
Generalized Adaptive A*

Xiaoxun Sun
USC

Computer Science
Los Angeles, California
xiaoxuns@usc.edu

Sven Koenig
USC

Computer Science
Los Angeles, California
skoenig@usc.edu

William Yeoh
USC

Computer Science
Los Angeles, California

wyeoh@usc.edu

ABSTRACT
Agents often have to solve series of similar search problems.
Adaptive A* is a recent incremental heuristic search algo-
rithm that solves series of similar search problems faster
than A* because it updates the h-values using information
from previous searches. It basically transforms consistent h-
values into more informed consistent h-values. This allows it
to find shortest paths in state spaces where the action costs
can increase over time since consistent h-values remain con-
sistent after action cost increases. However, it is not guaran-
teed to find shortest paths in state spaces where the action
costs can decrease over time because consistent h-values do
not necessarily remain consistent after action cost decreases.
Thus, the h-values need to get corrected after action cost
decreases. In this paper, we show how to do that, result-
ing in Generalized Adaptive A* (GAA*) that finds shortest
paths in state spaces where the action costs can increase or
decrease over time. Our experiments demonstrate that Gen-
eralized Adaptive A* outperforms breadth-first search, A*
and D* Lite for moving-target search, where D* Lite is an
alternative state-of-the-art incremental heuristic search al-
gorithm that finds shortest paths in state spaces where the
action costs can increase or decrease over time.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving

General Terms
Algorithms

Keywords
A*; D* Lite; Heuristic Search; Incremental Search; Shortest
Paths, Moving-Target Search

1. INTRODUCTION
Most research on heuristic search has addressed one-time

search problems. However, agents often have to solve se-
ries of similar search problems as their state spaces or their
knowledge of the state spaces changes. Adaptive A* [7] is a

Cite as: Generalized Adaptive A*, Xiaoxun Sun, Sven Koenig and
William Yeoh, Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Padgham, Parkes,
Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.469-476
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

recent incremental heuristic search algorithm that solves se-
ries of similar search problems faster than A* because it up-
dates the h-values using information from previous searches.
Adaptive A* is simple to understand and easy to implement
because it basically transforms consistent h-values into more
informed consistent h-values. Adaptive A* can easily be
generalized to moving-target search [5], where the goal state
changes over time. Consistent h-values do not necessarily re-
main consistent when the goal state changes. Adaptive A*
therefore makes the h-values consistent again when the goal
state changes. Adaptive A* is able to find shortest paths in
state spaces where the start state changes over time since
consistent h-values remain consistent when the start state
changes. It is able to find shortest paths in state spaces
where the action costs can increase over time since consis-
tent h-values remain consistent after action cost increases.
However, they are not guaranteed to find shortest paths in
state spaces where the action costs can decrease over time
because consistent h-values do not necessarily remain consis-
tent after action cost decreases, which limits their applica-
bility. Thus, the h-values need to get corrected after action
cost decreases. In this paper, we show how to do that, result-
ing in Generalized Adaptive A* (GAA*) that finds shortest
paths in state spaces where the action costs can increase or
decrease over time.

2. NOTATION
We use the following notation: S denotes the finite set

of states. sstart ∈ S denotes the start state, and sgoal ∈ S

denotes the goal state. A(s) denotes the finite set of actions
that can be executed in state s ∈ S. c(s, a) > 0 denotes
the action cost of executing action a ∈ A(s) in state s ∈ S,
and succ(s, a) ∈ S denotes the resulting successor state. We
refer to an action sequence as path. The search problem is
to find a shortest path from the start state to the goal state,
knowing the state space.

3. HEURISTICS
Heuristic search algorithms use h-values (= heuristics)

to focus their search. The h-values are derived from user-
supplied H-values H(s, s′), that estimate the distance from
any state s to any state s′. The user-supplied H-values
H(s, s′) have to satisfy the triangle inequality (= be consis-
tent), namely satisfy H(s′, s′) = 0 and H(s, s′) ≤ c(s, a) +
H(succ(s, a), s′) for all states s and s′ with s 6= s′ and
all actions a that can be executed in state s. If the user-
supplied H-values H(s, s′) are consistent, then the h-values
h(s) = H(s, sgoal) are consistent with respect to the goal

469

state sgoal (no matter what the goal state is), namely satisfy
h(sgoal) = 0 and h(s) ≤ c(s, a) + h(succ(s, a)) for all states
s with s 6= sgoal and all actions a that can be executed in
state s [11].

4. A*
Adaptive A* is based on a version of A* [2] that uses

consistent h-values with respect to the goal state to focus
its search. We therefore assume in the following that the
h-values are consistent with respect to the goal state.

4.1 Variables
A* maintains four values for all states s that it encounters

during the search: a g-value g(s) (which is infinity initially),
which is the length of the shortest path from the start state
to state s found by the A* search and thus an upper bound
on the distance from the start state to state s; an h-value
h(s) (which is H(s, sgoal) initially and does not change dur-
ing the A* search), which estimates the distance of state s

to the goal state; an f-value f(s) := g(s) + h(s), which es-
timates the distance from the start state via state s to the
goal state; and a tree-pointer tree(s) (which is undefined ini-
tially), which is used to identify a shortest path after the A*
search.

