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ABSTRACT
We consider Coalitional Skill Games (CSGs), a simple model
of cooperation among agents. This is a restricted form of
coalitional games, where each agent has a set of skills that
are required to complete various tasks. Each task requires
a set of skills in order to be completed, and a coalition can
accomplish the task only if the coalition’s agents cover the
set of required skills for the task. The gain for a coalition
depends only on the subset of tasks it can complete.

We consider the computational complexity of several prob-
lems in CSGs, for example, testing if an agent is a dummy
or veto agent, computing the core of the game or testing
whether the core is empty, and finding the Shapley value or
Banzhaf power index of agents.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Computational complexity, Cooperative Game Theory

1. INTRODUCTION
Game theory has implications and uses for many real-

world domains, including those involving automated agents;
these domains encompass electronic commerce, auctions, and
general resource allocation scenarios. As a result of the de-
sire to embed game theoretic principles into agent systems,
computational aspects of game theory and social choice have
been extensively studied in recent years.

Cooperation is a key issue in many automated agent sce-
narios. When agents are self-interested, a stable coalition
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can only be formed if the gains won as a result of the coop-
eration are distributed in an appropriate way. Coalitional
game theory considers the question of how these gains should
be distributed, and provides several solution concepts. Sev-
eral such solutions have been offered, such as the core [8],
the Shapley value [13] and the nucleolus [12].

These solution concepts are often used to analyze vari-
ous types of interactions; one way in which they have been
employed has been to measure the power that agents have
in real-life domains, such as parties forming a coalition in
legislative bodies. This has led to the definition of sev-
eral power indices, such as the Banzhaf [1] and Shapley-
Shubik [14] power indices. Solutions offered by cooperative
game theory have been adopted by computer scientists, who
have explored their attendant computational considerations
[15, 3, 4, 5].

In this paper, we consider a specific model of coopera-
tion among agents, that of Coalitional Skill Games (CSGs).
In this form of coalitional games, agents must cooperate to
complete certain tasks. Performing each task involves us-
ing a set of required skills, and a coalition can accomplish
the task only if it covers the task’s required skills. In gen-
eral CSGs, the characteristic function of the game maps the
achieved set of tasks to a real value. In the paper, we also
present several natural ways to restrict the structure of this
characteristic function in order to get a concise representa-
tion for these games. For example, it is possible to define
the value a coalition can achieve as the number of tasks it
accomplishes, resulting in TCSG—Task Count Skill Games.
Another possibility is giving each task its own weight, and
defining the value of a coalition as the sum of weights of
the accomplished tasks, resulting in WTSG—Weighted Task
Skill Games.

CSG is a very straightforward model, yet it is highly ex-
pressive, and can model many real-world situations. Con-
sider, for example, several communication companies that
own cellular transmitters. These transmitters allow the com-
panies to send information to various clients. In some cases,
clients may be covered by more than one company; for exam-
ple, two companies may have transmitters in the same area,
so the clients in this area could be covered by either com-
pany. The profits of a coalition of such companies might then
depend on the set of clients to which the coalition can trans-
mit information; the coalition might gain a certain amount
of money for each such client (this amount might depend on
how much the client is willing to pay), or the coalition might
only be awarded a contract if it covers a certain subset of
the clients.
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Another example is voting. Consider a voting domain
where a decision is carried out based on the choices of voters,
and where certain agents may affect how these voters vote.
Each such agent may affect a certain subset of the voters,
and a coalition of agents may affect all the voters that can be
affected by a member of the coalition. A coalition’s utility
might then depend on the number of voters it can affect;
for example, the coalition may have to affect more than a
certain number of voters to win an election.

Yet another example is cooperative knowledge sharing.
Here, each agent has access to information regarding var-
ious propositional variables, and a coalition wins if it can
ascertain the value of a certain subset of these variables.

All of the above domains can easily be described as CSGs.
A task in these domains might be transmitting data to a
certain client, affecting a certain voter, or finding out the
value of a certain variable. Questions in these domains in-
clude: 1) how to divide the total gains of a coalition among
its members; 2) finding which members of the coalition are
more powerful; 3) checking whether any profit can be made
without a certain member of the coalition. Game-theoretic
analysis of CSGs allows for the answering of such questions.

One of the advantages of the CSG model is that its sim-
plicity allows us to tractably solve complex problems that
cannot be efficiently solved in richer models. However, de-
spite its simplicity, the model remains combinatorially quite
complex, so several questions remain computationally hard.
In this paper, we explore the computational complexity of
solving various problems in CSGs.

The paper proceeds as follows. In Section 2 we give some
background concerning coalitional games, and define the
CSG model. In Section 3 we present the main algorithms
and complexity results of the paper. In Section 4 we dis-
cuss some related work regarding similar questions, and we
conclude in Section 5.

2. PRELIMINARIES
In this section, we define the CSG model and game theo-

retic concepts that are examined in the context of CSGs.

2.1 Coalitional Game Theory Solution Con-
cepts

A transferable utility coalitional game is composed of a
set of n agents, I, and a characteristic function mapping any
subset (coalition) of the agents to a real value v : 2I → R,
indicating the total utility these agents achieve together.

Two common assumptions about coalitional games are
that they are increasing and super-additive. A coalitional
game is increasing if for all coalitions C′ ⊂ C we have
v(C′) ≤ v(C), and is super-additive when for all disjoint
coalitions A,B ⊂ I we have v(A) + v(B) ≤ v(A ∪ B). In
super-additive games, it is always worthwhile for two sub-
coalitions to merge, so eventually the grand coalition con-
taining all the agents will form.

