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ABSTRACT

One-switch utility functions are an important class of moghr
utility functions that can model human beings whose dengsio
change with their wealth level. We study how to maximize tke e
pected utility for Markov decision problems with given oswitch
utility functions. We first utilize the fact that one-switchility
functions are weighted sums of linear and exponentialyfilinc-
tions to prove that there exists an optimal policy that ihistation-
ary and deterministic as the wealth level approaches negafin-
ity. We then develop a solution method, the backward-irdnct
method, that starts with this policy and augments it for bigéind
higher wealth levels. Our backward-induction method deiees
maximal expected utilities in finite time, different frometipre-
vious functional value iteration method, that typicallytetenines
only approximately maximal expected utilities.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search-Bynamic Programming

General Terms
Algorithms

Keywords

Decision Making, Functional Value lIteration, Markov Décis
Problem, One-Switch Utility Function, Planning, Utilith€ory

1. INTRODUCTION

High-stake planning situations are planning situationth he
possibility of high wins and losses. Traditional decistbeoretic
planners typically maximize the expected rewakER planning
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objective). In contrast, human beings are often risk-averdigh-
stake planning situations and then maximize their expeatiity
for nonlinear utility functions MEU planning objective), which
explains why researchers have recently been very interéste
attempting to maximize the expected utility for nonlineaitity
functions or, equivalently, risk-sensitive utility fumahs [12, 14,
10]. We model decision-theoretic planning problems asdigdal-
directed Markov decision problems (GDMDPs), which are Mark
decision problems with strictly negative rewards (puretgoand
goal states, in which execution stops. Our planning ohjeas
to maximize the expected utility for one-switch utility fttions
since these risk-sensitive utility functions can model harheings
that are risk-averse but become risk-neutral in the limitreer
wealth level increases [1]. In contrast, other decisia@®nthtic
planners with the MEU planning objective often use expoaént
utility functions [6], which cannot model human beings wios
risk attitudes change with their wealth level. The only jwas
decision-theoretic planner that can use one-switch yfilihctions
is based on functional value iteration [9] and typicallyeteatines
only approximately maximal expected utilities (similanalue it-
eration for the MER planning objective). We therefore idiroe
the backward-induction method, that exploits the strectifrone-
switch utility functions to determine maximal expecteditigis and
an optimal policy in finite time (similar to policy iteraticior the
MER planning objective). We apply it to a painted blockswlorl
problem and compare the results to those of the functionakva
iteration method.

2. UTILITY FUNCTIONS

Imagine that you are a contestant on the TV show “Who Wants
to be a Millionaire” and reached the one million dollar quest
with only the 50-50 lifeline remaining. Since you do not kntive
answer, you use this lifeline to narrow down the possiblevans
to two alternatives and then have to make a decision. You an e
ther leave with $500,000 for sure. Or you can guess the arewer
then win $1,000,000 with 50% probability (if you are corjeand
$32,000 with 50% probability (if you are wrong). The expekte-
ward of leaving is $500,000, while the expected reward obging
is $516,000. Thus, you would need to guess the answer in trder
maximize the expected reward. However, many contestantsseh
to leave in this situation.

Utility theory, a major branch of decision theory, explathss
risk-averse behavior as follows [16]: Every human being has
a monotonically non-decreasing utility function that mahsir
wealth level to the resulting real-valued utility. A humaairy
maximizes the expected utility of their future wealth levather
than their expected future wealth level itself. The utifityction
determines their risk attitude. Linear utility functiomaply a risk-



Table 1: Utility-Theoretic Analysis of the Game-Show Probém

Utility Function

Leave

Guess

Utility of $500,000
(with prob. 1.0)

Utility of $32,000
(with prob. 0.5)

Utility of $1,000,000
(with prob. 0.5)

Expected Utility

Utility Difference
(Leave— Guess)

Optimal Decision

Us(w) = w wo + 500, 000 wo + 32,000 wo + 1,000,000 | wo + 516,000 —16, 000 Guess

Ue(w) = —4% —0.606570 —0.96857%0 —0.367970 —0.66827%0 0.06177%0 Leave

Uss(w) = wo + 500, 000 wo + 32, 000 wo + 1,000,000 | wo + 516,000 —16, 000 wo > 1.35% 10°: Guess
w— Dy || —0.6065D~wo —0.9685D™o —0.3679D~Wo —0.6682Dyw0 || +0.0617Dy¥o || wo < 1.35x10: Leave

wo = the initial wealth levely = 0.999999. D = 106.

neutral risk attitude. A human being is risk-neutral iff yhmake
decisions that maximize their expected future wealth |€Vke cal-
culations for the game-show problem with the linear utifityction

Ui (w) = w (Wherew is the wealth level) are shown in the first row
of Table 1. The optimal decision is to guess independent @f th
initial wealth level. Concave utility functions imply a kisaverse
risk attitude. A human being is risk-averse iff they makeisieas
that do not maximize their expected future wealth level jued
that the variance of their future wealth level is sufficigméduced.
Researchers often assume for mathematical conveniencesta
averse human beings have (concave) exponential utilitgtioms,
which are of the fornle(w) = —+* for parametet < v < 1 [4].
The calculations for the game-show problem with the exptiaken
utility function Ue(w) = —0.999999" are shown in the second
row of Table 1. The optimal decision is to leave independéthe®
initial wealth level, which is consistent with the decisiohmost
contestants in this situation. In general, different hurbamgs
can have different utility functions and thus differenkragtitudes.
Thus, they can make different decisions.

