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ABSTRACT
Practical reasoning(PR), which is concerned with the generic ques-
tion of what to do, is generally seen as a two steps process: (1)de-
liberation, in which an agent decides what state of affairs it wants to
reach –that is, itsdesires; and (2)means-ends reasoning, in which
the agent looks for plans for achieving these desires. A desire isjus-
tified if it holds in the current state of the world, andfeasibleif there
is a plan for achieving it. The agent’sintentionsare thus a consis-
tent subset of desires that are both justified and feasible. This paper
proposes the first argumentation system for PR that computes in
one step the intentions of an agent, allowing thus to avoid the draw-
backs of the existing systems. The proposed system is grounded
on a recent work on constrained argumentation systems, and satis-
fies the rationality postulates identified in argumentation literature,
namely theconsistencyand thecompletenessof the results.

Categories and Subject Descriptors
I.2.3 [Deduction and Theorem Proving]: Nonmonotonic reason-
ing and belief revision; I.2.11 [Distributed Artificial Intelligence ]:
Intelligent agents

General Terms
Human Factors, Theory

Keywords
Argumentation, Practical reasoning

1. INTRODUCTION
Practical reasoning(PR) [15], is concerned with the generic

question “what is the right thing to do for an agent in a given situ-
ation”. In [21], it has been argued that PR is a two steps process.
The first step, often calleddeliberation, consists of identifying the
desires of an agent. In the second step, calledmeans-end reason-
ing, one looks for ways for achieving those desires,i.e. for actions
or plans. A desire isjustified if it holds in the current state of the
world, and isfeasibleif it has a plan for achieving it. The agent’s
intentions, what the agent decides to do, is a consistent subset of
desires that are both justified and feasible.

Cite as: A constrained argumentation system for practical reasoning, L.
Amgoud, C. Devred and M-C. Lagasquie-Schiex,Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,
Portugal, pp.429-436.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

What is worth noticing in most works on practical reasoning is
the use of arguments for providing reasons for choosing or discard-
ing a desire as an intention. Indeed, several argumentation-based
systems for PR have been proposed in the literature [3, 13, 14].
However, in most of these works, the problem of PR is modeled
in terms of at least two separate systems, each of them capturing
a given step of the process. Such an approach may suffer from a
serious drawback. In fact, some desires that are not feasible may be
accepted at the deliberation step to the detriment of other justified
and feasible desires. Moreover, the properties of those systems are
not investigated.

This paper proposes the first argumentation system that com-
putes the intentions of an agent in one step. The system is grounded
on a recent work onconstrainedargumentation systems [9]. These
last extend the well-known general system of Dung [10] by adding
constraints on arguments that need to be satisfied by the extensions
returned by the system. Our system takes then as input i) three
categories of arguments:epistemicarguments that support beliefs,
explanatoryarguments that show that a desire holds in the current
state of the world, andinstrumentalarguments that show that a de-
sire is feasible, ii) different conflicts among those arguments, and
iii) a particular constraint on arguments that captures the idea that
for a desire to be pursued it should be both feasible and justified.
This is translated by the fact that in a given extension each instru-
mental argument for a desire should be accompanied by at least an
explanatory argument in favor of that desire. The output of our sys-
tem is different sets of arguments as well as different sets of inten-
tions. The use of a constrained system makes it possible to compute
directly the intentions from the extensions. The properties of this
system are deeply investigated. In particular, we show that its re-
sults are safe, and satisfy the rationality postulates identified in [5],
namely consistency and completeness.

The paper is organized as follows: Section 2 recalls the basics
of a constrained argumentation system. Section 3 presents the log-
ical language. Section 4 studies the different types of arguments
involved in a practical reasoning problem, and Section 5 investi-
gates the conflicts that may exist between them. Section 6 presents
the constrained argumentation system for PR, and its properties are
given in Section 7. The system is then illustrated in Section 8.

2. BASICS OF CONSTRAINED ARGUMEN-
TATION

Argumentation is an established approach for reasoning with in-
consistent knowledge, based on the construction and the compari-
son of arguments. Many argumentation formalisms are built around
an underlying logical language and an associated notion of logi-
cal consequence, defining the notion of argument. The argument
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construction is a monotonic process: new knowledge cannot rule
out an argument but gives rise to new arguments which may inter-
act with the first argument. Since knowledge bases may give rise
to inconsistent conclusions, the arguments may be conflicting too.
Consequently, it is important to determine among all the available
arguments, the ones that are ultimately “acceptable”. In [10], an
abstract argumentation system has been proposed, and different ac-
ceptability semantics have been defined.

DEF. 1. ([10] – Basic argumentation system)An argumenta-
tion systemis a pair AF = 〈A,R〉 with A is a set of arguments,
andR is an attack relation (R ⊆ A×A).

Before recalling the acceptability semantics of Dung [10], let us
first introduce some useful concepts.

DEF. 2. ([10] – Conflict-free, Defence)Let E ⊆ A. E is con-
flict-free iff ∄ α, β ∈ E such thatα R β. E defendsan argumentα
iff ∀ β ∈ A, if β R α, then∃ δ ∈ E such thatδ R β.

Dung’s semantics are all based on a notion of admissibility.

DEF. 3. ([10] – Acceptability semantics)LetE be a set of ar-
guments.E is an admissibleset iff it is conflict-free and defends
every element inE . E is a preferred extensioniff it is a maximal
(w.r.t. set-inclusion) admissible set.E is a stable extensioniff it is
a preferred extension that attacks all arguments inA\E .

Note that every stable extension is also a preferred one, but the
converse is not always true.

The above argumentation system has been generalized in [9].
The basic idea is to explicitconstraintson arguments that should
be satisfied by the above Dung’s extensions. For instance, one may
want that the two argumentsα andβ belong to the same stable
extension. These constraints are generally expressed in terms of a
propositional formula built from a language usingA as an alphabet.

DEF. 4. ([9] – Constraints on arguments, Completion of a
set of arguments)LetA be a set of arguments andLA be a propo-
sitional language defined usingA as the set of propositional vari-
ables.C is a constraintonA iff C is a formula ofLA. Thecom-
pletionof a setE ⊆ A is: bE = {α | α ∈ E} ∪ {¬α | α ∈ A \ E}.
A setE ⊆ A satisfiesC iff bE is a model ofC ( bE ⊢ C).

A constrained system is defined as follows:

DEF. 5. ([9] – Constrained argumentation system)A con-
strained argumentation systemis a triple CAF = 〈A,R, C〉 with
C is a constraint on arguments ofA.

Let us recall how Dung’s extensions are extended in constrained
systems. As said before, the basic idea is to compute Dung’s exten-
sions, and then to keep among those extensions the ones that satisfy
the constraintC.

DEF. 6. ([9] – C-admissible set)LetE ⊆ A. E isC-admissible
iff i) E is admissible, ii)E satisfies the constraintC.