In a simple coalitional game, v only gets values of 0 or
1 (v : 2I → {0, 1}). We say a coalition C ⊂ I wins if
v(C) = 1, and say it loses if v(C) = 0. An agent i is
critical in a winning coalition C if the agent’s removal from
that coalition would make it a losing coalition: v(C) = 1,
v(C \ {i}) = 0.

The characteristic function only defines the gains a coali-
tion can achieve, but does not define how these gains are
distributed among the agents. A payoff vector (p1, . . . , pn)

is a division of the gains of the grand coalition among the
agents, where pi ∈ R, such that

Pn
i=1 pi = v(I). We call

pi the payoff of agent ai, and denote the payoff of a coali-
tion C as p(C) =

P
i∈{i|ai∈C} pi. An important question,

obviously, is that of choosing the appropriate payoff vector.
Game theory offers several answers to this question.

2.1.1 Individual Rationality and the Core
A minimal requirement for the payoff vector is that of

individual rationality, which states that for any agent ai ∈
C, we have that pi ≥ v({ai})—otherwise, some agent is
incentivized to work alone. Similarly, we say a coalition B
blocks the payoff vector (p1, . . . , pn) if p(B) < v(B), since
the members of B can split from the original coalition, derive
the gains of v(B) in the game, give each member ai ∈ B its
previous gains pi—and still some utility remains, so each
member can get more utility. If a blocked payoff vector
is chosen, the coalition is unstable. A prominent solution
concept focusing on such stability is that of the core [8].

Definition 1. The core of a coalitional game is the set of
all payment vectors (p1, . . . , pn) that are not blocked by any
coalition, so that for any coalition C, we have p(C) ≥ v(C).

Having a value distribution in the core indicates that no
subset of the coalition is incentivized to split. In general,
the core can be empty, so every possible value division in
that case is blocked by some coalition.

2.1.2 The Shapley Value and Banzhaf Power Index
Another cooperative game theory solution, which defines

a single value division, is that of the Shapley value [13]; this
approach focuses on fairness, rather than on stability. The
Shapley value of an agent depends on its marginal contri-
bution to possible coalition permutations. We denote by π
a permutation (ordering) of the agents, so π : {1, . . . , n} →
{1, . . . , n} and π is reversible, and by Π the set of all possible
such permutations. Denote by Sπ(i) the predecessors of i in
π, so Sπ(i) = {j|π(j) < π(i)}.

Definition 2. The Shapley value is given by the payoff
vector sh(v) = (sh1(v), . . . , shn(v)) where

shi(v) =
1

n!

X
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))].

An important application of the Shapley value is that of
power indices, which attempt to measure an agent’s ability
to change the outcome of a game, and are used (for example)
to measure political power. One prominent power index is
the Shapley-Shubik index, which is simply the Shapley value
in a simple coalitional game. Since in such a game the value
of a coalition is either 0 or 1, the formula for shi(v) simply
counts the fraction of all orderings of the agents in which
agent i is critical for the coalition of its predecessors and
itself. Another prominent power index, defined for any sim-
ple game, is the Banzhaf power index. The Banzhaf index
depends on the number of coalitions in which an agent is
critical, out of all the possible coalitions.

Definition 3. The Banzhaf power index is given by β(v) =
(β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

X
S⊂I|ai∈S

[v(S)− v(S \ {i})].
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2.2 Coalitional Skill Games (CSGs)
A coalitional skill domain is composed of a set of agents,

I = {a1, . . . , an}, a set of tasks T = {t1, . . . , tm}, and a
set of skills S = {s1, . . . , sk}. Each agent ai has a set of
skills S(ai) ⊂ S,1 and each task tj requires a set of skills
S(tj) ⊂ S. We denote the set of skills a coalition C has by
S(C) = ∪ai∈CS(ai). We say a coalition of agents C ⊂ I can
perform a task tj if every skill required to perform the task is
owned by some agent in the coalition, so S(tj) ⊂ S(C), and
denote this by perform(C, tj). We denote the set of tasks a
coalition C can perform as T (C) = {tj ∈ T |perform(C, tj)}.

By a slight abuse of notation we denote the set of skills
required to perform a set of subtasks T ′ ⊂ T by S(T ′) =
∪tj∈TS(tj). A task value function maps a subset of the

tasks a coalition achieves to a real value: u : 2T → R. We
generally assume that we can freely dispose of tasks by not
performing them. Thus, u is increasing; so if T1 ⊂ T2, we
have u(T1) ≤ u(T2). Consider a coalitional skill domain; we
define the coalitional skill game for that domain as follows:

Definition 4. CSG: A CSG is the coalitional game in
a coalitional skill domain, where the players are the agents
of the coalitional skill domain, and the characteristic func-
tion of a coalition is the value of the tasks that coalition can
perform: v(C) = u(T (C)).

Lemma 1. All CSGs are increasing coalitional games.

Proof. Adding agents to a coalition only adds skills to
that coalition, so if C′ ⊆ C, we have S(C′) ⊆ S(C) and thus
T (C′) ⊆ T (C), and u(T (C′)) ≤ u(T (C)). Therefore, if C′ ⊆
C we get that v(C′) ≤ v(C), so CSGs are increasing.

The ability to tractably answer questions regarding CSGs
depends on how they are represented. A naive representa-
tion of a CSG can be exponential in |T |. We now define
several restricted forms of CSGs, which have concise repre-
sentations.