The decisions of human beings with linear or exponentid uti
ity functions are independent of their initial wealth lewsld thus
do not change as their wealth level increases, which is wageth
utility functions are also known as zero-switch utility fitions [1].

In reality, the decisions of human beings often change widirt
wealth level, which is why it can be unrealistic to use linaad ex-
ponential utility functions. For example, the rewards ia ame-

Figure 1: (a) One-Switch Utility Function (b) Two-State GDMDP

[ Action | Description | Success probabili] Cost ]
1 do-it-yourself 0.25 $ 100
2 hire a professional 0.95 $ 1,000
buy a termite-free house
3 ... and sell the infested ong! 1.00 $10,000

Figure 2: Termite Problem

—1.522 x 10° if your initial wealth level is zero. Thus, you would
need to leave in order to maximize your expected utility. O t
other hand, the exponential term of the one-switch utilitydtion
rapidly approaches zero as the initial wealth level inczsasd the
linear term then dominates. Thus, you would eventually need
guess in order to maximize your expected utility. To detearat
which initial wealth levelw, you should switch from leaving to
guessing, we solve the equation

—16,000 4 0.0617 x 10° - 0.999999*° = 0 = wo = 1.35 x 10°.

show problem are high compared to the wealth level of average ThuS, you should switch from leaving to guessing as your theal

people, which explains why they are expected to be risksaver

in game shows. However, the rewards are low compared to the

wealth level of billionaires, which explains why they argpegted
to be risk-neutral. It is more realistic to assume that huimgings
are always risk-averse but become risk-neutral in the lmitheir
wealth level increases, that the utility increases moriotdy with
their wealth level (since they can always give money awayd, a
that their decision between any two alternatives changesosat
once as their wealth level increases. Human beings whosevioeh
satisfies these assumptions have special kinds of onebswtitity
functions which are of the form

Uls(w) =w— D’Yw

for parameter®d > 0 and0 < v < 1, as illustrated in Figure 1(a),
where the dashed line indicates the linear utility functidhe pa-
rameterD provides an adjustable tradeoff between risk-neutrality
(linear term) and risk-aversion (exponential term). Owéteh util-

ity functions were proposed in [1] and have been studiednexte
sively with many applications in the decision analysis camity

[1, 11, 5, 2]. The calculations for the game-show problentnwie
one-switch utility functionUss(w) = w — 10 x 0.999999% are
shown in the third row of Table 1. The optimal decision now de-
pends on the initial wealth level. For example, the expeatéity

of leaving is—1.065 x 10°, while the expected utility of guessing is
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level increases beyond about $1,350,000.

3. GOAL-DIRECTED MDPS

The game-show problem involves only one action rather than
a sequence of actions, the hallmark of artificial intelligemplan-
ning. Imagine therefore that you own a termite-infested aero
house but would like to own a termite-free house. The actéwas
given in Figure 2. The outcome of each action is either stitho
ing a termite-infested house or a termite-free house. Youtlvas
achieve the goal state only with a sequence of actions. Fongbe,
you could attempt to exterminate the termites yourself éwica
row and then buy a termite-free house, stopping after yostrdirc-
cess. This policy costs you $100 with probability 0.25, $3@100
=$200 with probabilityf1 — 0.25] 0.25 = 0.19, and $100 + $100 +
$10,000 = $10,200 with probabilityf — 0.25] [1 — 0.25] = 0.56.

Sequential planning problems can be described with goal-
directed Markov decision problems (GDMDPs). Formally, a
GDMDP consists of a finite set of statésa nonempty finite set of
goal stateg7 C S and a finite set of actiond; for each non-goal
states € S’ = S\ G. The agent starts execution at time step 0
and always chooses one actienc A, to execute in its current
states € S;. Its execution results with probabilit®(s’|s, a) in a
finite rewardr(s, a, s’) < 0 at the current time step and a transi-
tion to successor staté € .S at the next time step. The agent stops
acting when it reaches a goal state and receives no moredgwar



thereafter. We use; anda: to denote the state and action at time
stept, respectively. We use. = r(s¢, at, st+1) to denote the re-
ward for executing actiom:. (We definer, = 0 after the agent
reaches a goal state.) Finally, we usg= wo + Zj;é r; to de-
note the wealth level at time stemlirectly before executing action
a:. The wealth level starts at the initial wealth leve) and then
decreases over time since all rewards are negative. Forpgam

Figure 1(b) shows how the termite problem can be modeled as a

two-state GDMDP with three actions. One state is the stares?
(owning an infested house), and the other state is the gaia st
(owning a termite-free house). In general, the agent hakdose
amongn actions to execute in stat®, numbered from 1 ta. The
arcs indicate the state transitions for each adtien1...n and are
annotated with their probabilities, and rewards:y,. For the ter-
mite GDMDP, there are three actions. Their probabilitiestaeir
failure probabilities, and their rewards are their negatiosts. For
example, probability; = 0.75 and rewardc:; = —100 for action
1, namely to exterminate the termites yourself.