4.2 Datastructures and Algorithm
A* maintains an OPEN list (a priority queue which con-

tains only the start state initially). A* identifies a state s

with the smallest f-value in the OPEN list [Line 14 from Fig-
ure 1]. A* terminates once the f-value of state s is no smaller
than the f-value or, equivalently, the g-value of the goal state.
(It holds that f(sgoal) = g(sgoal) + h(sgoal) = g(sgoal) since
h(sgoal) = 0 for consistent h-values with respect to the goal
state.) Otherwise, A* removes state s from the OPEN list
and expands it, meaning that it performs the following op-
erations for all actions that can be executed in state s and
result in a successor state whose g-value is larger than the
g-value of state s plus the action cost [Lines 18-21]: First,
it sets the g-value of the successor state to the g-value of
state s plus the action cost [Line 18]. Second, it sets the
tree-pointer of the successor state to (point to) state s [Line
19]. Finally, it inserts the successor state into the OPEN list
or, if it was there already, changes its priority [Line 20-21].
(We refer to it generating a state when it inserts the state
for the first time into the OPEN list.) It then repeats the
procedure.

4.3 Properties
We use the following known properties of A* searches [11].

Let g(s), h(s) and f(s) denote the g-values, h-values and f-
values, respectively, after the A* search: First, the g-values
of all expanded states and the goal state after the A* search
are equal to the distances from the start state to these states.
Following the tree-pointers from these states to the start
state identifies shortest paths from the start state to these
states in reverse. Second, an A* search expands no more
states than an (otherwise identical) other A* search for the
same search problem if the h-values used by the first A*
search are no smaller for any state than the corresponding
h-values used by the second A* search (= the former h-values
dominate the latter h-values at least weakly).

5. ADAPTIVE A*

Adaptive A* [7] is a recent incremental heuristic search
algorithm that solves series of similar search problems faster
than A* because it updates the h-values using information
from previous searches. Adaptive A* is simple to understand
and easy to implement because it basically transforms con-
sistent h-values with respect to the goal state into more in-
formed consistent h-values with respect to the goal state. We
describe Lazy Adaptive Moving-Target Adaptive A* (short:
Adaptive A*) in the following.

5.1 Improving the Heuristics
Adaptive A* updates (= overwrites) the consistent h-

values with respect to the goal state of all expanded state s

after an A* search by executing

h(s) := g(sgoal) − g(s). (1)

This principle was first used in [4] and later resulted in the
independent development of Adaptive A*. The updated h-
values are again consistent with respect to the goal state [7].
They also dominate the immediately preceeding h-values at
least weakly [7]. Thus, they are no less informed than the
immediately preceeding h-values and an A* search with the
updated h-values thus cannot expand more states than an
A* search with the immediately preceeding h-values (up to
tie breaking).

5.2 Maintaining Consistency of the Heuristics

Adaptive A* solves a series of similar but not necessar-
ily identical search problems. However, it is important
that the h-values remain consistent with respect to the goal
state from search problem to search problem. The following
changes can occur from search problem to search problem:

• The start state changes. In this case, Adaptive A*
does not need to do anything since the h-values remain
consistent with respect to the goal state.

• The goal state changes. In this case, Adaptive A*
needs to correct the h-values. Assume that the goal
state changes from sgoal to s′goal. Adaptive A* then
updates (= overwrites) the h-values of all states s by
assigning

h(s) := max(H(s, s′goal), h(s) − h(s′goal)). (2)

The updated h-values are consistent with respect to
the new goal state [9]. However, they are poten-
tially less informed than the immediately preceeding
h-values. Taking the maximum of h(s) − h(s′goal) and
the user-supplied H-value H(s, s′goal) with respect to
the new goal state ensures that the h-values used by
Adaptive A* dominate the user-supplied H-values with
respect to the new goal state at least weakly.

• At least one action cost changes. If no action cost
decreases, Adaptive A* does not need to do anything
since the h-values remain consistent with respect to the
goal state. This is easy to see. Let c denote the orig-
inal action costs and c′ the new action costs after the
changes. Then, h(s) ≤ c(s, a) + h(succ(s, a)) for s ∈

470

S \ {sgoal} implies that h(s) ≤ c(s, a)+h(succ(s, a)) ≤
c′(s, a) + h(succ(s, a)) for s ∈ S \ {sgoal}. However,
if at least one action cost decreases then the h-values
are not guaranteed to remain consistent with respect
to the goal state. This is easy to see by example. Con-
sider a state space with two states, a non-goal state s

and a goal state s′, and one action whose execution in
the non-goal state incurs action cost two and results
in a transition to the goal state. Then, an h-value of
two for the non-goal state and an h-value of zero for
the goal state are consistent with respect to the goal
state but do not remain consistent with respect to the
goal state after the action cost decreases to one. Thus,
Adaptive A* needs to correct the h-values, which is
the issue addressed in this paper.

5.3 Updating the Heuristics Lazily
So far, the h-values have been updated in an eager way,

that is, right away. However, Adaptive A* updates the h-
values in a lazy way, which means that it spends effort on the
update of an h-value only when it is needed during a search,
thus avoiding wasted effort. It remembers some information
during the A* searches (such as the g-values of states) [Lines
18 and 30] and some information after the A* searches (such
as the g-value of the goal state, that is, the distance from
the start state to the goal state) [Lines 35 and 37] and then
uses this information to calculate the h-value of a state only
when it is needed by a future A* search [9].