2.3 Restricted Forms of CSGs
One restricted form of CSGs expresses the value of a coali-

tion as the number of tasks that coalition can accomplish.
This restricted form of CSGs is called TCSG—Task Count
Skill Games. A representation of the characteristic function
w in a TCSG simply contains a list of the tasks and a list of
required skills for each task.

Definition 5. TCSG: Let T ′ be a subset of tasks. A
TCSG is a CSG where u(T ′) = |T ′|.

A representation that is more general than TCSG but still
has a concise representation is that of WTSG—Weighted
Task Skill Games. In a WTSG, each task tj has a certain
weight wj , and the characteristic function is the sum of the
weights of the accomplished tasks.

Definition 6. WTSG: Let T ′ be a subset of tasks. A
WTSG is a CSG where each task tj ∈ T has a weight wj ∈
R. We denote the weight of a subset of tasks T ′ ⊂ T as
w(T ′) =

P
j∈{j|tj∈T ′} wj. In a WTSG the characteristic

function u is defined as u(T ′) = w(T ′).

1When the context is clear, we may use Si for S(ai).

CSGs where the function u gets only 0 and 1 values, so
u : 2T → {0, 1}, are called simple skill games. We say a
task subset T wins the game if u(T ) = 1, otherwise we
say T loses the game. Since for any coalition C we have
v(C) = u(T (C)), in simple skill games v’s range is also {0, 1}
and we have v : 2I → {0, 1}, so this is indeed a simple game.

Both TCSG and WTSG have versions that are simple
games. These games require the number of completed tasks
or the total weight of completed tasks to exceed a certain
threshold value k for a coalition to win. These versions are
called TCSG-T (Task Count Skill Games with Threshold)
and WTSG-T (Weighted Task Skill Games with Threshold).

Definition 7. TCSG-T: Let T ′ be a subset of tasks. TCSG
is a CSG with a threshold k where v(C) = 1 if |T (C)| ≥ k
and v(C) = 0 otherwise.

Definition 8. WTSG-T: Let T ′ be a subset of tasks. WTSG
is a CSG where each task tj ∈ T has a weight wj ∈ R and
with a threshold k, where the characteristic function u is
defined as u(T ′) = 1 if w(T ′) > k and w(T ′) = 0 otherwise.

The most restricted form of skill games is that of STSG—a
Single Task Skill Game. In this case, u is defined by a single
task t that requires some skill subset S(t), that the agents
must cover to win the game. Dropping all irrelevant skills
(not required to perform t), a coalition C wins if it manages
to cover all the skills, so v(C) = 1 if and only if S(C) = S.

Definition 9. STSG: An STSG is a TCSG where there
is only a single task t, so v(C) = 1 if S(C) = S and v(C) = 0
otherwise.

All these restricted forms of skill games have concise rep-
resentations, since we can find a short representation for the
characteristic function u. In some cases, these restrictions
allow us to tractably find solutions to several questions re-
garding these games. However, some questions remain com-
putationally hard even with these restrictions. These results
are given in Section 3.

3. ALGORITHMS FOR CSGS
Section 2.2 discussed representations of CSGs. With gen-

eral CSGs, the representation of the characteristic function
may be exponential in the number of tasks. However, re-
stricting it as is done in TCSG, WTSG, STSG (and in
TCSG-T and WTSG-T) gives a representation that is al-
ways polynomial. This small representation may allow (but
of course, does not guarantee) polynomial algorithms for
various problems. We now define the specific problems ex-
amined in this paper. All of these problems are with regard
to a CSG Γ, and sometimes with regard to a target agent
ai.

Definition 10. COALITION-VALUE (CV): Given a coali-
tion C ⊂ I, compute v(C) (in simple games, test whether
v(C) = 1 or v(C) = 0).

Definition 11. VETO (VET): In a simple CSG, check
if ai is a veto player, so for any winning coalition C, we
have ai ∈ C. In a general CSG, test if ai is present in all
coalitions C where v(C) > 0.

Definition 12. DUMMY (DUM): Check if ai is a dummy
player, so for any coalition C, we have v(C ∪ {ai}) = v(C).
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Definition 13. CORE-NON-EMPTY (CNE): Decide
whether the game’s core is non-empty, so there is some pay-
off vector in the core.

Definition 14. CORE (COR): Compute the set of pay-
off vectors that are in the core, and return a representation
of all payoff vectors in it.

Definition 15. SHAPLEY (SH): Compute ai’s Shapley
value shi(vΓ).

Definition 16. BANZHAF (BZ): Compute ai’s Banzhaf
power index βi(vΓ).

We summarize the results from this paper in Table 1,
which gives the computational class of the above problems
for each CSG restriction defined above. We prove the results
in the rest of the section.

STSG TCSG WTSG TCSG-T WTSG-T
CV P P P P P

VET P P P P P
DUM P P P co-NPC co-NPC
CNE P co-NP co-NP P P
COR P N/A N/A P P
SH ? ? ? NPH NPH
BZ #P-C #P-C #P-C #P-C #P-C

Table 1: Complexity of CSG problems
P—polynomial algorithm; NPC/co-NPC—NP-
complete/co-NP-complete; co-NP—in co-NP; NPH—NP-
hard; #P-C—#P-complete; ?—unknown; N/A—depends
on the core representation.