Note that the empty set is admissible, however, it is not always
C-admissible sinceb∅ does not always implyC.

DEF. 7. ([9] – C-extensions)Let E ⊆ A. E is a C-preferred
extensioniff E is maximal for set-inclusion among theC-admissible
sets.E is aC-stable extensioniff E is aC-preferred extension that
attacks all arguments inA\E .

Now that the acceptability semantics are defined, we are ready to
define the status of any argument.

DEF. 8. (Argument status) Let CAF be a constrained argu-
mentation system, andE1, . . . , Ex its extensions under a given se-
mantics. Letα ∈ A. α is acceptediff α ∈ Ei, ∀Ei with i =
1, . . . , x. α is rejectediff ∄Ei such thatα ∈ Ei. α is undecidediff
α is neither accepted nor rejected.

One can easily check that if an argument is rejected in the basic
systemAF, then it will also be rejected inCAF.

PROP. 1. Let α ∈ A. If α is rejected inAF, thenα is also
rejected inCAF.

PROOF. Let α ∈ A. Assume thatα is rejected inAF, and thatα is not
rejected inCAF.
Case of stable semantics:Sinceα is not rejected inCAF, then there exists
Ei that is aC-stable extension ofCAF, andα ∈ Ei. In [9], it has been
shown (Prop. 6) that everyC-stable extension is also a stable extension.
Consequently,Ei is also a stable extension. Sinceα is rejected inAF, then
α 6∈ Ei, contradiction.
Case of preferred semantics:Sinceα is not rejected inCAF, then there
existsEi that is aC-preferred extension ofCAF, andα ∈ Ei. In [9], it
has been shown (Prop. 4) that eachC-preferred extension is a subset of
a preferred extension. This means that∃E suchE is a preferred extension
of AF andEi ⊆ E . However, sinceα is rejected inAF, thenα 6∈ E ,
contradiction with the fact thatα ∈ Ei.

3. LOGICAL LANGUAGE
This section presents the logical language that will be used through-
out the paper. LetL be apropositional language, and≡ be the clas-
sical equivalence relation. >FromL, a subsetD is distinguished
and is used for encodingdesires. By desire we mean a state of af-
fairs that an agent wants to reach. Elements ofD are literals. We
will write d1, . . . , dn to denote desires and the lowercase letters
will denote formulas ofL.

>From the above sets,desire-generationrules can be defined. A
desire-generation rule expresses under which conditions an agent
may adopt a given desire. A desire may come from beliefs. For
instance, “if the weather is sunny, then I desire to go to the park”.
In this case, the desire of going to the park depends on my belief
about the weather. A desire may also come from other desires. For
example, if there is a conference in India,and I have the desire to
attend, then I desire also to attend the tutorials. Finally, a desire
may be unconditional, this means that it depends on neither beliefs
nor desires. These three sources of desires are captured by the fol-
lowing desire-generation rules.

DEF. 9. (Desire-Generation Rules)A desire-generation rule
(or a desire rule) is an expression of the form

b ∧ d1 ∧ · · · ∧ dm−1 →֒ dm, where

b is a propositional formula ofL and ∀di, di ∈ D. Moreover,
∄di, dj with i, j ≤ m such thatdi ≡ dj . b ∧ d1 ∧ · · · ∧ dm−1 is
called thebodyof the rule (this body may be empty; this is the case
of an unconditional desire), anddm is its consequent.

The meaning of the rule is “if the agentbelievesb and desires
d1, . . . , dm−1, then the agent willdesiredm as well”. Note that
the same desiredi may appear in the consequent of several rules.
This means that the same desire may depend on different beliefs or
desires. In what follows, a desire rule is consistent if it depends on
consistent beliefs and on non contradictory desires.

DEF. 10. (Consistent Desire Rule)A desire ruleb∧d1∧· · ·∧
dm−1 →֒ dm is consistentiff b 0 ⊥, ∀i = 1 . . . m, b 0 ¬di and
∄di, dj with i, j ≤ m such thatdi ≡ ¬dj . Otherwise, the rule is
said inconsistent.
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An agent is assumed to be equipped withplansprovided by a given
planning system. The generation of such plans is beyond the scope
of this paper. A plan is a way of achieving a desire. It is defined as a
triple: i) a set of pre-conditions that should be satisfied before exe-
cuting the plan, ii) a set of post-conditions that hold after executing
the plan, and iii) the desire that is reached by the plan.

DEF. 11. (Plan) A plan is a triple 〈S, T, x〉 such that

S andT areconsistentsets of formulas ofL,

x ∈ D,

T ⊢ x andS 6⊢ x.

Of course, there exists a link betweenS andT . But this link is not
explicitly defined here because we are not interested by this aspect
of the process. We just consider that the plan is given by a correct
and sound planning system (for instance [11, 16]).

In the remaining of the paper, we suppose that an agent is equipped
with threefinite bases: i) a baseK 6= ∅ andK 6= {⊥} containing
its basic beliefsabout the environment (elements ofK are propo-
sitional formulas of the languageL), ii) a baseBd containing its
“consistent” desire rules, iii) a baseP containing its plans. Using
Bd, we can characterize thepotential desiresof an agent as follows:

DEF. 12. (Potential Desires)The set ofpotential desiresof an
agent isPD = {dm|∃b ∧ d1 ∧ · · · ∧ dm−1 →֒ dm ∈ Bd}.

These are “potential” desires because it is not yet clear whether
these desires are justified and feasible or not.

4. TYPOLOGY OF ARGUMENTS
The aim of this section is to present the different kinds of ar-

guments involved in practical reasoning. There are mainly three
categories of arguments: one category for supporting/attacking be-
liefs, and two categories for justifying the adoption of desires. Note
that the arguments will be denoted with lowercase greek letters.

4.1 Justifying beliefs
The first category of arguments is that studied in argumenta-

tion literature, especially for handling inconsistency in knowledge
bases. Indeed, arguments are built from a knowledge base in order
to support or to attack potential conclusions or inferences. These
arguments are calledepistemicin [12]. In our application, such ar-
guments are built from the baseK. In what follows, we will use the
definition proposed in [17].

DEF. 13. (Epistemic Argument) LetK be a knowledge base.
An epistemic argumentα is a pair α = 〈H, h〉 s.t: 1) H ⊆ K, 2)
H is consistent, 3)H ⊢ h and 4)H is minimal (for set⊆) among
the sets satisfying conditions 1, 2, 3.
Thesupportof the argument is given by the functionSUPP(α) = H,
whereas itsconclusionis returned byCONC(α) = h. Ab stands for
the set of all epistemic arguments that can be built from the baseK.