5.4 Pseudocode
Figure 1 contains the pseudocode of Adaptive A* [9].

Adaptive A* does not initialize all g-values and h-values
up front but uses the variables counter, search(s) and
pathcost(x) to decide when to initialize them:

• The value of counter is x during the xth execution of
ComputePath(), that is, the xth A* search.

• The value of search(s) is x if state s was generated last
by the xth A* search (or is the goal state). Adaptive
A* initializes these values to zero [Lines 25-26].

• The value of pathcost(x) is the length of the shortest
path from the start state to the goal state found by
the xth A* search, that is, the distance from the start
state to the goal state.

Adaptive A* executes ComputePath() to perform an A*
search [Line 33]. (The minimum over an empty set is infinity
on Line 13.) Adaptive A* executes InitializeState(s) when
the g-value or h-value of a state s is needed [Lines 16, 28, 29
and 42].

• Adaptive A* initializes the g-value of state s (to in-
finity) if state s either has not yet been generated
by some A* search (search(s) = 0) [Line 9] or has
not yet been generated by the current A* search
(search(s) 6= counter) but was generated by some A*
search (search(s) 6= 0) [Line 7].

• Adaptive A* initializes the h-value of state s with its
user-supplied H-value with respect to the goal state if
the state has not yet been generated by any A* search
(search(s) = 0) [Line 10]

1 procedure InitializeState(s)
2 if search(s) 6= counter AND search(s) 6= 0
3 if g(s) + h(s) < pathcost(search(s))
4 h(s) := pathcost(search(s)) − g(s);
5 h(s) := h(s) − (deltah(counter) − deltah(search(s)));
6 h(s) := max(h(s), H(s, sgoal));
7 g(s) := ∞;
8 else if search(s) = 0
9 g(s) := ∞;

10 h(s) := H(s, sgoal);
11 search(s) := counter;

12 procedure ComputePath()
13 while g(sgoal) > min

s
′∈OPEN(g(s′) + h(s′))

14 delete a state s

with the smallest f-value g(s) + h(s) from OPEN;
15 for all actions a ∈ A(s)
16 InitializeState(succ(s, a));
17 if g(succ(s, a)) > g(s) + c(s, a)
18 g(succ(s, a)) := g(s) + c(s, a);
19 tree(succ(s, a)) := s;
20 if succ(s, a) is in OPEN then delete it from OPEN;
21 insert succ(s, a) into OPEN

with f-value g(succ(s, a)) + h(succ(s, a));

22 procedure Main()
23 counter := 1;
24 deltah(1) := 0;
25 for all states s ∈ S
26 search(s) := 0;
27 while sstart 6= sgoal

28 InitializeState(sstart);
29 InitializeState(sgoal);
30 g(sstart) := 0;
31 OPEN := ∅;
32 insert sstart into OPEN with f-value g(sstart) + h(sstart);
33 ComputePath();
34 if OPEN = ∅
35 pathcost(counter) := ∞;
36 else
37 pathcost(counter) := g(sgoal);
38 change the start and/or goal states, if desired;
39 set sstart to the start state;
40 set snewgoal to the goal state;
41 if sgoal 6= snewgoal

42 InitializeState(snewgoal);
43 if g(snewgoal) + h(snewgoal) < pathcost(counter)
44 h(snewgoal) := pathcost(counter) − g(snewgoal);
45 deltah(counter + 1) := deltah(counter) + h(snewgoal);
46 sgoal := snewgoal;
47 else
48 deltah(counter + 1) := deltah(counter);
49 counter := counter + 1;
50 update the increased action costs (if any);

Figure 1: Adaptive A*

• Adaptive A* updates the h-value of state s accord-
ing to Assignment 1 [Line 4] if all of the following
conditions are satisfied: First, the state has not yet
been generated by the current A* search (search(s) 6=
counter). Second, the state was generated by a pre-
vious A* search (search(s) 6= 0). Third, the state
was expanded by the A* search that generated it last
(g(s)+h(s) < pathcost(search(s))). Thus, Adaptive A*
updates the h-value of a state when an A* search needs
its g-value or h-value for the first time during the cur-
rent A* search and a previous A* search has expanded
the state already. Adaptive A* sets the h-value of state
s to the difference of the distance from the start state
to the goal state during the last A* search that gener-
ated and, according to the conditions, also expanded
the state (pathcost(search(s))) and the g-value of the
state after the same A* search (g(s) since the g-value
has not changed since then).

• Adaptive A* corrects the h-value of state s accord-
ing to Assignment 2 for the new goal state. The up-
date for the new goal state decreases the h-values of

471

1’ update the increased and decreased action costs (if any);
2’ OPEN := ∅;
3’ for all state-action pairs (s, a)

with s 6= sgoal whose c(s, a) decreased
4’ InitializeState(s);
5’ InitializeState(succ(s,a));
6’ if (h(s) > c(s, a) + h(succ(s, a)))
7’ h(s) := c(s, a) + h(succ(s, a));
8’ if s is in OPEN then delete it from OPEN;
9’ insert s into OPEN with h-value h(s);

