r<z< m 2)
2
1 if ——l
T > \VbZ4+r2—b



It remains to verify that (2) indeed constitutes an equilibrium strat-
egy. To check this, suppose ageémmploys strategy’. Given this,
agent2 would not find it optimal to place mass on outcomes higher
thanc(b,r)~'. Thus, agen®'s problem is to choose lottery

to maximizeff“”r1 F(z)dFa(z) = c(b,r) ﬁ?(b”“rl xdFy(x)

-1
subject tofoc(b’r)

constraint and places no mass(©nr), | xdF>(z) equals
b, so the objective becomesb, r) - b. Hence, any suclt? is a
best response, including. Figure 3 shows how the symmetric

equilibrium strategy varies asincreases.

xdF>(x) = b. For anyF; that satisfies the
c(b,r)~ 1t

Cumulative Density

0.75 " %
0.5 R

0.25

Outcome

|
i r=0 rLS . r:‘1.0 i .‘ rLZO . ‘ .
Figure 3: Cumulative distribution of symmetric equilibrium

strategies for different values ofr, given equal budgets = 5.

We can observe the following facts about the equilibrium strate-
gies from (2) and Figure 3. First, asapproache®, ¢~ *(b,r)
approachegb, so that we converge to the equilibrium of Example
1. Secondg(b, r) is decreasing im, so that, as grows larger, the
cumulative distribution of the lottery chosen over outcomes larger
thanr becomes flatter. Meanwhile, the maasat0 approaches.
Thus, the equilibrium strategy becomes ever riskier areases.

4.2 Then-agent equal-budget game with a min-
Imum necessary outcome

We now extend the equilibrium result toagents.

THEOREM 3. In the n-agent equal-budget game with a mini-
mum necessary outcome «f the uniqgue symmetric equilibrium
strategy is for each agent to pldy described by

m(b,r) if x<r
(c(b,r)a) ™ if @€ [r, (e(b,7) 7]

1 it x> (c(br)t
wherem(b, r) = (¢(b, r)r)ﬁ andc(b, r) is implicity and uniquely
defined by (¢™* — et TratT) = b,

As in the two-agent game, it can be verified théh, r) is in-
creasing inr. Also, asr approache$, c(b, r) approached /nb,
so thatF' becomes the unique symmetric equilibrium strategy de-
scribed in Theorem 1. Figure 4 shows how the symmetric equilib-
rium strategy changes asincreases.

Figure 4 resembles Figure 2 (where there is no minimum out-
come requirement). One additional effect that the minimum out-
come requirement introduces is thatragets larger, the mass that
the equilibrium strategy places @nincreases—in fact, this mass
converges td asn — oo.

5. EXTENSION: COSTLY BUDGETS

Cumulative Density

| Outcome
O T T T T T T T

10 20 30
Figure 4: Cumulative distribution of symmetric equilibrium
strategies for different values ofn, given equal budgetsh = 5
andr = 10.

at a cost. After the budgets have been chosen, the game proceeds
as before. Thus, in the first period, agents choose their buéigets
in the second period, they choose their lotted&égwhose expec-
tation must equabd;); and in the third period, outcomes are drawn
from the lotteries and the winner is determined. An agent's util-
ity is —b; if it does not win, andD — b; if it does win, whereD
is a constant. Agents try to maximize expected utility. This vari-
ant is especially natural in many of the applications in economics,
where agents must make some initial investment. We only consider
the 2-agent case, and we also do not consider the possibility of a
minimum necessary outcome.