4.2 Justifying desires
A desire may be pursued by an agent only if it isjustifiedand

feasible. Thus, there are two kinds of reasons for adopting a desire:
i) the conditions underlying the desire hold in the current state of
world; ii) there is a plan for reaching the desire. The definition of
the first kind of arguments involves two bases: the belief baseK
and the base of desire rulesBd. In what follows, we will use a tree-
style definition of arguments [19]. Before presenting that defini-
tion, let us first introduce the functionsBELIEFS(δ), DESIRES(δ),
CONC(δ) andSUB(δ) that return respectively, for a given argument
δ, the beliefs used inδ, the desires supported byδ, the conclusion
and the set of sub-arguments of the argumentδ.

DEF. 14. (Explanatory Argument) Let 〈K,Bd〉 be two bases.

If ∃ →֒ d ∈ Bd then−→ d is anexplanatory argument(δ)
with BELIEFS(δ) = ∅, DESIRES(δ) = {d}, CONC(δ) = d,
SUB(δ) = {δ}.

If α is an epistemic argument, andδ1, . . . , δm are explana-
tory arguments, and∃ CONC(α)∧ CONC(δ1)∧ . . .∧CONC(δm)
→֒ d ∈ Bd thenα, δ1, . . . , δm −→ d is an explanatory ar-
gument(δ) with BELIEFS(δ) = SUPP(α) ∪ BELIEFS(δ1) ∪
. . . ∪ BELIEFS(δm), DESIRES(δ) = DESIRES(δ1) ∪ . . . ∪
DESIRES(δm)∪{d}, CONC(δ) = d, SUB(δ) = {α}∪SUB(δ1)∪
. . . ∪ SUB(δm) ∪ {δ}.

Ad stands for the set of all explanatory arguments that can be built
from 〈K,Bd〉 with a consistentDESIRES set.

One can easily show that the setBELIEFS of an explanatory argu-
ment is a subset of the knowledge baseK, and that the setDESIRES
is a subset ofPD.

PROP. 2. Let δ ∈ Ad. BELIEFS(δ) ⊆ K, DESIRES(δ) ⊆ PD.

PROOF. Let δ ∈ Ad. Let us show thatBELIEFS(δ) ⊆K. BELIEFS(δ)
=

S

SUPP(αi) with αi ∈ Ab ∩ SUB(δ). According to the definition of an
epistemic argumentαi, SUPP(αi) ⊆ K, thusBELIEFS(δ) ⊆ K.
Let us show thatDESIRES(δ) ⊆PD. This is a direct consequence from the
definition of an explanatory argument and the definition of thesetPD.

Note that a desire may be supported by several explanatory argu-
ments since it may be the consequent of different desire rules.

The last category of arguments claims that “a desire may be pur-
sued since it has a plan for achieving it”. The definition of this kind
of arguments involves the belief baseK and the base of plansP.

DEF. 15. (Instrumental Argument) Let 〈K,P〉 be two bases,
andd ∈ PD. Aninstrumentalargument is a pairπ = 〈〈S, T, x〉, d〉
where 1)〈S, T, x〉 ∈ P, 2) S ⊆ K, 3) x ≡ d.
Ap stands for the set of all instrumental arguments that can be
built from〈K,P,PD〉. The functionCONC returns for an argument
π the desired. The functionPrec returns the pre-conditionsS of
the plan, whereasPostc returns its post-conditionsT .

The second condition of the above definition says that the pre-
conditions of the plan hold in the current state of the world. In
other words, the plan can be executed. Indeed, it may be the case
that the baseP contains plans whose pre-conditions are not true.
Such plans cannot be executed and their corresponding instrumen-
tal arguments do not exist.
In what follows,A = Ab ∪ Ad ∪ Ap. Note thatA is finite since
the three initial bases (K, Bd andP) are finite.

5. INTERACTIONS AMONG ARGUMENTS
An argument constitutes a reason for believing, or adopting a de-

sire. However, it is not a proof that the belief is true, or in our case
that the desire should be adopted. The reason is that an argument
can be attacked by other arguments. In this section, we will investi-
gate the different kinds of conflicts among the arguments identified
in the previous section.

5.1 Conflicts among epistemic arguments
An argument can be attacked by another argument for three main

reasons: i) they have contradictory conclusions (this is known as
rebuttal), ii) the conclusion of an argument contradicts a premise
of another argument (assumption attack), iii) the conclusion of an
argument contradicts an inference rule used in order to build the
other argument (undercutting). Since the baseK is built around
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a propositional language, it has been shown in [2] that the notion
of assumption attack is sufficient to capture conflicts between epis-
temic arguments.

DEF. 16. Letα1, α2 ∈ Ab. α1 Rb α2 iff ∃h′ ∈ SUPP(α2) such
thatCONC(α1) ≡ ¬h′.

Note that the relationRb is not symmetric. Moreover, one can show
that there are no self-defeating arguments.

In [6], the argumentation system〈Ab,Rb〉 has been applied for
handling inconsistency in a knowledge base, sayK. In this partic-
ular case, a full correspondence has been established between the
stable extensions of the system and the maximal consistent subsets
of the baseK. Before presenting formally the result, let us intro-
duce some useful notations. LetE ⊆ Ab, Base(E) =

S
Hi such

that〈Hi, hi〉 ∈ E . Let T ⊆ K, Arg(T ) = {〈Hi, hi〉|Hi ⊆ T}.

PROP. 3 ([6]). LetE be a stable extension of〈Ab,Rb〉.
Base(E) is a maximal (for set⊆) consistent subset ofK and
Arg(Base(E)) = E .

PROP. 4 ([6]). LetT be a maximal (for set⊆) consistent sub-
set ofK.
Arg(T ) is a stable extension of〈Ab,Rb〉 andBase(Arg(T )) = T .

A direct consequence of the above result is that if the baseK is not
reduced to⊥, then the system〈Ab,Rb〉 has at least one non-empty
stable extension.

PROP. 5. The argumentation system〈Ab,Rb〉 has non-empty
stable extensions.

PROOF. SinceK 6= {⊥} andK 6= ∅ then the baseK has at least one
maximal (for set inclusion) consistent subset, sayT . According to Prop. 4,
Arg(T ) is a stable extension of〈Ab,Rb〉.

5.2 Conflicts among explanatory arguments
Explanatory arguments may also be conflicting. Indeed, two ex-

planatory arguments may be based on two contradictory desires.

DEF. 17. Let δ1, δ2 ∈ Ad. δ1 Rd δ2 iff ∃d1 ∈ DESIRES(δ1),
d2 ∈ DESIRES(δ2) such thatd1 ≡ ¬d2.

PROP. 6. The relationRd is symmetric and irreflexive.

PROOF. The proof follows directly from the definition ofRd.

Note that from the definition of an explanatory argument, its set
DESIRES cannot be inconsistent. However, it is worth noticing that
the setBELIEFS may be inconsistent, or even the union of the be-
liefs of two explanatory arguments is inconsistent. However, later
in the paper, we will show that it is useless to explicit this kind of
conflicts, since they are captured by conflicts between the explana-
tory arguments and epistemic ones (see Prop. 9 and Prop. 10).