Policies specify which actions an agent should executehén t
most general case, these action can probabilisticallyrdepe the
current state as well as all previous states and actions [Ibg
agent should follow the policy that maximizes its expecttlity
For all utility functionsU and all policiesr, we define the value
v (s, w) = limy—oo B, [U(w:)] as the expected utility of an
agent with initial state = so and initial wealth levelv = wy that
follows policy =. We also define the optimal valug; (s, w) =

max, v{; (s, w) as the highest possible expected utility of an agent

with initial states and initial wealth levelv. We assume that value
vgr (s, w) is finite for all statess € S and wealth levelsy since
it is otherwise impossible to compare policies [8]. We defame
optimal policyr;; to be a policy withv;?f (s,w) = v{;(s,w) for
all statess € S and wealth levelsv. For the utility functionsU,,
Ue andUss, we refer to theMEU, (= MER), MEUe. and MEU 4
planning objectives, respectively, and replace the sigisdy in
valuesvg; (s, w) andvg; (s, w) with £, e andls, respectively. We
use the shorthands; (s) = v7 (s,0) andv;(s) = vy (s,0) =
maxr v; (8,0) = maxx vy (s). Similarly, we use the shorthands
vg (s) = v&(s,0) andvg(s) = vs(s,0) = maxyvd(s,0) =

max- v¢ (s). We exploit the relationships between these values in

the next section.

4. PLANNING OBJECTIVES

One-switch utility functions are linear combinations afidar
and exponential utility functions:

Uis(w) = w — DyY = Up(w) + D - Ue(w).

For all one-switch utility functiong/, and all policiesr, we thus
have

vis(s,w) = lim BT, [Uis(we)] = lim ET,, [Ug(wt) + D - Ue(wt)]
t—oo 7 t—oo 77
= lim BT, [Ug(w,)] + D+ lim BT, [Ue(w)]
t—oo ’ t—oo ’
=y (s,w) + D - vg (s, w). 1)
We therefore need to consider theEU, and MEU, planning ob-
jectives. For these planning objectives, there alwaysedsta-

tionary and deterministic (SD) policy that is optimal [3,]1#n
SD policy maps every state € S’ to the policyn(s) € A, that

an agent in state should execute independent of its wealth level.

Thus, actioru; = 7(s¢) and reward-; are independent of its ini-
tial wealth level. For the termite GDMDP, there are only th&D
policies, namelyr;,(s°) = k for actionsk = 1,2, 3.
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First, we consider th&1EU, planning objective: For the linear
utility function U, and all SD policiesr, we have

of (s,w) = lim BT, [Up(wo)] = lim BT, [wi]

t—1 t—1
:tlirgo w w+zori:| :w+t£rgoE§ [Zorl:|

1= 1=
= w + v (s), @

where valuesy (s) are independent of the wealth leveland sat-
isfy the policy-evaluation equations [3]
vi(s)=0
vi(s) = > P(s']s,7m(s)) [r(s,m(s), s') +vf (s))]
s'es
Thus,v} (s, w) = w + v; (s), where the optimal values; (s) are
also independent of the wealth leweland satisfy the optimality
equations [3]

Vs € G
Vs € S, (3)

vy (s) =0, Vs € G
vy (s) = max Z:SP(S'\s,a) [r(s,a,8") +vi(s)] Vses.
s'e
An agent in states € S’ with wealth level w fol-

lows an MEU,-optimal policy if it executes an action from
arg max,c o > g P(s']s,a) [r(s,a,s") +vi(s")]. For the ter-
mite GDMDP, the policy-evaluation equations are

vk (9) =0, gk (s%) = py [ex + 07 (s°)] 4+ [1 = p] [ex + 07" (9)] -

The values thus are

T 0y Ck
v, (sV) T
The MEU,-optimal policy is 7 since vj'(s?) =
v,?(s%) = —1,052 andv;? (s°) = —10, 000.
Second, we consider tidEU. planning objective: For all expo-
nential utility functionsle and all SD policiesr, we have similarly

—400,

o (s,w) = Jim BT, [Ue(we)] = lim BT, [-+""]

1 -1
= tim BT, [—" im0 ] =4 dim BT [0 ]
=" - (s), (4)

where the values( (s) are independent of the wealth leveland
satisfy the policy-evaluation equations [13]

vg(s) =—1 Vs e G
WE(s) = > P(s'|s,m(s)y" ) T (s))  Wse S, (5)
s'eS

provided that the values; (s) are finite for all states € S’. Thus,
ve (s,w) = v - vé(s), where the optimal values; (s) are also
independent of the wealth level and satisfy the optimality equa-
tions [13]

vg(s) =—-1

va(s) = ;Ié%xs ZS'P(SI‘&Q),Yr(s,a,sz) . U;(S/)

s'e

provided that the optimal values: (s) are finite for all states
s € S'. An agent in states € S’ with wealth level w
follows an MEUe-optimal policy if it executes an action from
arg maxX,c 4, Y. cs P(5's, a)y" () .z (). For the termite
GDMDP, the policy-evaluation equations are

ve" (9) = —1andvg* (s°) = pryFug* (s°) + [1 — p] ¥ *ve* (),

Vs € G
Vse S,

provided that the valuesg * (so) are finite, which is the case if



pry* < 1. (Otherwisepe® (s°) = —co.) The values thus are
prYk <1

_[1*Pk]"/cck
vEh(s0) = 4 T PR
—00 pEYk 2 1.

Assume that your exponential utility function iEe(w)
—0.997". Then, theMEUe-optimal policy isms sincevd™ (s°)
v8?(s%) = —oco andvg® (s%) = —1.1179 x 10*3.