To solve this game, we apply backward induction. Suppose agent
i has chosen budgét in the first period. To solve the subgame
starting at the second period, we make use of the equilibrium de-
rived in Example 2 (which, by the work of Dulleat al. [10], is
unique). Assume without loss of generality that < b,. (Even
though the game is symmetric at the beginning, the agents may
choose different budgets in the first period.) From Example 2, we
know that it is an equilibrium for ageritto select lotteryF (z) =
1—b1/ba+(b1/b2)(x/2b2) and for ageng to select lotteryf (x) =
x/2ba, both with supportq0, 2b2]. (In fact, these are minimax
strategies.) Given this, we can analyze the first period. Since the
game is symmetric between agents at this point, it will suffice to
focus on agent. Given that ager? has decided on budget > 0,
agentl’s expected utility as a function éf is given by

21D~ by it b1 <bo
— 2b —
E[Ul(bth)] = { ( _ 22171121 )D — b if by > bo

Whenb, < bo, agentl’s expected utility is linear irb;. Hence, it
will choose to seb; > b, wheneverD > 2b,. Furthermore, by
differentiating the expected utility function whén > b, it can be
shown thaty = /b2D/2 maximizes expected utility, given that
D > 2by. (We note that in this case, indeéd,= /b2D/2 > b2.)
Moreover, it will choose to sét; = 0 wheneverD < 2b., because

in this case, any other budget will give it a negative expected util-
ity. Finally, whenD = 2b,, anyb, € [0,D/2] is optimal. To
summarize, agerits (set-valued) best-response function is

{0} if ba >
0,2] if b=
{yB2Y if o<ba<?
We note that ifhe = 0, agentl would want to choose an infinites-

NleENle]

bi(b2) =

In this section, we study a variant in which agents can choose imally small budget in order to win, so the best response is not
their budgets at the beginning of the game, and each budget comesvell-defined in this case. Figure 5 shows the agents’ best-response
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curves. (To eliminate any chance of confusion, we note that the of prior distributions and corresponding strategies that constitute

b2

bi(b2)= ===~
b2(b1)=+="="

D/2f========== =1

bl
D/2

Figure 5: Best-response curves in budget selection stage

variables on the axes of this graph are budgets, not probabilities;

this graph is not intended to show mixed-strategy equilibria.) The
best-response curves intersect(&at/2, D/2). The unique sub-
game perfect pure-strategy equilibrium of this game is thus for both
agents to choose a budgetf2 in the first period, and select the
uniform lottery over[0, D] in the second. Each agent’s expected
utility is 0 in equilibrium. This is reminiscent of the equilibrium

symmetric equilibria:

1. Consider the two-agent game with identical pior= U0, h]
for someh > 0. One equilibrium is for both agents to acquire the
degenerate lottery &twhen endowed with a budgét (This is be-
cause given these strategies, the distribution over the other agent’s
outcome is uniform ovef0, k], hence any strategy that uses only
outcomes irf0, k] is a best response.)

2. For someb > 0, letb, = 1bandby = 3b. In a two-agent
game with an identical prioP(b; = b.) = % andP(b; = by) =
1,4 € {1,2}, the strategy that choosés[0, b] whenb; = by
andU|b, 2b] whenb; = by, constitutes a symmetric equilibrium.
(This is because given these strategies, the distribution over the
other agent's outcome is uniform ovf, 2b], hence any strategy
that uses only outcomes j6, 2b] is a best response.)

More generally, a strategy profil€* = (G*',...,G*"), for
which for everyi € {1, ...,n} the bracketed term in (3) is propor-
tional tox for all « that are used iii's supports, constitutes an equi-
librium. This is because, as in the complete-information case, the
objective function reduces to the constraint for every agent. Hence,
any strategy that satisfies the constraint is a best response, includ-

of a common-value sealed-bid all-pay auction, where both agentsing that suggested b§*. For example, if the prior over all agents’

choose their bids uniformly at random froihy D] (whereD is the
common value), leading to an expected utilityoofor each agent.

We emphasize that while the equilibria are similar, the games are

quite different.