5.3 Conflicts among instrumental arguments
Two plans may be conflicting for four main reasons:

their pre-conditions are incompatible (i.e. the two plans can-
not be executed at the same time),

their post-conditions are incompatible (the execution of the
two plans will lead to contradictory states of the world),

the post-conditions of a plan and the preconditions of the
other are incompatible (i.e. the execution of a plan will pre-
vent the execution of the second plan in the future),

their supporting desires are incompatible (indeed, plans for
achieving contradictory desires are conflicting; their execu-
tion will in fact lead to a contradictory state of the world).

The above reasons are captured in the following definition of
attack among instrumental arguments. Note that a plan cannot be
incompatible with itself.

DEF. 18. Letπ1, π2 ∈ Ap with π1 6= π2. π1 Rp π2 iff:

Prec(π1) ∧ Prec(π2) |= ⊥, or

Postc(π1) ∧ Postc(π2) |= ⊥, or

Postc(π1) ∧ Prec(π2) |= ⊥ or Prec(π1) ∧ Postc(π2) |= ⊥.

PROP. 7. The relationRp is symmetric and irreflexive.

PROOF. The proof follows directly from the definition ofRp.

One can show that if two plans realize conflicting desires, then
their corresponding instrumental arguments are conflicting too.

PROP. 8. Let d1, d2 ∈ PD. If d1 ≡ ¬d2, then∀π1, π2 ∈ Ap

s.t.CONC(π1) = d1 andCONC(π2) = d2, thenπ1 Rp π2.

PROOF. Let d1, d2 ∈ PD. Suppose thatd1 ≡ ¬d2. Let us also
suppose that∃ π1, π2 ∈ Ap with CONC(π1) = d1, andCONC(π2) = d2.
According to Definition 15, it holds thatPostc(π1) ⊢ d1 andPostc(π2)
⊢ d2. Sinced1 ≡ ¬d2, then Postc(π2) ⊢ ¬d1. However, the two
setsPostc(π1) andPostc(π2) are both consistent (according to Defini-
tion 11), thusPostc(π1) ∪ Postc(π2) ⊢ ⊥. Thus,π1 Rp π2.

In this section, we have considered only binary conflicts between
plans, and consequently between their corresponding instrumental
arguments. However, in every-day life, one may have for instance
three plans such that any pair of them is not conflicting, but the
three together are incompatible. For simplicity reasons, in this pa-
per we suppose that we do not have such conflicts.

5.4 Conflicts among mixed arguments
In the previous sections we have shown how arguments of the

same category can interact with each other. In this section, we will
show that arguments of different categories can also interact. In-
deed, epistemic arguments play a key role in ensuring the accept-
ability of explanatory or instrumental arguments. Namely, an epis-
temic argument can attack both types of arguments. The idea is to
invalidate any belief used in an explanatory or instrumental argu-
ment. An explanatory argument may also conflict with an instru-
mental argument when this last achieves a desire whose negation is
among the desires of the explanatory argument.

DEF. 19. Letα ∈ Ab, δ ∈ Ad, π ∈ Ap.

α Rbd δ iff ∃h ∈ BELIEFS(δ) s.t.h ≡ ¬CONC(α).

α Rbp π iff ∃h ∈ Prec(π), s.t.h ≡ ¬CONC(α).

δRpdpπ andπRpdpδ iff CONC(π) ≡ ¬d andd ∈ DESIRES(δ)1.

As already said, the set of beliefs of an explanatory argument may
be inconsistent. In such a case, the explanatory argument is at-
tacked (in the sense ofRbd) for sure by an epistemic argument.

PROP. 9. Let δ ∈ Ad. If BELIEFS(δ) ⊢ ⊥, then∃α ∈ Ab such
thatα Rbd δ.

PROOF. Let δ ∈ Ad. Suppose thatBELIEFS(δ) ⊢ ⊥. This means
that ∃T that is minimal for set inclusion among subsets ofBELIEFS(δ)
with T ⊢ ⊥. Thus2, ∃h ∈ T such thatT\{h} ⊢ ¬h with T\{h} is
consistent. SinceBELIEFS(δ) ⊆ K (according to Prop. 2), thenT\{h} ⊆
K. Consequently,∃ 〈T\{h},¬h〉 ∈ Ab with h ∈ BELIEFS(δ). Thus,
〈T\{h},¬h〉 Rbd δ.

1Note that ifδ1Rpdpπ2 and there existsδ2 such thatCONC(δ2) =
CONC(π2) thenδ1Rdδ2.
2SinceT is⊆-minimal among inconsistent subsets ofBELIEFS(δ),
then each subset ofT is consistent.
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Similarly, when the beliefs of two explanatory arguments are in-
consistent, it can be checked that there exists an epistemic argument
that attacks at least one of the two explanatory arguments.

PROP. 10. Let δ1, δ2 ∈ Ad respectingBELIEFS(δ1) 6⊢ ⊥ and
BELIEFS(δ2) 6⊢ ⊥. If BELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, then
∃α ∈ Ab such thatα Rbd δ1, or α Rbd δ2.

PROOF. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ andBELIEFS(δ2)
6⊢ ⊥. Suppose thatBELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥. So, ∃T1 ⊆
BELIEFS(δ1) and∃T2 ⊆ BELIEFS(δ2) with T1 ∪ T2 ⊢ ⊥ andT1 ∪ T2

is minimal for set inclusion,i.e. T1 ∪ T2 is a minimal conflict. Since
BELIEFS(δ1) 6⊢ ⊥ andBELIEFS(δ2) 6⊢ ⊥, thenT1 6= ∅ andT2 6= ∅.
Thus,∃h ∈ T1 ∪ T2 such that(T1 ∪ T2) \ {h} ⊢ ¬h. SinceT1 ∪ T2 is
a minimal conflict, then each subset ofT1 ∪ T2 is consistent, thus the set
(T1∪T2)\{h} is consistent. Moreover, according to Prop. 2,BELIEFS(δ1)
⊆ K andBELIEFS(δ2) ⊆ K. Thus,T1 ⊆ K andT2 ⊆ K. It is then clear
that (T1 ∪ T2) \ {h} ⊆ K. Consequently〈(T1 ∪ T2) \ {h},¬h〉 is an
argument ofAb.

If h ∈ T1, then〈(T1 ∪ T2) \ {h},¬h〉 Rbd δ1, and if h ∈ T2, then
〈(T1 ∪ T2) \ {h},¬h〉 Rbd δ2.

Conflicts may also exist between an instrumental argument and an
explanatory one since the beliefs of the explanatory argument may
be conflicting with the preconditions of the instrumental one. Here
again, we’ll show that there exists an epistemic argument that at-
tacks at least one of the two arguments.