Third, we consider th&/EUs planning objective: For all one-
switch utility functionsU,s and all SD policiesr, we can decom-
pose the values; (s, w) according to Eq. (1), Eq. (2) and Eq. (4)
as follows:

vis(s, w) = w+ g (s) + Dy - vg (s).

For the termite GDMDP, these equations are

(6)

v (g, w) = Urs(w) = w — Dy
Cr w [1 — pk’} 'Vck
w+ - Dy ———— ppy <1
vk (s w) = 1—pk 1 — ppy©k
—00 prY°k > 1.

Assume that your one-switch utility function $;s(w) = w —
1079 x 0.997% and your initial wealth level isv = 0 (due to your
mortgage debt). Then, tHdEUs-optimal SD policy ists since
V]2 (s°,0) = v]2(s°,0) = —oo andv]3 (s, 0) = —21, 179.

For the MEUs planning objective, there does not necessar-
ily exist an SD policy that is optimal but there always exiats
augmented stationary and deterministic (ASD) policy tisabp-
timal [9]. An ASD policy maps every combination of a state
s € S’ and wealth levekw to the actionr(s,w) € As that an
agent in states with wealth levelw should execute. Thus, ac-
tion a; = m(se,we) = w(se, wo + S.._y7:) and rewardr; are
no longer independent of its initial wealth level,. For the ter-
mite GDMDP, assume again that your one-switch utility fimrct
is Uis(w) = w — 107% x 0.997* and your initial wealth level is
zero. The policy of attempting to exterminate the termitesrgelf
twice in a row and then buy a termite-free house, stoppiner aft
your first success, can be formulated as an ASD patieyith ac-
tions 7(s%,0) = w(s®,—100) = 1 andn(s®, —200) = 3. Its
value isvf,(s°) = 0.25 - Urs(—100) + 0.19 - U1s(—200) + 0.56 -
U1s(—10,200) = —17,193. Thus, this ASD policy is better than
the MEUs-optimal SD policyrs.

We now generalize Eq. (6) to ASD policies by reformulating
special cases of Theorems 1 and 2 from [9], which hopefully
make them more accessible to the reader. For all ASD policies
= and all wealth levelsv, we define the policyr,, that satisfies
Tw(s,w') = w(s,w + w') for all wealth levelsw’. (If 7 is an
SD policy, thent,, = 7.) The example ASD policy for the ter-
mite GDMDP has actions _100(s°,0) = 7(s%, —=100) = 1 and
7_100(s%, —100) = 7(s°, —200) = 3.

An agent with initial wealth Ievelu that follows policyr ex-
ecutes actiom; = (s, w + 3.'_4r;) at time stept, while an
agent with initial wealth leveD that follows policyww executes
actionas = m(se, > g 7i) = m(s¢,w + > 7;) at time step
t. These actions are the same and thus the probability distiis
over the successor states and rewards are also the same wEhus
have

t—1 t—1
T 1 s = q Tw .
vy (s, w) = tlingo ES w+Zorl:| = w+t£rgoES |:z;) rl]
T 1=

=w+v;"(s,0) =w+ v, (s) (7)

and

vg(s,w):tlirgoE; [ ~v 'yzr OT’] =4". lim F

t—o0

T [,725;3 r]
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(a) Determinew (b) Determinew®**

(c) Maintain Property 2

Figure 3: lllustration of Backward Induction

w

=" vdv(s,0) =" -vgv (s). (8)

For all one-switch utility functiong/;s and all ASD policiesr, we
can therefore decompose the vatfg(s, w) according to Eq. (1),
Eq. (7) and Eq. (8) as follows:

vis(s,w) = w+ vy (s) + Dy - vgv (s). )

The valuesv], (s, w) satisfy policy-evaluation equations that are
implied by [9] but were not explicitly stated there

vis(s, w) = Uis(w) =w — Dy Vs € G,Yw
vl (s, w) = Z P(s'ls,m(s,w))v], (s, w+r(s,m(s,w),s"))
s'eS
Vs € S, Vw,

provided that the values; (s, w) are finite for all states € S" and
all wealth levelsv. The optimal valuesi, (s, w) satisfy optimality
equations that are again implied by [9]

vig(s,w) = Urs(w) = w — D" Vs € G,Yw

vis(s,w) = max Z P(s'|s,a)vi (s, w+r(s,a, "))
s'eS

Vs € §',Vw, (10)
provided that the optimal valuesi,(s,w) are finite for
all state s € S and all wealth levelsw. Then,
an agent in states € S’ with wealth level w fol-
lows an MEUs-optimal policy if it executes an action from
argmax,c 4 >, cg P(s'[s,a)vis (s, w +r(s,a,s")). There-
fore, all that is left to do is to determine the optimal values
vis(s,w). The only previous approach for this purpose that we
know of is based on functional value iteration [9] and tyficee-
termines the optimal values; (s, w) only in the limit although it
needs to terminate in finite time in practice. However, theraach
does not provide a termination condition for improving tlzdues
nor an error bound on the resulting policies. We therefotein
duce that backward-induction method that exploits thetimahip
between one-switch utility functions and exponentialitytifunc-
tions to determine the optimal valueg (s, w) and thus atMEU 15-
optimal policy in finite time.