10’ while OPEN 6= ∅
11’ delete a state s′ with the smallest h-value h(s) from OPEN;
12’ for all states s ∈ S \ {sgoal} and actions a ∈ A(s)

with succ(s, a) = s′

13’ InitializeState(s);
14’ if h(s) > c(s, a) + h(succ(s, a))
15’ h(s) := c(s, a) + h(succ(s, a));
16’ if s is in OPEN then delete it from OPEN;
17’ insert s into OPEN with h-value h(s);

Figure 2: Consistency Procedure

all states by the h-value of the new goal state. This
h-value is added to a running sum of all corrections
[Line 45]. In particular, the value of deltah(x) dur-
ing the xth A* search is the running sum of all cor-
rections up to the beginning of the xth A* search.
If a state s was generated by a previous A* search
(search(s) 6= 0) but not yet generated by the current
A* search (search(s) 6= counter), then Adaptive A*
updates its h-value by the sum of all corrections be-
tween the A* search when state s was generated last
and the current A* search, which is the same as the
difference of the value of deltah during the current A*
search (deltah(counter)) and the A* search that gen-
erated state s last (deltah(search(s))) [Line 5]. It then
takes the maximum of this value and the user-supplied
H-value with respect to the new goal state [Line 6].

6. GENERALIZED ADAPTIVE A*
We generalize Adaptive A* to the case where action costs

can increase and decrease. Figure 2 contains the pseudocode
of a consistency procedure that eagerly updates consistent
h-values with respect to the goal state with a version of Di-
jkstra’s algorithm [1] so that they remain consistent with
respect to the goal state after action cost increases and
decreases.1 The pseudocode is written so that it replaces
Line 50 of Adaptive A* in Figure 1, resulting in General-
ized Adaptive A* (GAA*). InitializeState(s) performs all
updates of the h-value of state s and can otherwise be ig-
nored.

Theorem 1. The h-values remain consistent with respect
to the goal state after action cost increases and decreases if
the consistency procedure is run.

Proof: Let c denote the action costs before the changes,
and c′ denote the action costs after the changes. Let h(s)
denote the h-values before running the consistency proce-
dure and h′(s) the h-values after its termination. Thus,
h(sgoal) = 0 and h(s) ≤ c(s, a) + h(succ(s, a)) for all non-
goal states s and all actions a that can be executed in state
1Line 3’ can be simplified to “for all state-action pairs (s, a)
whose c(s, a) decreased” since h(sgoal) = 0 for consistent h-
values with respect to the goal state and the condition on
Line 6’ is thus never satisfied for s = sgoal. Similarly, Line
12’ can be simplified to “for all states s ∈ S and actions
a ∈ A(s) with succ(s, a) = s′” for the same reason.

s since the h-values are consistent with respect to the goal
state for the action costs before the changes. The h-value of
the goal state remains zero since it is never updated. The h-
value of any non-goal state is monotonically non-increasing
over time since it only gets updated to an h-value that is
smaller than its current h-value. Thus, we distinguish three
cases for a non-goal state s and all actions a that can be
executed in state s:

• First, the h-value of state succ(s, a) never decreased
(and thus h(succ(s, a)) = h′(succ(s, a))) and c(s, a) ≤
c′(s, a). Then, h′(s) ≤ h(s) ≤ c(s, a) + h(succ(s, a)) =
c(s, a) + h′(succ(s, a)) ≤ c′(s, a) + h′(succ(s, a)).

• Second, the h-value of state succ(s, a) never decreased
(and thus h(succ(s, a)) = h′(succ(s, a))) and c(s, a) >

c′(s, a). Then, c(s, a) decreased and s 6= sgoal and Lines
4’-9’ were just executed. Let h̄(s) be the h-value of
state s after the execution of Lines 4’-9’. Then, h′(s) ≤
h̄(s) ≤ c′(s, a) + h′(succ(s, a)).

• Third, the h-value of state succ(s, a) decreased and
thus h(succ(s, a)) > h′(succ(s, a)). Then, the state
was inserted into the priority queue and later retrieved
on Line 11’. Consider the last time that it was re-
trieved on Line 11’. Then, Lines 12’-17’ were exe-
cuted. Let h̄(s) be the h-value of state s after the
execution of Lines 12’-17’. Then, h′(s) ≤ h̄(s) ≤
c′(s, a) + h′(succ(s, a)).

Thus, h′(s) ≤ c′(s, a) + h′(succ(s, a)) in all three cases,
and the h-values remain consistent with respect to the goal
state.

Adaptive A* updates the h-values in a lazy way. How-
ever, the consistency procedure currently updates the h-
values in an eager way, which means that it is run whenever
action costs decrease and can thus update a large number
of h-values that are not needed during future searches. It
is therefore important to evaluate experimentally whether
Generalized Adaptive A* is faster than A*.

7. EXAMPLE
We use search problems in four-neighbor gridworlds of

square cells (such as, for example, gridworlds used in video
games) as examples. All cells are either blocked (= black)
or unblocked (= white). The agent always knows its cur-
rent cell, the current cell of the target and which cells are
blocked. It can always move from its current cell to one of
the four neighboring cells. The action cost for moving from
an unblocked cell to an unblocked cell is one. All other ac-
tion costs are infinity. The agent has to move so as to occupy
the same cell as a stationary target (resulting in stationary-
target search) or a moving target (resulting in moving-target
search). The agent always identifies a shortest path from its
current cell to the current cell of the target after its current
path might no longer be a shortest path because the tar-
get left the path or action costs changed. The agent then
begins to move along the path given by the tree-pointers.
We use the Manhattan distances as consistent user-supplied
H-values.