3.1 Proofs

3.1.1 Coalition Value

Theorem 1. COALITION-VALUE is in P, for all the
following types of CSGs: STSG, TCSG, WTSG, TCSG-T,
WTSG-T.

Proof. Given a certain coalition C, it is simple to com-
pute S(C) in polynomial time, as the union of all the skills
of the agents in C. Thus, we can compute the set of tasks
T (C) accomplished by that C: for each tj ∈ T we check if
S(tj) ⊂ S(C). Given T (C) in all these game forms, we can
easily calculate v(C) (as |T (C)| or w(T (C)), or by checking
if these are above the threshold).

3.1.2 Veto

Theorem 2. VETO is in P for all the following types of
CSGs: STSG, TCSG, WTSG, TCSG-T, WTSG-T.

Proof. A veto agent ai in Γ is present in all winning
coalitions (for non-simple games we call a coalition C win-
ning if v(C) > 0). A non-veto player has some winning coali-
tion C that does not contain him. Denote I−ai = I \ {ai}.
CSGs are always increasing (by Lemma 1), so if v(I−ai) =
0 then for every C ⊂ I−ai we have v(C) = 0. Thus if
v(I−ai) = 0, then ai is a veto player, and if v(I−ai) > 0 then
I−ai is a winning coalition that does not contain ai, so ai is
not a veto player. As seen in Theorem 1, in all these games
we can compute v(C) in polynomial time, and in order to
test if ai is dummy, we can simply compute v(I−ai).

3.1.3 Dummy
We now consider testing whether an agent is a dummy.

First note that DUMMY is in co-NP for all types of games,
since due to Theorem 1, given a coalition C, we can compute
v(C ∪ {ai}) and v(C) in polynomial time, and see if v(C ∪
{ai}) > v(C). We denote the set of agents who do not
cover the skill s by I−s = {aj ∈ I|s /∈ S(aj)}. I−s can
be calculated in polynomial time by going over each agent’s
skill list, and removing those whose skill list contains s. The
algorithms for testing if an agent is a dummy depends on
the following lemma.

Lemma 2. If ai is a non-dummy in an STSG then there
is some skill s ∈ Si such that I−s covers S \ Si (so S \ Si ⊂
S(I−s)).

Proof. Suppose ai is not a dummy. Then it contributes
to some coalition C, which means C covers S\Si (so C∪{ai}
is winning), but lacks some skill s ∈ Si (so C is losing). If C
covers S \ Si, then any superset of it also covers S \ Si. I−s
is a superset of C, since C lacks the skill s (which means
every agent aj ∈ C lacks s). Thus, for that skill s we get
that I−s covers S \ Si.

Theorem 3. DUMMY is in P for STSGs.

Proof. We can iterate through all skills s ∈ Si, and given
each skill s ∈ Si calculate I−s and check if it covers S \ Si.
If it does, ai is not a dummy (it contributes to I−s). If there
is no skill s ∈ Si for which I−s covers S \ Si, then through
Lemma 2, ai is a dummy player.

Theorem 4. DUMMY is in P for TCSG and WTSG.

Proof. Let Γ be a WTSG, with tasks t1, . . . , tm. Let Γi
be the STSG with the single task ti, with the same agents
and skills of Γ. Suppose ai is not a dummy in Γ, so for
some C ⊂ I we have v(C ∪ {ai}) > v(C). Then for at least
one task tj , C cannot achieve tj without ai, so ai is not a
dummy in Γj . If ai is not a dummy in some Γj , there is
some coalition C which cannot achieve tj without ai, so for
that coalition in Γ we also have v(C ∪{ai}) > v(C), so that
agent is not a dummy in Γ. Thus, in order to test if an agent
is not a dummy in a WTSG Γ, it is enough to test this for
Γ1, . . . ,Γm. If the agent is not a dummy in any of them, he
is not a dummy in Γ, and if he is a dummy in all of them,
he is a dummy in Γ as well. Since TCSG is a restricted class
of WTSG (where the weight of each task is 1), the same
algorithm works for TCSGs as well.

While DUMMY is polynomial in TCSG and WTSG, it is
co-NP-complete in TCSG-T and WTSG-T.2 We show this
by a reduction from 3SAT, a well-known NP-hard problem.

Definition 17. 3SAT: We are given a propositional for-
mula over n propositional variables p1, . . . , pn, denoted ψ =
c1 ∧ c2 ∧ . . . ∧ cm, where ci is a disjunction of three literals
ci = li,1 ∨ li,2 ∨ li,3 (each literal is the propositional vari-
able pj or its negation ¬pj). We are asked if there is an
assignment that satisfies ψ.
2This is easy to show for WTSG-T. In [11] it is shown that
testing if an agent is a dummy is hard in weighted voting
games. When for each agent ai there is a single task ti which
requires a skill si that only ai owns, the WTSG-T becomes
a weighted voting game—so we get a natural reduction from
weighted voting games. Proving the same for TCSG-T re-
quires a different reduction.

1026



We show that DUMMY in TCSG-T is co-NP-complete by
showing that a restricted case of testing whether an agent
is a non-dummy is NP-hard. Consider the restricted case
of a TCSG-T Γ with a threshold k + 1, that has a certain
task t which only requires one skill s (so S(t) = {s}); and
where an agent ai is the only agent with a certain skill s;
and where no task other than t requires the skill s. Adding
ai to any coalition C makes that coalition able to complete
exactly one more task, t. A coalition in Γ wins if it covers at
least k+1 tasks. Thus, ai is a non-dummy in Γ if and only if
there is a coalition of agents (without ai) that covers exactly
k tasks (denoted COMPLETE-K-TASKS). Thus, testing if
a subset of the agents covers exactly k tasks is a restricted
case of testing if an agent is a non-dummy in TCSG-T.