5. INDUCTIVE FOUNDATION

We now establish the induction foundation for the backward-
induction method. We utilize the fact that one-switch tytifunc-
tions are weighted sums of linear and exponential utilitycfu
tions to prove that there exists an SD policy that iSNBU -
optimal policy as the wealth level approaches negativeitgfifihe
backward-induction method then starts with this policy adg-
ments it for higher and higher wealth levels. We illustrdte t
backward-induction method in Figure 3 for a general twaesta
GDMDP with initial wealth level zero, where the graphs are th
value functions)T* (s°, -) of the policiesr;. The following lemma
relates the optimal values;, (s, w) andvg(s) and uses the fact



that we have for aMEU-optimal ASD policiesri, according to
Eq. (9)

vig(s,w)= UES (s,w) :w—i—vyﬁ)w (s) +D'ywvé7rf5)w (s). (11)

LEMMA 1.

S.

PrROOF For all MEUs-optimal ASD policiesrys, we have ac-
cording to Eq. (11) and the fact thaf (s) < v;(s) andvg (s) <
ve (s) for all policiesw

lim v (s, w)y™ " = Dvg(s) for all statess €

w— — 00

Uy (5,w)7 ™ =0T (5, w)y T =y ol (s)y P DT (s)

Swy ™ 4 vi (s)y ™" + Do (s).

and thus

limsup vis(s, w)y™ " < lim [wy ™™ 4v; (s)y ™% 4+ Dvg (s)] = Dvg (s).
On the other hand, for aMEU.-optimal SD policiesrs, we have
according to Eq. (9) and the fact that (s, w) > v{;(s, w) for all
policies

vis(s, W)y > 0pf (s,w)y Y = wy T+ 0, (s)yT Y + Due® (s)

= wy ™ vy (s)y " + Dug(s)

and thus
liminf vi (s, w)y~ "> lim [w'y_“’ +v2§ (s)y"“+Duvg (s)] =Duvg (s).
wW— — 00 w— — 00

Therefore, the lemma holds.[]

The lemma implies that adflEU+s-optimal policy is alsSAMEUe-
optimal in the limit, which is not surprising since the expatial
term in Eqg. (11) grows faster than the linear term. Howevet, n
everyMEUe-optimal policy is alsdVIEUs-optimal in the limit. For
a general two-state GDMDP, assume that there are only twanact
and both of the corresponding SD policies and 7> are MEUe-
optimal. Thus, we have for actios= 1, 2

1 — pi] ek
vg (s°) = va* (s0) = _L= ey < -1
¢ ¢ 1 — pjyc

provided thap,y“* < 1, which implies
_ 14ug(sO)y e

Pk = 1+ vz(s9)
Thus, there are combinations of probabilities and rewards,
that achieve the same optimal vali&(s®) but differ in their val-
uesv*(s") = Tf&,; Only the policyr;, with the highest value
v,k (s°) can possibly beVIEU;s-optimal according to Eq. (11).
The following lemma formalizes this observation. It defirss
auxiliary GDMDP such that all policies for the auxiliary GNP
areMEU¢-optimal for the given GDMDP. The policy thatMEU,-
optimal for the auxiliary GDMDP then iMEUs-optimal for the
given GDMDP for all wealth levels no higher than some wealth
level threshold.

and ¢ € [logﬂ/ (—vs (s9)) ,0).

LEMMA 2. For all MEU;s-optimal policiesrys, there exists a
wealth level thresholdv such that it holds for all wealth levels
w < w that

1. o519 (5) = g (s) for all statess € .

2. vé”fﬁ)w (s) = v;re**(s) for all statess € S’, wherers* is any

SD MEU,-optimal policy for the auxiliary GDMDP which
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is the same as the original GDMDP except that the agent
chooses its actions only from tMEU.-optimal actions, that
is, the sets

A% (s) = arg max Z P(s'\s,a)'yr(s’“’sl)vg (s").
a€Ag s'es

3. viy(s,w) = v (s,w) for all statess € S, meaning that
me " iSanMEUs-optimal policy for all wealth levels) < w.

The proof of the lemma can be found in [7]. We need to determine
the wealth level threshold to establish the induction foundation,
as shown in Figure 3(a). For a general two-state GDMDP, assum
that there are only two actions and that is an MEU ;s-optimal
policy for all wealth levelsw < w, whereasr; is not. Assume
further thatr; is no longer anMEU is-optimal policy for wealth
levels that are higher than the wealth level thresholay a positive
infinitesimal. Then, we have for all wealth levels< w according

to Eq. (11) and the fact thétr1 )., = 71 (sincer; is an SD policy)

vis(s%,w) = of) (%, w) = w + o (s°) + Dyugt (s0). (12)

Now consider any wealth level that is higher than the wealth level
thresholdw by a positive infinitesimal but no higher than — ¢,
for all actionsk = 1, 2. Then,viy(s®, w + cx) = v (8%, w + cx)
(sincew + ¢, < w) and we can rewrite Eq. (10) as follows:

viy(shw) = w — Dy

V(s

sw) = max [profy(s°,w+ ) + [1—pi] i (sT w + er)]

max [prof} (s w+ k) + [1—pa] [w+ e — Dy Fek]]
(" k)],

where the last step uses both Eq. (12) and the definitions of
the valuesq,* (s°, k) e + propt(s?) and g5t (s°, k)
~Ck [pk — 1+ prve? (so)} for k = 1, 2. It holds thatg,* (s°,1) =
vyt (s°) according to Eq. (3) angd* (s°,1) = vl (s°) accord-
ing to Eq. (5). w2 is anMEUs-optimal policy for wealth levelv
according to our assumptions, whereass not. Thus, we have

w+ q;t (s,2) + Dyt (s°,2) > wtqp (s°, 1)+ Dy gt (s°, 1)
= w+v) ! (s°)+ Dy vg* (s)
;' (s%,2) — v (s°)