PROP. 11. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If
BELIEFS(δ) ∪ Prec(π) ⊢ ⊥ then∃α ∈ Ab such thatα Rbd δ, or
α Rbp π.

PROOF. Let δ ∈ Ad andπ ∈ Ap. Suppose thatBELIEFS(δ) 6⊢ ⊥.
SinceBELIEFS(δ) 6⊢ ⊥ andPrec(π) 6⊢ ⊥, then∃T ⊆ BELIEFS(δ) ∪
Prec(π) with BELIEFS(δ) ∩ T 6= ∅, Prec(π) ∩ T 6= ∅ andT is the
smallest inconsistent subset ofBELIEFS(δ) ∪ Prec(π).

SinceT ⊢ ⊥, then∃h ∈ T such thatT\{h} ⊢ ¬h with T\{h} is
consistent. SinceBELIEFS(δ) ⊆ K and sincePrec(π) ⊆ K, thenT ⊆ K.
Consequently,T\{h} ⊆ K. Thus,〈T\{h},¬h〉 ∈ Ab.

If h ∈ BELIEFS(δ), then〈T\{h},¬h〉 Rbd δ. If h ∈ Prec(π), then
〈T\{h},¬h〉 Rbp π.

Later in the paper, it will be shown that the three above propositions
are sufficient for ignoring these conflicts (between two explanatory
arguments, and between an explanatory argument and an instru-
mental one). Note also that explanatory arguments and instrumen-
tal arguments are not allowed to attack epistemic arguments. In
fact, a desire cannot invalidate a belief. Let us illustrate this issue
by an example borrowed from [18]. An agent thinks that it will be
raining, and that when it is raining, she gets wet. It is clear that this
agent does not desire to be wet when it is raining. Intuitively, we
should get one extension{rain, wet}. The idea is that if the agent
believes that it is raining, and she will get wet if it rains, then she
should believe that she will get wet, regardless of her likings. To
do otherwise would be to indulge inwishful thinking.

6. ARGUMENTATION SYSTEM FOR PR
The notion of constraint which forms the backbone of constrained

argumentation systems allows, in the context of PR, the represen-
tation of the link between the justification of a desire and the plan
for achieving it (so between the explanatory argument in favor of a
given desire and the instrumental arguments in favor of that desire).
A constrained argumentation system for PR is defined as follows:

DEF. 20. (Constrained argumentation system for PR)The
constrained argumentation system for practical reasoning is the
triple CAFPR = 〈A,R, C〉 with:

A = Ab ∪ Ad ∪ Ap,

R = Rb ∪Rd ∪Rp ∪Rbd ∪Rbp ∪Rpdp

and C a constraint on arguments defined onA respecting
C = ∧i(πi ⇒ (∨jδj)) for eachπi ∈ Ap andδj ∈ Ad such
thatCONC(πi) ≡ CONC(δj).

Note that the satisfaction of the constraintC implies that each
plan of a desire must be taken into account only if this desire is
justified. Note also that we consider that there may be several plans
for one desire but only one desire for each plan. Nevertheless, for
each desire there may exist several explanatory arguments.

An important remark concerns the notion of defence. This no-
tion has two different semantics in a PR context. When we consider
only epistemic or explanatory arguments, the defence corresponds
exactly to the notion defined in Dung’s argumentation systems and
in its constrained extension: an argumentα attacks the attacker of
another argumentβ; so α “reinstates”β; without the defence,β
cannot be kept in an admissible set. Things are different with in-
strumental arguments: when an instrumental argument attacks an-
other argument, this attack is always symmetric (so, each argument
defends itself against an instrumental argument). In this case, it
would be sufficient to take into account the notion of conflict-free
in order to identify the plans which belong to an admissible set.
However, in order to keep an homogeneous definition of admissi-
bility, the notion of defence is also used for instrumental arguments
knowing that it is without impact when conflicts from an instru-
mental argument are concerned.

Note that∅ is always aC-admissible set ofCAFPR (since∅ is
admissible and allπi variables are false inb∅, so b∅ ⊢ C)3. Thus,
CAFPR has at least oneC-preferred extension. Moreover, the ex-
tensions do not contain the “good” plans of non-justified desires.
The use of a constraint makes it possible to filter the content of the
extensions and to keep only useful information.

At some places of the paper, we will refer byAFPR = 〈A,R〉 to
a basic argumentation system for PR,i.e. an argumentation system
without the constraint, andA andR are defined as in Def. 20.

Remember that the purpose of a practical reasoning problem is
to compute the intentions to be pursued by an agent,i.e. the desires
that are both justified and feasible.

DEF. 21 (SET OF INTENTIONS). Let I ⊆ PD. I is a set of
intentionsiff there exists aC-extensionE (under a given semantics)
of CAFPR such that for eachd ∈ I, there existsπ ∈ Ap ∩ E such
thatd = CONC(π).

Our system provides an interesting solution to the PR problem.
It computes directly sets of intentions, and identifies the state of the
world as well as the plans necessary for achieving these intentions.

7. PROPERTIES OF THE SYSTEM
The aim of this section is to study the properties of the proposed

argumentation system for PR. The system inherits most of the re-
sults got in [9]. However, the following result, whose proof is
obvious, holds in the context of PR but not in the general case.

PROP. 12. LetCAFPR = 〈A,R, C〉. The setΩ ofC-admissible
sets defines a complete partial order for⊆.

An important property shows that the set of epistemic arguments
in a given stable extension ofAFPR is itself a stable extension of
the system〈Ab,Rb〉. This shows clearly that stable extensions are
“complete” w.r.t. epistemic arguments.
3This is due to the particular form of the constraint for PR. This is
not true for any constraints (see Section2 and [9]).
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PROP. 13. If E is a stable extension ofAFPR, then the setE∩Ab

is a stable extension of〈Ab,Rb〉.

PROOF. Let E be a stable extension ofAFPR. Let us suppose thatE ′

= E ∩ Ab is not a stable extension of〈Ab,Rb〉. Two cases exist:
Case 1: E ′ is not conflict-free. This means that there existα, α′ ∈ E ′ such
thatαRbα

′. SinceE ′ = E ∩ Ab, thenα, α′ ∈ E . This means thatE is not
conflict-free. This contradicts the fact thatE is a stable extension.
Case 2: E ′ does not attack every argument that is not inE ′. This means that
∃α ∈ Ab and 6∈ E ′ andE ′ does not attack (w.r.t.Rb) α. This means that
E ′ ∪ {α} is conflict-free, thusE ∪ {α} is also conflict-free, and does not
attack an argument that is not in it (because only an epistemic argument can
attack another epistemic argument and all epistemic arguments of E belong
to E ′). This contradicts the fact thatE is a stable extension.

Another important property ofAFPR is that it has stable extensions.