Theorem 5. DUMMY is co-NP-complete for TCSG-T
and WTSG-T.

Proof. We have noted that DUMMY, both in TCSG-T
and in WTSG-T, is in co-NP; it remains to show that it is
co-NP hard. TCSG-T is a restricted form of WTSG-T, so it
is enough to show this for TCSG-T. We do this by showing
a reduction from 3SAT to COMPLETE-K-TASKS.

Given the 3SAT formula ψ = c1 ∧ c2 ∧ . . . ∧ cm over n
propositional variables p1, . . . , pn (where ci = li,1 ∨ li,2 ∨
li,3), we construct a TCSG-T game. For every propositional
variable in ψ, the game has two skills spi and s¬pi . For every
clause cj in ψ the game has a skill scj . For every clause
cj in ψ the game has three agents, acj ,1, acj ,2, acj ,3. The
skills of acj ,x depend on the literal x of cj , and S(acj ,x) =
{scj , slj,x}. For example, if we have c1 = p1 ∨¬p2 ∨¬p3, we
create 3 agents: agent ac1,1 with skills S(ac1,1) = {sc1 , sp1},
agent ac1,2 with skills S(ac1,2) = {sc1 , s¬p2} and agent ac1,3
with skills S(ac1,3) = {sc1 , s¬p3}. For each clause ci we also
create a task tci , which requires the skill sci , so S(tci) =
{sci}. For each propositional variable pi we create m + 1
tasks t(pi,¬pi,1), . . . , t(pi,¬pi,m+1), each of which requires the
skills S(t(pi,¬pi,j)) = {spi , s¬pi}. The purpose of these tasks
is to eliminate covers where both pi and ¬pi are chosen.

Suppose there is a satisfying truth assignment A for ψ, in
which the variables assigned true are pt1, . . . , ptx and the
variables assigned false are pf1, . . . , pfy. We construct a
coalition from the truth assignment A as follows: each clause
cj is satisfied through at least one of the literals, say literal
x in cj , denoted lj,x. We add the agent acj ,x to C. Coalition
C covers all the clauses cj of ψ, since A is a satisfying truth
assignment. On the one hand, C does not cover any of the
tasks t(pi,¬pi,j) (again, A is a valid truth assignment). Thus,
if there is a satisfying truth assignment, there is a coalition
of agents in the created TCSG-T game which completes ex-
actly m tasks.

On the other hand, suppose there is a coalition C which
covers exactly m tasks in the created TCSG-T game. The
covered tasks cannot include any of the t(pi,¬pi,j) tasks, since
each of these have m more identical copies, and covering one
of these means covering all m+1 of them. Thus the covered
m tasks are the tcj tasks. This means C holds agents who
cover the skills scj for all m clauses cj , and for no pi does
it cover both spi and s¬pi . We build the following truth
assignment A: for each spi covered by C, set pi to true, and
set all the other variables to false.

This truth assignment satisfies every clause, since for each
cj we have some literal in cj matching the value in the truth
assignment (or C would not cover scj ). Thus, in the reduced

TCSG-T there is a coalition of agents who cover m tasks if
and only if the 3SAT formula is satisfiable, so we have shown
a reduction from 3SAT to COMPLETE-K-TASKS.

3.1.4 Core Not Empty and Core
We now consider the complexity of calculating the core

of CSGs, or checking if it is empty. Obviously, it is harder
to compute the core and return a concise representation of
it. This cannot always be done, in general situations, since
the core may contain infinitely many payoff vectors. Fortu-
nately, it can be done in simple games.

Consider a simple game with no veto players. For every
agent ai there is a winning coalition that does not contain
ai. Consider a payoff vector p = (p1, . . . , pn) where pi > 0.
Since

Pn
i=0 pi = 1 and since pi > 0 we get that p(C) ≤P

pj∈I−ai
pj < 1, so p(C) < v(C) = 1 and C is a blocking

coalition. On the other hand, any payoff vector p which
gives nothing to non-veto players is in the core, since any
coalition C that can block must have v(c) = 1, so it must
contain all the veto players; thus, it also has

P
pj∈C pj = 1,

and therefore is not blocking. Thus, calculating the core of
simple games simply requires returning a list of veto players
in that game, and checking if the core is non-empty simply
requires testing if the game has any veto players.3

Theorem 6. CORE and CORE-NON-EMPTY is in P
for STSG, TCSG-T and WTSG-T.

Proof. Due to Theorem 2, for these games we can find
all the veto agents in polynomial time (by checking if each
agent is a veto agent). Since the representation of the core
is simply a list of veto agents, we can compute the core in
polynomial time.

Theorem 7. CORE-NON-EMPTY is in co-NP for STSG,
TCSG/TCSG-T and WTSC/WTSG-T.4

Proof. [10] shows that CORE-NON-EMPTY is in co-
NP for any coalitional game where the coalitional function
can be computed in polynomial time. Theorem 1 shows that
this is indeed the case.5

3.1.5 Shapley Value and Banzhaf Power Index
We now consider calculating the Shapley value and Banzhaf

power index in CSGs. As can be seen from the formulas for
Shapley and Banzhaf values in Section 2.1, dummy players
have a Shapley value and Banzhaf index of 0. Thus, com-
puting either of them allows testing if an agent is a dummy
player.