Figure 3 shows an example. After the A* search from the
current cell of the agent (cell E3, denoted by “Start”) to the
current cell of the target (cell C5, denoted by “Goal”), the

472

1 2 3 4 5

A

B

C

D

E Start

Goal

1 2 3 4 5

A

B

C

D

E Start

Goal

1 2 3 4 5

A

B

C

D

E Start

Goal

Figure 3: Example

1 2 3 4 5

A
6 5 4 2

B
5 4 3 2 1

C
4 3 2 0

D
5 1

E
6 5 4 2

Start

Goal

1 2 3 4 5

A
6 5 4 2

B
5 4 3 2 1

C
6 5 4 0

D
7 1

E
8 9 10 2

Start

Goal

1 2 3 4 5

A
5 4 3 1

B
4 3 2 1 0

C
5 4 3 1

D
6 2

E
7 8 9 3

Start

Goal

1 2 3 4 5

A
5 4 3 2 1

B
4 3 2 1 0

C
5 4 3 1

D
6 5 2

E
7 6 7 3

Start

Goal

Figure 4: Ideas behind Generalized Adaptive A*

target moves to cell B5 and then cells A4 and D2 become
unblocked (which decreases the action costs between these
cells and their neighboring unblocked cells from infinity to
one). Figure 4 shows the h-values (in the upper right cor-
ners of the cells) using the ideas from Sections 5.1, 5.2 and
6, that all update the h-values in an eager way. The first
gridworld shows the Manhattan distances as user-supplied
H-values, the second gridworld shows the improved h-values
after the A* search, the third gridworld shows the updated
h-values after the current cell of the target changed and the
fourth gridworld shows the updated h-values determined by
the consistency procedure after cells A4 and D2 became un-
blocked. (When a cell becomes unblocked, we set initialize
its h-value to infinity before running the consistency proce-
dure.) Grey cells contain h-values that were updated. Figure
5 shows the g-values (in the upper left corners of the cells),
h-values (in the upper right corners) and search-values (in
the lower left corners) of Generalized Adaptive A*, that up-
dates the h-values in a lazy way except for the consistency
procedure. The first gridworld shows the values before the
A* search, the second gridworld shows the values after the
A* search, the third gridworld shows the values after the
current cell of the target changed and the fourth gridworld
shows the values determined by the consistency procedure
after cells A4 and D2 became unblocked. Grey cells are
arguments of calls to InitializeState(s). The h-value of a
cell s in the fourth gridworld of Figure 5 is equal to the h-
value of the same cell in the fourth gridworld of Figure 4
if search(s) = 2. An example is cell C2. The h-value of a
cell s in the fourth gridworld of Figure 5 is uninitialized if
search(s) = 0. In this case, the Manhattan distance with
respect to the current cell of the target is equal to the h-
value of the same cell in the fourth gridworld of Figure 4.
An example is cell A2. Otherwise, the h-value of a cell s in
the fourth gridworld of Figure 5 needs to get updated. It
needs to get updated according to Sections 5.1 and 5.2 to be
equal to the h-value of the same cell in the fourth gridworld
of Figure 4 if g(s) + h(s) < pathcost(search(s)). An exam-

Figure 6: Example Test Gridworlds

ple is cell C3. It needs to get updated according to Section
5.2 to be equal to the h-value of the same cell in the fourth
gridworld of Figure 4 if g(s) + h(s) ≥ pathcost(search(s)).
An example is cell B3.

8. EXPERIMENTAL EVALUATION
We perform experiments in the same kind of four-neighbor

gridworlds, one independent stationary-target or moving-
target search problem per gridworld. The agent and target
move on 100 randomly generated four-connected gridworlds
of size 300 × 300 that are shaped like a torus for ease of
implementation (that is, moving north in the northern-most
row results in being in the southern-most row and vice versa,
and moving west in the western-most column results in be-
ing in the eastern-most column and vice versa). Figure 6
(left) shows an example of a smaller size. We generate their
corridor structures with depth-first searches. We choose the
initial cells of the agent and target randomly among the
unblocked cells. We unblock k blocked cells and block k un-
blocked cells every tenth time step in a way so that there
always remains a path from the current cell of the agent to
the current cell of the target, where k is a parameter whose
value we vary from one to fifty. Figure 6 (right) shows that
these changes create shortcuts and decrease the distances

473

1 2 3 4 5

A
0 0 0 0

B
0 0 0 0 0

C
0 0 0 0

D
0 0

E
0 0 0 0

Start

Goal

counter= 1
deltah(1) = 0

Goal

1 2 3 4 5

A
0 0

8 4

1

10 2

1

B
5 5

1

6 4

1

7 3

1

8 2

1

9 1

1

C
4 4

1

5 3

1

6 2

1

10 0

1

D
3 5

1

0

E
2 6

1

1 5

1

0 4

1

0
Start

Goal

counter= 1
deltah(1) = 0
pathcost(1) = 10

Goal

1 2 3 4 5

A
0 0

8 4

1

10 2

1

B
5 5

1

6 4

1

7 3

1

8 2

1

9 1

1

C
4 4

1

5 3

1

6 2

1

10 0

1

D
3 5

1

0

E
2 6

1

1 5

1

0 4

1

0
Start

Goal

counter= 1
deltah(1) = 0
deltah(2) = 1
pathcost(1) = 10

1 2 3 4 5

A
0 0

 3

2

 2

2

 1

2

B
5 5

1

6 4

1

7 3

1

 1

2

9 1

1

C
4 4

1

 4

2

6 2

1

10 0

1

D
 6

2

 5

2

0

E
 7

2

 6

2

 7

2

0
Start

Goal

counter= 2
deltah(1) = 0
deltah(2) = 1
pathcost(1) = 10

Figure 5: Generalized Adaptive A*

between cells over time. For moving-target search, the tar-
get moves randomly but does not return to its immediately
preceeding cell unless this is the only possible move. It does
not move every tenth time step, which guarantees that the
agent can reach the target.