PROP. 14. The systemAFPR has at least one non-empty stable
extension.

PROOF. (Sketch)AFPR can be viewed as the union of 2 argumenta-
tion systems:AFb = 〈Ab, Rb〉 andAFdp = 〈Ad ∪ Ap, Rd ∪ Rp ∪
Rpdp〉 plus theRbd ∪Rbp relation. The systemAFb has stable extensions
(according to Prop. 5). LetE1, . . . , En be those extensions. The system
AFdp is symmetric in the sense of [8] since the relationRd ∪Rp ∪Rpdp

is symmetric. In [8], it has been shown that such a system has stable ex-
tensions which correspond to maximal (for⊆) sets of arguments that are
conflict-free. LetE ′

1
, . . . , E ′

m be those extensions.
These two systems are linked with theRbd ∪ Rbp relation. Two cases

can be distinguished:

case1:Rbd∪Rbp = ∅. ∀Ei, E
′
j , the setEi∪E

′
j is a stable extension

of AFPR. Indeed,Ei ∪ E ′
j is conflict-free sinceEi, E ′

j are both
conflict-free, and the relationRbd ∪ Rbp = ∅. Moreover,Ei ∪ E ′

j

defeats every argument that is not inEi ∪ E ′
j , since ifα /∈ Ei ∪ E ′

j ,
then: i) if α ∈ Ab, thenEi defeats w.r.t.Rb α sinceEi is a stable
extension. Now, assume thatα ∈ Ad ∪ Ap. Then,E ′

j ∪ {α} is
conflicting sinceE ′

j is a maximal (for⊆) set that is conflict-free.
Thus,E ′

j defeatsα.

case2:Rbd ∪Rbp 6= ∅. Let E be a maximal (for set inclusion) set
of arguments that is built with the following algorithm:

1. E = Ei

2. while (∃β ∈ Ap ∪ Ad such thatE ∪ {β} is conflict-free) do
E = E ∪ {β}

This algorithm stops after a finite number of steps (becauseAp∪Ad

is a finite set) and gives a set of arguments which is⊆-maximal
among the conflict-free sets which includeEi. It is easy to see that
E is stable because, by construction,∀γ ∈ (Ap ∪Ad)\E , ∃γ′ ∈ E
such thatγ′Rγ, and, becauseEi ⊆ E , we also have∀α ∈ Ab \ E ,
∃α′ ∈ E such thatα′Rα.

So there is always a stable extension ofAFPR.

It is easy to check that explanatory argument with contradictory
beliefs are rejected in the systemCAFPR.

PROP. 15. Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. The argumentδ
is rejected inCAFPR.

PROOF. (Sketch)Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. According to
Prop. 14, the systemAFPR has at least one stable extension. LetE be one
of these stable extensions. Suppose thatδ ∈ E . According to Prop. 13,
the setE ∩ Ab is a stable extension of〈Ab,Rb〉. Moreover, we can show
that∃α ∈ E ∩ Ab such thatαRbdδ. This contradicts the fact that a stable
extension is conflict-free. Thus,δ is rejected inAFPR. According to Prop.
1, δ is also rejected inCAFPR.

Similarly, it can be checked that if two explanatory arguments have
conflicting beliefs, then they will never belong to the same stable
extension at the same time.

PROP. 16. Let δ1, δ2 ∈ Ad respectingBELIEFS(δ1) 6⊢ ⊥ and
BELIEFS(δ2) 6⊢ ⊥. If BELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, then∄E
C-stable extension ofCAFPR such thatδ1 ∈ E andδ2 ∈ E .

PROOF. (Sketch)Let δ1, δ2 ∈ Ad respectingBELIEFS(δ1) 6⊢ ⊥,
BELIEFS(δ2) 6⊢ ⊥, andBELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥. Let E be a
C-stable extension ofCAFPR. Thus,E is also a stable extension ofAFPR.
Suppose thatδ1 ∈ E and δ2 ∈ E . According to Property 13, the set
E ∩ Ab is a stable extension of〈Ab,Rb〉. Moreover, we can easily show
that∃α ∈ E ∩Ab such thatαRbdδ1, orαRbdδ2. This contradicts the fact
that a stable extension is conflict-free.

Similarly, if the beliefs of an explanatory argument and an instru-
mental one are conflicting, the two arguments will not appear in the
same stable extension.

PROP. 17. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If
BELIEFS(δ)∪ Prec(π) ⊢⊥ then∄E withE is aC-stable extension
of CAFPR such thatδ ∈ E andπ ∈ E .

PROOF. (Sketch)Letδ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥ and
BELIEFS(δ) ∪ Prec(π) ⊢ ⊥. Let E be aC-stable extension ofCAFPR.
Thus,E is also a stable extension ofAFPR. Let us assume thatδ ∈ E and
π ∈ E . SinceE is a stable extension ofAFPR, thenE ′ = E ∩Ab is a stable
extension of〈Ab,Rb〉 (according to Prop. 13). Moreover, it can easily be
checked that whenBELIEFS(δ) ∪ Prec(π) ⊢ ⊥ then∃α ∈ E ′ such that
αRbdδ or αRbpπ. This means thatE attacksδ or E attacksπ. However,
δ ∈ E andπ ∈ E . This contradicts the fact thatE is conflict free.

The next results are of great importance. They show that the pro-
posed argumentation system for PR satisfies the “consistency” ra-
tionality postulate identified in [5]. Indeed, we show that each sta-
ble extension of our system supports a consistent set of desires
and a consistent set of beliefs. LetE ⊆ A, the following no-
tations are defined:Bel(E) = (

S

αi∈E∩Ab
SUPP(αi)) ∪ (

S

δj∈E∩Ad

BELIEFS(δj)) ∪ (
S

πk∈E∩Ap
Prec(πk)) and Des(E) = (

S

δj∈E∩Ad

DESIRES(δj)) ∪ (
S

πk∈E∩Ap
CONC(πk)).

THEOREM 1. (Consistency) LetE1, . . . , En be theC-stable ex-
tensions ofCAFPR. ∀Ei, i = 1, . . . , n, it holds that:

Bel(Ei) = Bel(Ei ∩ Ab),

Bel(Ei) is a⊆-maximal consistent subset ofK and

Des(Ei) is consistent.