3We can also present a polynomially testable sufficient con-
dition for emptiness of the core of the non-threshold version
WTSG/TCSG. Consider an agent ai such that I−ai cannot
complete all the tasks. Such an agent must have a unique
skill s required for some task t ∈ T (so s ∈ S(t)) that no
other agent has, so s ∈ S(ai), but s /∈ S(I−ai). We call
such an agent a unique-skill agent. Suppose there are no
unique-skill agents, and consider some agent ai. I−ai covers
all the skills and completes all the tasks. Thus, I−ai blocks
any payoff vector where pi > 0, since v(I−ai) =

P
t∈T w(t).

ai was any agent, so for all i we have pi = 0, so the core is
empty.
4This result shows that CNE is in co-NP, but of course does
not show that it is co-NP-complete.
5We thank an anonymous reviewer for directing us to [10].
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Corollary 1. SHAPLEY and BANZAHF are NP-hard
in TCSG-T and WTSG-T.

Proof. DUMMY is NP-hard in these domains, due to
Theorem 5. Given the Shapley value or Banzhaf index, we
can answer DUMMY by comparing the index to 0. Thus,
computing these indices in these domains (or the decision
problem of testing whether they are greater than some value)
is NP-hard.

Computing the Shapley or Banzhaf indices is NP-hard,
but may not even be in NP, so the problem is not NP-
complete in these domains. We show a stronger result of
#P-completeness for the Banzhaf value, for all domains, by
a reduction from #-SET-COVER. We first define two #P-
complete problems:

Definition 18. #SET-COVER (#SC): We are given a
set S and a collection C = {S1, . . . , Sn} that for all Si we
have Si ⊂ S. A set cover is a subset C′ ⊂ C such that
∪Si∈C′ = S. Given S and C, we are asked to compute the
number of covers of S.

A slightly different version requires finding the number of
set covers of size at most k:

Definition 19. #SET-COVER-K (#SC-K): A set-cover
with size k is a set cover C′ such that |C′| = k. Similar to
Definition 18, we are given S and C, and a target size k,
and are asked to compute the number of covers of S of size
at most k.

Below we prove that BANZHAF is #P-Complete by a
reduction from #SC, but we first need to prove that #SC
is #P-Complete. For this we consider a few definitions and
problems. An independent set V ′ ⊂ V is a subset of the
vertices such that for every u, v ∈ V ′ we have (u, v) /∈ E. A
clique C ⊂ V is a subset of the vertices such that for every
two vertices u, v ∈ C we have (u, v) ∈ E. A clique with size
k is simply a clique C such that |C| = k. Given a graph
G =< V,E > the complement graph Gc =< V,E′ > is the
graph where (u, v) ∈ E′ if and only if (u, v) /∈ E. Three
problems related to #SC are the following:

Definition 20. #VC: We are given an undirected graph
G =< V,E >, and are asked to count the number of vertex
covers in the graph. A vertex cover is a subset V ′ ⊂ V such
that for every edge e = (u, v) ∈ E either u ∈ V ′ or v ∈ V ′.

Definition 21. #CLIQUE: We are given an undirected
graph G =< V,E >, and are asked to count the number of
cliques in the graph.

This problem also has a slightly different version, which
is known to be #P-complete.

Definition 22. #CLIQUE-K: We are given an undirected
graph G =< V,E >, and are asked to count the number of
cliques with size at least k in the graph.

#SC-K and #CLIQUE-K are known #P-complete prob-
lems [7].6

6As explained in [7], reductions that maintain the same
number of solutions from SAT to VC and SC exist. However,
the definition of VC and SC problems, which are known to
be NP-complete, test whether a vertex-cover of size at most
k or a set-cover of size at most k exist. Thus, VC-K and
SC-K are known to be #P-complete, but we still require a
proof that #SC (rather than #SC-K) is #P complete.

We will now show that #SC (rather than #SC-K) is also
#P-Complete. #VC is a restricted case of #SC (where each
subset Si is the list of edges connected to vertex vi), so it
is enough to show that #VC is #P-complete. We first note
that the number of vertex covers in a graph is the number of
independent sets in a graph, since if V ′ is a vertex cover, V \
V ′ is an independent set and vice versa. We also note that an
independent set in a graph G is a clique in the complement
graph Gc. Thus, the number of vertex covers in a graph G
is the same as the number of cliques in its complement Gc.
Thus, in order to show #SC is #P-complete, we only need
to show #CLIQUE is #P-complete.

Theorem 8. #SC and #CLIQUE are #P-complete.

Proof. As explained above, it is enough to show that
#CLIQUE is #P-complete. We do this by a reduction from
#CLIQUE-K. Given a graph G =< V,E > and k, we con-
struct |V | graphs. In the i’th graph the vertices of the orig-
inal graphs are duplicated i times. We call each such dupli-
cate a layer.

The first graph we build is a bipartite graph, with two
copies (layers) of the original vertices, V1 and V2. The new
graph G2 =< V1, V2, E2 > is created so that for each vertex
vi ∈ V we create two vertices vi,1 ∈ V1 and vi,2 ∈ V2. If
(vi, vj) ∈ E, for every two indices 1 ≤ x, y ≤ 2, we connect
vi,x and vj,y so (vi,x, vj,y) ∈ E2. We note that for each 2-
clique (which is an edge) in G, we get 2 cliques in G2, as
we have 2 options from which to choose a layer for the first
vertex of the clique, and 1 option to choose as a layer for
the second vertex of the clique. Let c2 be the number of 2-
cliques in G. A call to #CLIQUE on G2 thus returns 2 · c2,
so we can find c2.