1
> 1 — - .
L (D vgl(s())—qz:l(so,m)

The wealth level threshold can thus be set to the right-hand side
of the last inequality. We actually set it to the minimum o tight-
hand side of the last inequality and the initial wealth lesiate the
agent only encounters wealth levels no higher than itsinitealth
level. If the argument of the logarithm is non-positive ahd tog-
arithm thus is undefined, then poliey is MEU:s-optimal for all
wealth levels and we set the wealth level threshold to thigalni
wealth level. The general case is just slightly more comphex
for the two-state GDMDP since one needs to minimize over all
statess € S’ and all actions: € A, \ As(s). The following the-
orem summarizes the discussion. It uses the following diefirs
for all statess € S’ and actions: € A,:

g5 (s,0) = > P(s'|s,a)y" (g ()
s'eS

ng*(s,a) =Y P(s|s,a) [T(s,a, s') +U2g*(5/)] '

s'eS

Jmax [w + qzn (30, k) + Dy"Vge*

or, equivalently,
47" (s%,2) —vg* (s%) > Dy [vg* (s°) — ad* (s°,2)]




ok ok

THEOREM 3. The statements in Lemma 2 hold for
4 (s,0) = v]° ()

log,, (max |:'yw0 (s; ) ]) .

The proof of the theorem can be found in [7]. The maximum in
the definition of the wealth level threshalgdtakes care of the case
where the numerator is negative or the wealth level thresiould
otherwise be higher than the initial wealth leve). One needs to

determineAZ(s), vé(s), ma* and v;g* (s) to calculate the wealth
level threshold. The action setg (s) and the optimal values; (s)
can be calculated with th®1EU. version of policy iteration [13],

and then the policyrs* and the optimal values;® (s) can be cal-
culated with theMEU, version of policy iteration [3]. One should
not use versions of value iteration for this purpose sineg tiipi-
cally determine optimal values only approximately. Fortérenite
GDMDP, we have shown thats is the only SDMEUe-optimal
policy and thusrg™ = 73 andA (s°) = {3}. Then, we have
vpe (s%) = 710 000, q’Te (s°,1) = —7,600, ¢, (s°2)
—1,500, v (s°) = —1.1179 x 10*3, g3 (s°,1) = —1.1323 x 103
and g3 (s°,2) = —1.1278 x 10'3. Therefore, the wealth level
threshold isw = —1482.0.

o —

w = mln
s€S’ acAs \A*(b

6. BACKWARD-INDUCTION METHOD

Algorithm 1 (BackwardIinductionOneSwitch) shows our
backward-induction method, which is based on the indudtue-
dation from the previous section and Eqg. (10). There are two
main differences to the common backward-induction mettod f
solving GDMDPs with finite planning horizons [15]. First,eth
inductive foundation of the backward-induction method $otv-
ing GDMDPs with finite planning horizons is trivially prowed
by values that are all zero, while the inductive foundati6roar
backward-induction method is provided by Theorem 3. Thus,
our backward-induction method first determines the wealtiell
thresholdw and, at the same time, the optimal valugg(s, w) for
all statess € S’ and all wealth levelsy with w < w. Second, the
backward-induction method for solving GDMDPs with finiteupt
ning horizons starts at the planning horizoa- T', then decreases
the time step with a fixed step size of one, and ends at time step
0, while our backward-induction method starts at the weaik|
thresholdw = w, then increases the wealth levelwith a variable
step size (that is controlled by a priority queue with the lrelavel
w as the key), and ends at the initial wealth lengl

We now explain the backward-induction method and show,eat th
same time, that th&1EU,s-optimal value functionsi;(s,-) are
piecewise one-switch functions with a finite number of segtsie
The backward-induction method represents MEU;-optimal
value functions (one for each state) andMEUlS-optlmaI policy
as a finite list of tuplegw’(s), vj(s),vé(s),a’(s)), which repre-
sent thawi (s, w) = w+vi(s) + Dy“vi(s) and thatri, (s, w) =
a’(s) for all wealth levelsw with w € (wi(s),wi“(s)]. In this
case, we say thai’(s) is an MEU;,-optimal action for wealth
level w. VAList is a data structure that contains all of these
tuples after the termination of the backward-induction hodt
GetVaIues(VALlst s,w) retrieves the values;(s) and vg(s)
from the tuple(w’(s), vi(s), ve(s),a’(s)) in VAList with wealth
levelw € (w'(s),w " (s)].