We compare Generalized Adaptive A* (GAA*) against
breadth-first search (BFS), A* and a heavily optimized D*
Lite (Target-Centric Map) [9]. Breadth-first search, A* and
Generalized Adaptive A* can search either from the current
cell of the agent to the current cell of the target (= forward)
or from the current cell of the target to the current cell of
the agent (= backward). Forward searches incur a runtime
overhead over backward searches since the paths given by
the tree-pointers go from the goal states to the start states
for forward searches and thus need to be reversed. D* Lite
is an alternative incremental heuristic search algorithm that
finds shortest paths in state spaces where the action costs
can increase or decrease over time. D* Lite can be under-
stood as changing the immediately preceeding A* search tree
into the current A* search tree, which requires the root node
of the A* search tree to remain unchanged and is fast only if
the number of action cost changes close to the root node of
the A* search tree is small and the immediately preceeding
and current A* search trees are thus similar. D* Lite thus
searches from the current cell of the target to the current cell
of the agent for stationary-target search but is not fast for
large k since the number of action cost changes close to the
root node of the A* search tree is then large. D* Lite can
move the map to keep the target centered for moving-target
search and then again searches from the current cell of the
target to the current cell of the agent but is not fast since
moving the map causes the number of action cost changes
close to the root node to be large [9]. Thus, D* Lite is fast
only for stationary-target search with small k. We use com-
parable implementations for all heuristic search algorithms.
For example, A*, D* Lite and Generalized Adaptive A* all
use binary heaps as priority queues and break ties among
cells with the same f-values in favor of cells with larger g-
values, which is known to be a good tie-breaking strategy.

We run our experiments on a Pentium D 3.0 GHz PC with
2 GBytes of RAM. We report two measures for the difficulty
of the search problems, namely the number of moves of the
agent until it reaches the target and the number of searches
run to determine these moves. All heuristic search algo-
rithms determine the same paths and their number of moves
and searches are thus approximately the same. They differ
slightly since the agent can follow different trajectories due

to tie breaking. We report two measures for the efficiency
of the heuristic search algorithms, namely the number of
expanded cells (= expansions) per search and the runtime
per search in microseconds. We calculate the runtime per
search by dividing the total runtime by the number of A*
searches. For Generalized Adaptive A*, we also report the
number of h-value updates (= propagations) per search by
the consistency procedure as third measure since the runtime
per search depends on both its number of expansions and
propagations per search. We calculate the number of prop-
agations per search by dividing the total number of h-value
updates by the consistency procedure by the number of A*
searches. We also report the standard deviation of the mean
for the number of expansions per search (in parentheses) to
demonstrate the statistical significance of our results. We
compare the heuristic search algorithms using their runtime
per search. Unfortunately, the runtime per search depends
on low-level machine and implementation details, such as
the instruction set of the processor, the optimizations per-
formed by the compiler and coding decisions. This point
is especially important since the gridworlds fit into memory
and the resulting state spaces are thus small. We do not
know of any better method for evaluating heuristic search
methods than to implement them as well as possible, pub-
lish their runtimes, and let other researchers validate them
with their own and thus potentially slightly different im-
plementations. For example, it is difficult to compare them
using proxies, such as their number of expansions per search,
since they perform different basic operations and thus differ
in their runtime per expansion. Breadth-first search has the
smallest runtime per expansion, followed by A*, General-
ized Adaptive A* and D* Lite (in this order). This is not
surprising: Breadth-first search leads due to the fact that
it does not use a priority queue. D* Lite and Generalized
Adaptive A* trail due to their runtime overhead as incre-
mental heuristic search algorithms and need to make up for
it by decreasing their number of expansions per search suf-
ficiently to result in smaller runtimes per search. Table 1
shows the following trends:

• D* Lite is fast only for stationary-target search with
small k. In the other cases, its number of expansions
per search is too large (as explained already) and dom-
inates some of the effects discussed below, which is why
we do not list D* Lite in the following.