We can then construct G3 =< V1, V2, V3, E3 >, which is
created so that for each vertex vi ∈ V we create 3 vertices,
vi,1 ∈ V1, vi,2 ∈ V2 and vi,3 ∈ V3. If (vi, vj) ∈ E, for
every two indices 1 ≤ x, y ≤ 3, we connect vi,x and vj,y so
(vi,x, vj,y) ∈ E3. We note that for each 2-clique (which is
an edge) in G, we get 3!

(3−2)!
= 3! 2-cliques in G2, as we

have 3 layers from which to choose for the first vertex of
the clique, and 2 options from which to choose the layer for
the second vertex of the clique. We also note that for every
3-clique in G, we get 3!

(3−3)!
= 3! 3-cliques in G2, as we have

3 layers from which to choose a layer for the first vertex of
the clique, 2 options from which to choose the layer for the
second vertex of the clique, and 1 option for a layer for the
third vertex of the clique. Let ci be the number of i-cliques
in G. A call to #CLIQUE on G3 thus returns 3! · c2 + 3! · c3.
Since we know c2 we can calculate c3 from this result.

Denote |V | = m. We can continue this process, and build
G4 to calculate c4, and so on until we construct Gm to cal-
culate cm. Similarly to what we have seen above, in this
graph, for each i-clique in G we get m!

(m−i)! cliques in Gm,

so a call to #CLIQUE returns
Pm
i=1( m!

(m−i)! ) · ci. Since at

this point we know the values of c1, c2, . . . , cm−1 we can cal-
culate cm, and obtain the number of m-cliques in G. The
answer to the #CLIQUE-K problem is the number of all the
cliques of size at least k,

Pm
i=k ci. Thus, given an algorithm

for #CLIQUE we have constructed a polynomial algorithm
for #CLIQUE−K. Thus #-CLIQUE is #P-complete, and
so is #SET-COVER.

We now show that BANZHAF is #P-complete in all the
restricted versions of CSGs defined in this paper. This is
done by a reduction from #SC.
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Theorem 9. BANZHAF in STSG, TCSG, WTSG, TCSG-
T and WTSG-T is #P-complete.

Proof. STSG is a restricted case of all the other types of
games, so it is enough to show #P-completeness of BANZHAF
in STSGs. Definition 3 of the Banzhaf power in STSGs is
the proportion of coalitions where ai is critical out of all
coalitions containing ai. Since the number of coalitions con-
taining ai is known to be 2n−1, we only need to calculate
the number of coalitions where ai is critical. First, we note
this problem is in #P, since due to Theorem 1 we have a
simple polynomial procedure that can test if ai is critical in
some coalition containing ai.

We show that BANZHAF is #P-complete in STSGs by a
reduction from #SC. Let the #SC instance contain subsets
S = {S1, . . . , Sn}. We build the following STSG, with n+ 1
agents. Agent ai has the skill set Si, and an+1 has a sin-
gle new skill, so Si+1 = {snew}, such that snew /∈ S. The
BANZHAF query is regarding the Banzhaf index of an+1.
Every winning coalition must cover snew, which can only be
done using an+1. Consider a coalition C that does not con-
tain an+1 and covers S. While C is losing, C ∪ {an+1} is
winning, and an+1 is critical in C∪{an+1}. Consider a coali-
tion C that does not contain an+1 and does not cover S. C
is losing, and C∪{an+1} is also losing, so an+1 is not critical
in C∪{an+1}. Denote by x the number of coalitions that do
not contain an+1, and do cover S. Since each such coalition
covers S, it is a set cover in the original problem. Since an+1

is not critical to any coalition that does not contain an+1,
the number of coalitions where an+1 is critical is exactly x.
Thus, if the BANZHAF answer is x

2n , then the #SC answer
is x. Thus a polynomial algorithm for BANZHAF also solves
#SC, so BANZHAF is #P-complete.

4. RELATED WORK, SIMILAR MODELS
We now consider related work, especially models similar

to CSGs. The concept of the core originated in [8], and the
Shapley value in [13]. Such values have been used to mea-
sure power, e.g., via the Shapley-Shubik [14] and Banzhaf [1]
power indices. Computational aspects of these solution con-
cepts have been studied. [6] showed that computing the
Shapley value in weighted voting games is #P-complete,
and [11] showed that calculating both Banzhaf and Shapley-
Shubik indices in weighted voting games is NP-complete.
Several papers deal with coalitional game representations
and using them to calculate solution concepts. [2] studies
cooperative games on several combinatorial structures. [6]
studies games where agents are represented as nodes of a
weighted graph and a coalition’s value is determined by the
total weight of the edges contained in it. [4] uses a represen-
tation of coalitional games that relies on super-additivity,
and is concise when the number of synergies between coali-
tions is low. This representation allows for efficient checking
of whether a given outcome is in the core, but determining
whether the core is nonempty remains NP-complete.

[5] uses a decomposition of a coalitional game to several
domains to ease calculating the Shapley value. In the rep-
resentation in [5], testing if a certain value division is in the
core is co-NP complete. While this decomposition technique
eases computing the Shapley value, the same cannot be di-
rectly used for the Banzhaf index, which we consider in this
paper. Also, while our representation does use a certain de-
composition to various domains (or tasks), the success of

such tasks depends on a set of skills, rather then a complete
coalitional subgame. Thus our representation is less expres-
sive, but allows tractably solving problems that cannot be
easily solved in the more complex model proposed in [5].