The backward-induction method uses the inductive foundati
from the previous section and thus set$(s) = —oo, vy (s)
upe (s), v0(s) = vi(s) anda®(s) = m3*(s) for all statess €
S’ on Lines 1-4. It also initializes the priority quet®Q. The
wealth level thresholdy is the first non-infinity wealth levely’
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Algorithm 1 Backward-Induction Method

We definesucc(s,a) = {s" € S | a € As, P(s'|s,a) > 0} andpred(s, a)
{s" € S|a € A, P(s|s’,a) > 0}. We use the following operations on pri-
ority queues: Insert(PQ, s, w) inserts s into priority queue PQ with key w,
IsMember(PQ, s) tests whethes is in PQ, GetKey(PQ, s) returns the key of

in PQ (s needs to be ifPQ), DecreaseKey(PQ, s, w) decreases the current key of
sin PQto w (s needs to be ifPQ with a key greater thaw), andExtractMin(PQ)
removes a state with the lowest key frgP® and returns both the state and its key.
VAList = BackwardInductionOneSwitch(S, { A}, P, r, D, v, wo)

**

1: determinev, v,® , andmy*
2: forall s € S/ do

3. AddList(VAList, 5, —00,v,° (s),vg (s), 73" (s));

4:  Insert(PQ, s, —o0);

5 A4 — U,csr Ass

6: while —ISEmpty(PQ) do

7. s,w' — ExtractMin(PQ);

8 vl —oo

9: forall a € A, do

10: qz(s,a),qé(s,a) «— 05

11: forall s’ € succ(s, a) do

12: Ui(s/), vl (s’) «— GetvValues(VAList, s’, w* + r(s, a, s"));
13: q}f(s, a) — q}(s, a) + P(s'|s,a) {7'(8, a,s’) + U?(s/)];
14: qi(s,a) «— q¢(s,a) + P(s'|s, a)'yT(S’a'S/)vg (s");

15: if w! # —oo then

16: qis(s, a) — w' + t]}(s7 a) + D’y“’lqé(s7 a);

17: if qiy(s,a) > vi, 0Or (gi (s, a) = vi,and ¢i(s, a) < vi) then
18: vls — q1<(5 a);

19: a’, vh, vl — a,qi(s,a),qi(s,a);

20:  if w' # —ocothen

21: AddList(VAList, s, w®, v, v, a’);

2: forala€ A;do )
23: InsertSP(PQ, s, w*, vy, vg, q; (s, a), ge (s, a), v, wo);
24:  if w' # —oo then
25: forall a € Ado
26: forall s’ € pred(s, a)do
27: InsertNeg(PQ, s’, w® —r(s', a, s),wo);

InsertSP(PQ, s, w, ve, ve, q¢, ge; ¥, wo) InsertNeg(PQ, s, w, wo)

1: if ve # ge then
qe — Ve

1: if w < wo then

2. tmp— ; 2:  if IsMember(PQ, s) then

Ve — Qe
3. if tmp > D~™0 then 3 if Getkey(PQ, s) > w then
4: W «—log,, (3 - tmp); 4: DecreaseKey (PQ, s, w);
5: if @ > w then 5. else
6 InsertNeg(PQ, s, w, wo); 6 Insert(PQ, s, w);

removed from the priority queue in the main loop. The backiwar
induction method then proceeds in a backward fashion. @ensi
any states € S’ and any segmenfw’(s),w*""(s)], where the
wealth levekw' ! (s) is still to be determined. We demand that two
properties hold for this segment: First, the same actits) has

to be MEU:.-optimal for all wealth levelsy € (w'(s), w'™" (s)]
(Property 1). Second, for all wealth levalse ( '( ), w T (s)],

actionsa € A, and states € S with P(s|s,a) > 0, there
exists aj“"*l, such thatw’e.s " (s') < w'(s) andw+r(s,a, s') €

(wji’ls’ (s"), w’a St (s")], that is, all possible wealth levels after
the action execution should be in the same segment (Propgrty

Therefore, we have for all wealth levels € (w’(s), w* ™ (s)]
according to Eq. (10) and Eq. (11)
vis(s,w) = Iax Z P(s'|s,a)vis(s',w + (s, a,s"))
As s'eS
= max ZS P(s'|s,a) [w +7r(s,a,8") + v‘;ajsl (s")
s'e

]’S'i,
+ D,Yu)+7‘(s,a,s/)vea,s/ (S/)]



_ / / j;; /
= ;Iéz}q)i w+ Z P(s'|s,a) |:r(s,a,s )+ v,"7 (s ):|
s'eS
+D’7w Z ‘S a T‘(b,aﬁs/)vea,al(sl)}
s'es

= D
max [w + gj(s,a) + Dy ¢i(s, a)] ,

where we defined the valug$(s,a) and¢i(s, a) in the last step
for use below.

First, the backward-induction method calculates actitfs) on
Lines 8-21. Since the optimal value functiefy (s, -) is continuous
in the wealth levekw and actiona’(s) is MEUs-optimal for all
wealth levelsw € (w’(s), w'"(s)], it is alsoMEU1.-optimal for
wealth levehw’ (s), which implies according to Eq. (13)

(13)

ai(s) S A(s) = arg max [wi(s) + qz(s,a) + Dvwi(5>qé(s, a)] ,
a€EAg

where we defined the action sefs) for use below. The ac-

tion setsA(s) can contain actions that are nbtEU,.-optimal
for all wealth levelsw € (w'(s),w"""(s)]. Figure 3(b) illus-

trates such actions. The action séts®) includes actions 2, 3,
6 (the blue, black, and cyan graphs, respectively) for tigensat
(w'(s%), ”1( 9], all of which intersect at the same point. Only
action 2 isMEU;s-optimal for this segment, action 3 MEU15-
optimal for the previous segment, and action 8/4EU,s-optimal
for neither segment. In general, the spurious actions caglitve
inated by comparing the actions in the action Aeg) for wealth
level w'(s) + &, whered is a positive infinitesimal. Consider any
actionsa, a’ € A(s). Then, we have

w'(s) + gi(s,a) + Dy (gi(s, @)