• The number of searches and moves until the target
is reached decreases as k increases since the distance

474

Stationary Target Moving Target

searches moves expansions runtime propagations searches moves expansions runtime propagations
until until per per per until until per per per
target target search search search target target search search search
reached reached reached reached

k = 1
BFS (Forward) 298 2984 13454 (77.8) 2009 N/A 1482 2673 13255 (34.4) 1992 N/A
BFS (Backward) 298 2984 10078 (58.2) 1510 N/A 1482 2673 9885 (25.6) 1474 N/A
A* (Forward) 298 2984 12674 (73.3) 2670 N/A 1482 2673 12428 (32.2) 2596 N/A
A* (Backward) 298 2984 9593 (55.4) 1982 N/A 1482 2673 9402 (24.4) 1899 N/A
D* Lite 298 2984 558 (15.7) 397 N/A 1211 2705 15500 (39.6) 57704 N/A
GAA* (Forward) 299 2987 3686 (21.3) 1163 1311 1479 2660 5308 (13.7) 1283 191
GAA* (Backward) 310 3097 3581 (20.3) 1035 746 1510 2679 3504 (9.0) 838 150

k = 5
BFS (Forward) 177 1770 11479 (86.1) 1781 N/A 945 1707 10634 (34.6) 1588 N/A
BFS (Backward) 176 1765 8933 (67.1) 1390 N/A 943 1705 8528 (27.7) 1252 N/A
A* (Forward) 177 1775 10491 (78.6) 2328 N/A 946 1709 9673 (31.4) 2036 N/A
A* (Backward) 176 1759 8324 (62.6) 1810 N/A 942 1704 7876 (25.6) 1613 N/A
D* Lite 176 1760 1534 (32.5) 798 N/A 787 1754 13103 (41.6) 59270 N/A
GAA* (Forward) 176 1757 3197 (24.1) 1548 3607 950 1710 4235 (13.7) 1052 494
GAA* (Backward) 180 1801 3103 (23.1) 1284 2437 1008 1776 2645 (8.3) 662 412

k = 10
BFS (Forward) 131 1307 10228 (89.3) 1650 N/A 768 1366 10084 (36.3) 1437 N/A
BFS (Backward) 130 1305 7712 (67.3) 1266 N/A 763 1357 7701 (27.8) 1071 N/A
A* (Forward) 130 1305 9050 (79.1) 2091 N/A 759 1354 8889 (32.2) 1864 N/A
A* (Backward) 130 1303 6990 (61.1) 1605 N/A 759 1353 6950 (25.2) 1402 N/A
D* Lite 130 1306 2048 (44.3) 1053 N/A 619 1376 11478 (44.8) 60916 N/A
GAA* (Forward) 131 1308 2991 (26.1) 1903 5232 777 1372 4038 (14.4) 1058 688
GAA* (Backward) 139 1388 2813 (23.8) 1530 3708 813 1400 2289 (8.0) 626 603

k = 20
BFS (Forward) 114 1143 9895 (92.3) 1657 N/A 589 1064 9018 (37.1) 1305 N/A
BFS (Backward) 115 1149 7548 (70.2) 1283 N/A 588 1067 7482 (30.8) 1058 N/A
A* (Forward) 115 1154 8552 (79.4) 2063 N/A 589 1069 7777 (32.0) 1666 N/A
A* (Backward) 115 1149 6670 (62.1) 1602 N/A 586 1066 6582 (27.1) 1369 N/A
D* Lite 115 1151 2700 (54.0) 1380 N/A 480 1092 10784 (49.3) 66649 N/A
GAA* (Forward) 115 1147 3097 (28.8) 2251 6241 598 1070 3679 (15.0) 1040 888
GAA* (Backward) 117 1171 2922 (26.9) 1782 4426 632 1113 2163 (8.6) 660 817

k = 50
BFS (Forward) 82 819 8891 (97.9) 1633 N/A 448 789 8559 (40.4) 1268 N/A
BFS (Backward) 82 821 7169 (78.8) 1360 N/A 450 791 6537 (30.8) 942 N/A
A* (Forward) 82 819 7221 (79.5) 1927 N/A 454 795 6849 (32.1) 1530 N/A
A* (Backward) 82 822 5963 (65.5) 1611 N/A 448 790 5453 (25.7) 1173 N/A
D* Lite 82 821 3531 (72.8) 1949 N/A 354 789 8917 (51.3) 79896 N/A
GAA* (Forward) 83 832 3265 (35.6) 3001 8288 452 788 3545 (16.6) 1108 1139
GAA* (Backward) 83 831 3039 (33.2) 2395 6151 473 814 1975 (9.1) 713 1066

Table 1: Experimental Results

between two cells then decreases more quickly (as ex-
plained already), which decreases more quickly the
length of the path from the current cell of the agent to
the current cell of the target. This decreases the num-
ber of moves and also the number of searches since
the action costs change every tenth time step and a
new search thus needs to be performed (at least) every
tenth time step. The number of searches until the tar-
get is reached is larger for moving-target search than
stationary-target search since additional searches need
to be performed every time the target leaves the cur-
rent path.

• The number of propagations per search of General-
ized Adaptive A* increases as k increases since a larger
number of action costs then decrease. The number of
propagations per search of Generalized Adaptive A*
is smaller for moving-target search than stationary-
target search for two reasons: First, the agent performs
an A* search for stationary target search whenever the
action costs change. Thus, the number of searches
equals the number of runs of the consistency proce-
dure. The agent performs an A* search for moving-
target search whenever the action costs change or the
target leaves the current path. Thus, the number of
searches is larger than the number of runs of the consis-
tency procedure and the propagations are now amor-
tized over several searches. Second, the additional up-
dates of the h-values from Section 5.2 keep the h-values
smaller. Thus, the h-values of more cells are equal to

their Manhattan distances, and cells whose h-values
are equal to the Manhattan distances stop the updates
of the h-values by the consistency procedure. (This ef-
fect also explains why the number of propagations per
search of Generalized Adaptive A* is smaller for back-
ward search than forward search.)