[9] proposes Multi-Attribute Coalitional Games (MACG),
a representation of coalitional games where the value of a
coalition is described by a set of agent attributes, and func-
tions that aggregate the attributes of all the agents to a
single number. MACGs can describe any coalitional game;
CSGs are a very restricted form of MACGs. Again, since
CSGs are very restricted, this allows us to tractably com-
pute answers to problems that cannot be tractably solved for
general MACGs. Also, CSG is a restricted case of MACGs,
so hardness results for MACGs do not always hold when
restricting the input to CSG form.

4.1 Similar Models
Related research deals with similar models of coopera-

tion among agents. A model very similar to CSGs was used
in [18], where the concept of anonymity and false-name ma-
nipulations was presented. Another similar model is Coali-
tional Resource Games (CRGs) [17], a restricted form of
Qualitative Coalitional Games (QCGs) [16]. We now con-
sider similarities and differences between our model and
these others.

4.1.1 Anonymous Proof Solutions
[18] considers manipulations in open, anonymous envi-

ronments, where a single agent can use multiple identifiers
(or false names), pretending to be multiple agents, and dis-
tribute its ability among these identifiers. This requires a
model of what abilities agents have, so they can be split
among their false identities. The setting examined in [18]
is similar to general CSGs: there are several skills S, and
each agent ai has some subset of skills Si ⊂ S. The model
assumes that no two agents possess the same skill, so ∀ai 6=
aj , Si ∩ Sj = φ. The characteristic function of the game is
defined on the set of skills that a coalition has: v : 2T → R.

The expressiveness of the model defined in [18] is essen-
tially equivalent to that of general CSGs. Obviously, it is
more general, as it directly maps a subset of skills that a
coalition has to the utility of that coalition, rather than re-
quiring a definition of tasks. However, any game represented
in this model can also be represented as a CSG, by defining
a task for each skill (which requires exactly this skill). In
this way, it is possible to map any subset of skills a coali-
tion may have to any utility for that coalition. However, if
there are even a few tasks, the CSG representation is smaller
than that in [18]. Also, while our CSG model is very sim-
ilar to that of [18], we study the complexity of calculating
solution concepts, which relies heavily on the representation
used, so the restrictions on the structure of the game and
its representation must be clearly defined.

[18] mostly defines anonymous proof solution concepts,
and does not consider the computational complexity of cal-
culating solution concepts. It shows that when the utility
of the coalition is divided according to the Shapley value
of each agent, agents may sometimes gain by splitting their
skills among several false identities, pretending to be several
agents. [18] suggests anonymous proof solutions, resistant
to such manipulations, but does not consider these solu-
tions’ computational complexity.7 The focus of our work is

7One computational question that [18] does consider is the
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the computational complexity of various solution concepts;
while some of these problems are computationally hard for
general CSGs, we suggested restricted forms of CSGs where
these problems can be solved by polynomial algorithms.

4.1.2 Coalitional Resource Games
[17] presents a model called Coalitional Resource Games.

In such games, agents are interested in achieving goals. A
set of different resources are required to reach these goals.
Each agent is endowed with different amounts of each re-
source, and wants to achieve one of a different subset of
goals. A goal subset satisfies a coalition if for every agent in
that coalition it contains a goal desired by that agent. A goal
set is feasible for a coalition if that coalition has sufficient
resources to achieve all the goals in that set. [17] examines
several questions regarding CRGs. One main concern is the
properties of goal subsets that are successful—both feasible
and satisfying for a coalition. [17] considers the complexity
of several questions such as whether a coalition has a suc-
cessful goal set (NP-complete); whether a certain resource r
is necessary for a coalition (co-NP complete); whether a suc-
cessful goal set G′ for a coalition is optimal in its use of the
resource r (co-NP complete), and several similar questions.

Our model of CSGs is somewhat similar to that of CRGs.
CSGs define tasks to accomplish, and CRGs defines goals
desired by agents. Performing a task in CSGs requires a
coalition to have a certain set of skills, and achieving a goal
in CRGs requires certain resources. However, significant dif-
ferences exist between the models. The CRG model allows
the expression of the fact that different quantities of various
resources are required for different tasks. Also, the CRG
model does not define a coalitional game; a solution in this
model is simply a goal set that is both feasible and satisfying
for a coalition. However, if there are several such goal sets,
it is unclear which of them is chosen; even checking for the
existence of such a solution is NP-hard. Similarly to [17],
the current paper focuses on the computational complexity
of finding appropriate solutions to the game. However, the
model it uses is more similar to that of [18].

5. CONCLUSIONS
We examined a simple model of cooperation among agents,

Coalitional Skill Games (CSGs), and showed that it is a
rather expressive model. We considered several restricted
CSG domains, and examined computational complexity of
some key problems related to game theoretic solution con-
cepts in these domains. We showed that although such
games allow calculating the value of a coalition in polynomial
time in all these domains, some problems remain computa-
tionally hard. We examined the computational complexity
differences between these various restricted domains.

Several questions remain open for future research, such as
the complexity of calculating the Shapley value in STSG,
TCSG, and WTSG, and that of computing other solution
concepts in CSGs, such as the nucleolus and least-core.
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