6. EXTENSION: PRIVATE BUDGETS

In this section, we consider an incomplete-information setting,

where agents do not know the other agents’ budgets. We con-

sider then-agent case, but do not consider the possibility of a

budgets idV, with expectatiork, then a strategy- that satisfies

nk
/ Gy(x)dW (b) = (nk)” " TamT @)
0

forall z € [0, nk], constitutes a symmetric equilibrium. In order to
obtain such a strategy, we need to be abkeansformthe prior dis-
tribution W into another distribution. Specifically, we need strat-
egy G to map budgets in the support of the pridrto fair lotteries,

so that the ensuing (expected) distribution over outcomes is as in

minimum necessary outcome or costly budgets. Suppose that for(4). Let us say that prior CDFV is transformableinto another

everyj € {1,..,n}, agentj’s (nonnegative) budget is selected
by Nature according to some commonly known prior, described
by the CDFW;(b). Thus, this is a Bayesian game, and we will

use Bayes-Nash equilibrium as our solution concept. Suppose that

agentj # i chooses Iotterﬁl{ when endowed with budgét and
consider agent's problem. Givenb;, agent; selects lotteryF' to
maximize

/ / 116, @ar@)aw (o).

J#i
...dWi_l (bi_l)dWi+1(bi+1)...de(bn)

subject to [ zdF(x) = b;. Since agent i's expected utility is
bounded byl, Fubini’s Theorem allows us to change the order of
integration in the objective function, which is hence equivalent to

/ / / [, @ani(o)..
J#i
.,.dWi,l(bi,l)dWiH(biH)...de(bn)}dF(a:)

®)

Here, the bracketed expression in (3) givesekReintecumulative
distribution over the maximum outcome of all agents other than
evaluated atr. Hence, the bracketed term has a role that is anal-
ogous to the role of_;(x) earlier in the paper: whereas before

the uncertainty derived only from the other agents’ strategies, now In this casef

it derives both from the other agents’ strategies and from Nature’s

CDF J if there exists a strategs such that the ensuing distribu-
tion is J. The following theorem provides necessary conditions for
a prior W to be transformable into a CDF.

THEOREM 4. Consider a CDHRV and a CDFJ, with supports
contained inR=°. Suppose thall is transformable into/. Then
for anyb in the support ofW the following two inequalities must

hold? [ zdW () > [ W ® zdj(z), and [ zdW (z) <

J7% vy @I (@ )

Specifically, consider the case where the prior over each agent’s
budget isW, with expectatiork In order for there to exist a strat-

egy G that satlsflesf (x)dW (b) = (nk-)’ﬁmﬁ for all

z € [0,nk] (and hence constltutes a symmetric equilibrium), The-
orem 4 tells us that for any budgétin the support ofiV, it is
necessary thaEW [x|0 <z <b > kW) ! andE,, [z|z >

b < kY20 o (W . Itis an open question whether these con-
ditions are also suff|C|ent for the strategy to be transformable in the
desired way. However, the following theorem does provide a (more
limited) sufficient condition:

THEOREM 5. Consider a 2-agent private-budget game in which
both agents’ budgets are distributed according to a commonly known

’If J has mass points theh ' (W (b)) is not necessarily defined.

Fwe) zdJ(x) should be interpreted to integrate
z only over the lowestV (b) mass ofJ. Lettingy be the point such

choice of their budgets. In order to use our previous techniques thatJ(y) > W(b) andJ(y —¢) < W (b) for all e > 0, a more

for deriving equilibria, we would need this expression to be pro-
portional tox. This is illustrated by the following two examples
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precise expression would b’ xd.J(z) — (J(y) — W (b))y. The
interpretation of* LW (b)) xdJ(z) is similar.



CDF W with expectatiork. If the support ofi¥ is a subset of consider different utility functions: for example, the agent may also
[k/2,3k/2], thenW is transformable intd/[0, 2k] (and hence a derive some utility from coming in second place. Finally, in the
symmetric equilibrium exists). private-budgets setting, we left as an open question whether our

Intuitively, if W’s support is a subset §/2, 3k/2], then givenany ~ Necessary condition is also sufficient.

budget, an agent can choose a fair lottery over outcaiesand
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