PROOF. Let E be aC-stable extension ofCAFPR. Thus,E is also a
stable extension ofAFPR.
1. Let us show that the setBel(Ei) = Bel(Ei ∩Ab). In order to prove this,
one should handle two cases:
1.1. Bel(Ei ∩ Ab) ⊆ Bel(Ei). This is implied byBel(Ei ∩ Ab) =
S

SUPP(αi) with αi ∈ Ei ∩ Ab (cf. definition ofBel(E)).
1.2. Bel(Ei) ⊆ Bel(Ei ∩ Ab). Let us suppose that∃h ∈ Bel(Ei) and
h 6∈ Bel(Ei ∩ Ab). According to Property 13,Ei ∩ Ab is a stable exten-
sion of〈Ab,Rb〉. Moreover, according to [6],Bel(Ei ∩Ab) is a maximal
(for set-⊆) consistent subset ofK4. However,Bel(Ei) ⊆ K, thenh ∈ K.
Sinceh 6∈ Bel(Ei ∩ Ab), thenBel(Ei ∩ Ab) ∪ {h} ⊢ ⊥ (this is due to
the fact thatBel(Ei ∩Ab) is a maximal (for set-⊆) consistent subset ofK).
Thus,Bel(Ei ∩ Ab) ⊢ ¬h. This means that∃H ⊆ Bel(Ei ∩ Ab) such
thatH is the minimal consistent subset ofBel(Ei ∩ Ab), thusH ⊢ ¬h.
SinceH ⊆ K (sinceBel(Ei ∩ Ab) ⊆ K), then〈H,¬h〉 ∈ Ab. However,
according to [6],Arg(Bel(Ei ∩ Ab)) = Ei ∩ Ab. Besides,h ∈ Bel(Ei),
there are three possibilities:

h ∈ BELIEFS(δ) with δ ∈ Ei. In this case,〈H,¬h〉 Rbd δ. This
contradicts the fact thatEi is a stable extension that is conflict-free.

h ∈ Prec(π) with π ∈ Ei. In this case,〈H,¬h〉 Rbp π. This
contradicts the fact thatEi is a stable extension that is conflict-free.

4BecauseBel(Ei ∩ Ab) =
S
SUPP(αi) with αi ∈ Ei ∩ Ab; so,

Bel(Ei ∩ Ab) = Base(Ei ∩ Ab).
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h ∈ SUPP(α) with α ∈ Ei. This is impossible since the setEi∩Ab

is a stable extension, thus it is conflict free.

2. Let us show that the setBel(Ei) is a maximal (for set inclusion) con-
sistent subset ofK. According to the first item of Theorem 1,Bel(Ei) =
Bel(Ei ∩ Ab). However, according to Property 13,Ei ∩ Ab is a stable
extension of〈Ab,Rb〉, and according to [6],Bel(Ei ∩ Ab) is a maximal
(for set-⊆) consistent subset ofK. Thus,Bel(Ei) is a maximal (for set in-
clusion) consistent subset ofK.
3. Let us show that the setDes(Ei) is consistent. Let us suppose that
Des(Ei) is inconsistent, this means that

S

DESIRES(δk) ∪
S

CONC(πj)
⊢ ⊥ with δk ∈ Ei andπj ∈ Ei. SinceDes(Ei) ⊆ PD (according to
Property 2), then∃d1, d2 ∈ Des(Ei) such thatd1 ≡ ¬d2. Three possible
situations may occur:
a.∃π1, π2 ∈ Ei ∩Ap such thatCONC(π1) = d1, andCONC(π2) = d2. This
means thatπ1Rpπ2, thusπ1Rπ2. This is impossible sinceEi is a stable
extension, thus it is supposed to be conflict-free.
b. ∃δ1, δ2 ∈ Ei∩Ad such thatd1 ∈ DESIRES(δ1) andd2 ∈ DESIRES(δ2).
This means thatδ1Rdδ2, thusδ1Rδ2. This is impossible sinceEi is a sta-
ble extension, thus it is supposed to be conflict-free.
c. ∃δ ∈ Ei ∩ Ad, ∃π ∈ Ei ∩ Ap such thatd1 ∈ DESIRES(δ) andd2 =
CONC(π). Sinced1 ∈ DESIRES(δ), thus∃δ′ ∈ SUB(δ) such thatCONC(δ′)
= d1. This means thatδ′Rpdpπ, thusδ′Rπ. However, sinceδ ∈ Ei, thus
δ′ ∈ Ei. This is impossible sinceEi is a stable extension, thus it is supposed
to be conflict-free.

As direct consequence of the above result, an intention set is con-
sistent. Formally:

THEOREM 2. Under the stable semantics, each set of intentions
of CAFPR is consistent.

PROOF. Let I be a set of intentions ofCAFPR. Let us suppose thatI
is inconsistent. From the definition of an intention set, it is clear thatI ⊆
Des(Ei) with Ei is aC-stable extension ofCAFPR. However, according to
Theorem 1 the setDes(Ei) is consistent.

Our system satisfies also the rationality postulate concerning the
closedness of the extensions [5]. Namely, the set of arguments that
can be built from the beliefs, desires, and plans involved in a given
stable extension, is that extension itself. LetEi be aC-stable ex-
tension.As is the set of arguments built fromBel(Ei), Des(Ei),
the plans involved in building arguments ofEi, and the baseBd.

THEOREM 3. (Closedness) LetE1, . . . , En be theC-stable ex-
tensions ofCAFPR. ∀Ei, i = 1, . . . , n, it holds that:Arg(Bel(Ei))
= Ei ∩ Ab andAs = Ei.

PROOF. Let Ei be aC-stable extension of the systemCAFPR. Ei is
also a stable extension ofAFPR (according to [9]).
1. Let us show thatArg(Bel(Ei)) = Ei ∩ Ab. According to Theorem 1,
it is clear thatBel(Ei) = Bel(Ei ∩ Ab). Moreover, according to Prop-
erty 13,Ei ∩ Ab is a stable extension of〈Ab,Rb〉. Besides, according to
[6] Arg(Bel(Ei ∩ Ab)) = Ei ∩ Ab, thusArg(Bel(Ei)) = Ei ∩ Ab.
2. Let us show thatAs = Ei. The caseEi ⊆ As is trivial. Let us show
thatAs⊆ Ei. Let us suppose that∃y ∈ As andy /∈ Ei. There are three
possible situations:
2.1. y ∈ As∩Ab: Sincey /∈ Ei, this means that∃α ∈ Ei ∩ Ab such that
αRby. Thus,SUPP(α) ∪ SUPP(y) ⊢ ⊥. However,SUPP(α) ⊆ Bel(Ei)
andSUPP(y) ⊆ Bel(Ei), thusSUPP(α)∪SUPP(y) ⊆ Bel(Ei). This means
thatBel(Ei) is inconsistent. According to Theorem 1 this is impossible.
2.2. y ∈ As∩Ad: Sincey /∈ Ei, this means that∃x ∈ Ei such thatxRy.
There are three situations:
2.2.1. x ∈ Ab This means thatBELIEFS(y) ∪ SUPP(x) ⊢ ⊥. However,
BELIEFS(y) ∪ SUPP(x) ⊆ Bel(Ei). Thus,Bel(Ei) is inconsistent. This
contradicts Theorem 1.
2.2.2x ∈ AdThis means thatDESIRES(y) ∪ DESIRES(x) ⊢ ⊥. However,
DESIRES(y) ∪ DESIRES(x) ⊆ Des(Ei). Thus,Des(Ei) is inconsistent.
This contradicts Theorem 1.
2.2.3. x ∈ Ap This means thatDESIRES(y) ∪ CONC(x) ⊢ ⊥. However,
DESIRES(y) ∪ CONC(x) ⊆ Des(Ei). Thus,Des(Ei) is inconsistent. This
contradicts Theorem 1.
2.3. y ∈ As∩Ap: Sincey /∈ Ei, this means that∃x ∈ Ei such thatxRy.
There are three situations:

2.3.1. x ∈ Ab This means thatxRbpy, thusSUPP(x) ∪ Prec(y) ⊢ ⊥.
However,SUPP(x) ∪ Prec(y) ⊆ Bel(Ei). Thus,Bel(Ei) is inconsistent.
This contradicts Theorem 1.
2.3.2. x ∈ Ad This means thatxRpdpy, thusDESIRES(x) ∪ CONC(y)
⊢ ⊥. However,DESIRES(x) ∪ CONC(y) ⊆ Des(Ei). Thus,Des(Ei) is
inconsistent. This contradicts Theorem 1.
2.3.3.x ∈ Ap This means thatxRpy. There are three different cases:

Prec(x)∪ Prec(y)⊢ ⊥. However,Prec(x)∪ Prec(y)⊆ Bel(Ei).
Thus,Bel(Ei) is inconsistent. This contradicts Theorem 1.

Postc(x) ∪ Prec(y) ⊢ ⊥. We know thaty is built using one of
the plans ofEi, sayp = 〈S, T, d〉. Thus,∃π ∈ Ei such thatπ =
〈p, d′〉. Thus,Postc(x) ∪ Prec(π) ⊢ ⊥, consequently,xRπ. This
is impossible sinceEi is a stable extension, thus it is supposed to be
conflict-free.

Postc(x) ∪ Postc(y) ⊢ ⊥. Sincey ∈ As, thusy is built using one
of the plans ofEi, sayp = 〈S, T, d〉. Thus,∃π ∈ Ei such thatπ
= 〈p, d′〉. Thus,Postc(x) ∪ Postc(π) ⊢ ⊥, consequently,xRπ.
This is impossible sinceEi is a stable extension, thus it is supposed
to be conflict-free.

8. ILLUSTRATIVE EXAMPLE
In this section, we illustrate the above system on a simple exam-

ple.

α2
α1α3

α0

π1

δ1

π2

δ2

The meaning of these arguments is the following:

α0: My AAMAS paper is accepted and AAMAS conference
is in Portugal so I go to AAMAS in Portugal

α1: My AAMAS paper is accepted and it is scheduled Day
D so I am not available Day D

α2: My sister’s wedding is scheduled Day D

α3: My sister’s wedding is scheduled Day D so I must be
available Day D

δ1: I go to AAMAS in Portugal so I desire to visit Portugal

δ2: My sister’s wedding is scheduled Day D so I desire to go
to my sister’s wedding Day D

π1: My AAMAS paper is accepted, my institute pays my
AAMAS mission, AAMAS is in Portugal so I can realize
my desire to visit Portugal

π2: I am available Day D, my sister’s wedding is scheduled
Day D, I know where and how to go to my sister’s wedding
Day D so I can realize my desire to go to my sister’s wedding
Day D

So, we have:

the constraint:C = (π1 ⇒ δ1) ∧ (π2 ⇒ δ2);

the C-preferred andC-stable extensions areE1 = {α2, α0,
α3, π2, δ2, δ1}, E2 = {α2, α0, α3, π1, δ1, δ2}, E3 = {α2, α0,
α1, π1, δ1, δ2},

the sets of intentions are{ visit Portugal}, { go to my sister’s
wedding}.
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9. RELATED WORKS
A number of attempts have been made to use formal models of

argumentation as a basis for PR. In fact the use of arguments for
justifying an action has already been advocated by philosophers
like Walton [20] who proposed the famouspractical syllogism:

G is a goal for agentX

Doing actionA is sufficient for agentX to carry outG

Then, agentX ought to do actionA

The above syllogism, which would apply to the means-end reason-
ing step, is in essence already an argument in favor of doing action
A. However, this does not mean that the action is warranted, since
other arguments (called counter-arguments) may be built or pro-
vided against the action.

In [1], an argumentation system is presented for generating con-
sistent plans from a given set of desires and planning rules. This
was later extended with argumentation systems that generate the
desires themselves [3]. This system suffers from three main draw-
backs: i) exhibiting a form of wishful thinking, ii) desires may de-
pend only on beliefs, and iii) some undesirable results may be re-
turned due to the separation of the two steps of PR. Due to lack of
space, we will unfortunately not give an example where anomalies
occur using that approach. In [14], the problem of wishful think-
ing has been solved. However, the separation of the two steps was
kept. Other researchers in AI like Atkinson and Bench Capon [4]
are more interested in studying the different argument schemes that
one may encounter in practical reasoning. Their starting point was
the above practical syllogism of Walton. The authors have defined
different variants of this syllogism as well as different ways of at-
tacking it. However, it is not clear how all these arguments can be
put together in order to answer the critical question of PR “what is
the right thing to do in a given situation?”. Our work can be viewed
as a way for putting those arguments all together.

10. CONCLUSION
The paper has tackled the problem of practical reasoning, which

is concerned with the question “what is the best thing to do at a
given situation?” The approach followed here for answering this
question is based on argumentation theory, in which choices are ex-
plained and justified by arguments. The contribution of this paper is
two-fold. To the best of our knowledge, this paper proposes the first
argumentation system that computes the intentions in one step,i.e.
by combining desire generation and planning. This avoids unde-
sirable results encountered by previous proposals in the literature.
This has been possible due to the use of constrained argumentation
systems developed in [9]. The second contribution of the paper
consists of studying deeply the properties of argumentation-based
practical reasoning.

This work can be extended in different ways. First, we are cur-
rently working on relaxing the assumption that the attack relation
among instrumental arguments is binary. Indeed, it may be the case
that more than two plans may be conflicting while each pair of them
is compatible. Another important extension would be to introduce
preferences to the system. The idea is that beliefs may be pervaded
with uncertainty, desires may not have equal priorities, and plans
may have different costs. Thus, taking into account these prefer-
ences will help to reduce the intention sets into more relevant ones.
In [7], it has been shown that an argument may not only be attacked
by other arguments, but may also be supported by arguments. It
would be interesting to study the impact of such a relation between
arguments in the context of PR. Another area of future work is in-
vestigating the proof theories of this system. The idea is to answer

the question “is a given potential desire a possible intention of the
agent ?” without computing the whole preferred extensions. Fi-
nally, an interesting area of future work is investigating the rela-
tionship between our framework and axiomatic approaches to BDI
agents.
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