• The number of expansions per search of Generalized
Adaptive A* is smaller than the one of A* since its
h-values cannot be less informed than the ones of A*.
Similarly, the number of expansions per search of A*
is smaller than the one of breadth-first search since its
h-values cannot be less informed than uninformed.

• The runtime per search of breadth-first search, A* and
Generalized Adaptive A* is smaller for moving-target
search than stationary-target search, which is an arti-
fact of calculating the runtime per search by dividing
the total runtime by the number of searches since the
runtime for generating the initial gridworlds and ini-
tializing the data structures is then amortized over a
larger number of searches.

We say in the following that one heuristic search algo-
rithm is better than another one if its runtime per search
is smaller for the same search direction, no matter what
the search direction is. We included breadth-first search
in our comparison since our gridworlds have few cells and
small branching factors, which makes breadth-first search
better than A*. Generalized Adaptive A* mixes A* with

475

Dijkstra’s algorithm for the consistency procedure, and Di-
jkstra’s algorithm has a larger runtime per expansion than
breadth-first search. The number of propagations per search
of Generalized Adaptive A* increases as k increases. Gen-
eralized Adaptive A* cannot be better than breadth-first
search when this number is about as large as the num-
ber of expansions of breadth-first search, which happens
only for stationary-target search with large k. Overall, for
stationary-target search, D* Lite is best for small k and
breadth-first search is best for large k. Generalized Adap-
tive A* is always worse than D* Lite. It is better than
breadth-first search and A* for small k but worse then them
for large k since its number of propagations is then larger
and the improved h-values remain informed for shorter pe-
riods of time. On the other hand, for moving-target search,
Generalized Adaptive A* is best (which is why it advances
the state of the art in heuristic search), followed by breadth-
first search, A* and D* Lite (in this order).

9. RELATED WORK
Real-time heuristic search [10] limits A* searches to part

of the state space around the current state (= local search
space) and then follows the resulting path. It repeats this
procedure once it leaves the local search space (or, if de-
sired, earlier), until it reaches the goal state. After each
search, it uses a consistency procedure to update some or
all of the h-values in the local search space to avoid cy-
cling without reaching the goal state [12, 6, 3]. Real-time
heuristic search thus typically solves a search problem by
searching repeatedly in the same state space and following
a trajectory from the start state to the goal state that is not
a shortest path. Adaptive A* and Generalized Adaptive A*
(GAA*), on the other hand, solve a series of similar but not
necessarily identical search problems. For each search prob-
lem, they search once and determine a shortest path from
the start state to the goal state. This prevents the consis-
tency procedure of Generalized Adaptive A* (GAA*) from
restricting the updates of the h-values to small parts of the
state space because all of its updates are necessary to keep
the h-values consistent with respect to the goal state and
thus find a shortest path from the start state to the goal
state. However, Adaptive A* has recently been modified to
perform real-time heuristic search [8].

10. CONCLUSIONS
In this paper, we showed how to generalize Adaptive

A* to find shortest paths in state spaces where the action
costs can increase or decrease over time. Our experiments
demonstrated that Generalized Adaptive A* outperforms
both breadth-first search, A* and D* Lite for moving-target
search. It is future work to extend our experimental re-
sults to understand better when Generalized Adaptive A*
(GAA*) runs faster than breadth-first search, A* and D*
Lite. It is also future work to combine the principles behind
Generalized Adaptive A* (GAA*) and D* Lite to speed it
up even more.

11. ACKNOWLEDGMENTS
All experimental results are the responsibility of Xiaoxun

Sun. This research has been partly supported by an NSF
award to Sven Koenig under contract IIS-0350584. The
views and conclusions contained in this document are those

of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied of the
sponsoring organizations, agencies, companies or the U.S.
government.

12. REFERENCES
[1] E. Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, 1:269–271, 1959.

[2] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 2:100–107, 1968.

[3] C. Hernández and P. Maseguer. LRTA*(k). In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1238–1243, 2005.

[4] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald.
Speeding up problem solving by abstraction: A graph
oriented approach. Artificial Intelligence,
85(1–2):321–361, 1996.

[5] T. Ishida and R. Korf. Moving target search. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 204–210, 1991.

[6] S. Koenig. A comparison of fast search methods for
real-time situated agents. In Proceedings of the
International Conference on Autonomous Agents and
Multi-Agent Systems, pages 864–871, 2004.

[7] S. Koenig and M. Likhachev. A new principle for
incremental heuristic search: Theoretical results. In
Proceedings of the International Conference on
Automated Planning and Scheduling, pages 402–405,
2006.

[8] S. Koenig and M. Likhachev. Real-Time Adaptive A*.
In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems, pages
281–288, 2006.

[9] S. Koenig, M. Likhachev, and X. Sun. Speeding up
moving-target search. In Proceedings of the
International Joint Conference on Autonomous Agents
and Multiagent Systems, 2007.

[10] R. Korf. Real-time heuristic search. Artificial
Intelligence, 42(2-3):189–211, 1990.

[11] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[12] J. Pemberton and R. Korf. Incremental path planning
on graphs with cycles. In Proceedings of the
International Conference on Artificial Intelligence
Planning Systems, pages 179–188, 1992.

476