= wi(s) + qé(s,a/) + Dy"v ‘() Z(s a'). (14)

Assume that action is MEU - optlmal for all wealth levelsy €
(w'(s),w""(s)], whereas action’ is not. Then, actiom is also
MEU:s-optimal for wealth levekv’(s) + &, whereas actiom’ is
not. Thus, we have

w'(s) + 6 + gi(s,a) + Dvwi(s)”'dqé(s, a)
> wi(s) + 6+ qi(s,a') + Dy 045, d)).
By subtracting Eg. (14) from the inequality, we have
§+ Dy’ (® [75 - 1] di(s,a) > & + Dy () [75 - 1] (s, a’)
qi(s,a) < gi(s,a’),

Thus, the backward-induction method chooses any acfi(m) S
arg min, ¢ 4, ge(s, a).

Second, the backward-induction method calculates theesalu
vy(s) = qi(s,a’(s)) andv(s) = qé(s,a’(s)) on Lines 8-21
sincevis(s,w) = w + g;(s,a’(s)) + Dy“qé(s,a’(s)) accord-
ing to Eq. (13) andi, (s, w) = w + vi(s) + Dy vi(s) according
to our representation of the piecewise one-switch funstfon all
wealth levelsw € (w'(s), w ' (s)].

Third, the backward-induction method calculates the videit-

els w”l(s). Property 1 implies that action” ‘() is MEU1s-
optimal for wealth leveho®**(s). We thus have for all actions
a € As

w1 (s) + gi(s,a’ (s)) + Dy Dgis,a’(s))
> wtL(s) + gi(s,a) + Dy Dgi(s, a)
gi(s,a’(s)) + Dy (D gi(s,a’ (s))
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(@) (b)

Figure 4: Painted Blocksworld Problem

> qi(s,a) + Dy (gi(s,a)

oh(s) + Dy u(s)
> gi(s,a) + Dy Vgi(s, a)

i1 1 q};'(s,a)fve(s)
W < logy (D i) - qa<s,a>>
where the right-hand side of the last inequality defines @rpot
tial switching point for theMEUs-optimal action and thus a po-
tential value for the wealth levab’™'(s) if the argument of the
logarithm is positive and the logarithm thus is defined, assil
trated in Figure 3(b). The determination of these potestitch-
ing points is essentially the same as the determinatioreofvttalth
level threshold (with the only difference being whethér= —o0),
which allows the backward-induction method to combinertbai-
culation in the main loop on Lines 22— 23 usihgsertSP. Prop-

erty 2 implies thatw + r(s,a,s’) < w’e et (s") and thus that

w < we a1 (s") — r(s,a,s’), where the right-hand side of this

inequality defines another potential switching point faMhEU -

optimal action and thus another potential value for the thdabel
w'™'(s), as illustrated in Figure 3(c) where wealth leve takes

the role of wealth Ieveh;]a ot and rewardc, takes the role of

rewardr(s, a, s"). The backward-induction method calculates the
potential switching points on Lines 25—-27 usimgertNeg.

The backward-induction method stores the potential switch
ing points in the priority queuePQ and processes them in
order of increasing wealth levels since the values of seg-
ment (w'(s),w‘+1(s)] depend on the values of segments
(wi(s"),w’T*(s")] for one or morej with w/*(s') < w'(s),
which need to have been calculated already. The backward-
induction method terminates when the priority qu&@is empty,
which happens in a finite amount of time since the wealth level
thresholdw is a finite negative value and the values of the processed
switching points are monotonically increasing by at legsbsitive
constant and guaranteed to be non-positive [7]. ThusivtBes-
optimal value functions are indeed piecewise one-switdetions
with a finite number of segments. For the termite GDMDP, the
backward-induction method finds the followingEUs-optimal
policy for the initial wealth levetvy = 0:

1 w e (—316.4,0]

2w e (—1482.0, —316.4]
3 w € (—oo,—1482.0].

(s, w) =

7. EXAMPLE

We use the painted blocksworld problem from [9] to illustrat
risk-sensitive planning with one-switch utility functien The do-
main is a standard blocksworld domain with five blocks that ar
either white W§ or black B). However, the move action succeeds
only with probability 0.5. When it fails, the block drops eatly
onto the table. One can also execute a paint action that ekang
the color of any one block and always succeeds. The move ac-
tion (M has a reward of-1, and the paint actionR) has a re-
ward of —3. Figure 4(a) shows the initial state. The goal is to
build a stack of three blocks as shown in Figure 4(b). Thetpdin



w = =3 {WBB,B,W}

{BW,WB,B}

—3;1.0
—_—

{BBB,B,W} {BWB,B,W}

Figure 5: MEU(Uss)-Optimal Policy

{ VBB, BW} and{ BW 8, B}
(w'(s)w1e () vi(s) wg(s) a’(s)

(' 0.00,—4.50)

( —o0, —o0) —2.00 —5.00 M
{BBB, B, W
(w'(5)v14(5)) vy(5) ve(s) a’(s)

(' 0.00,—5.31)
( —o0, —oco0) —3.00 —4.63 P
(veowy
g '(s), v, s)g vy(s)  wel(s) a’(s)
0.00,—15.72
(—0.38,—18.52) —4.25 —22.94 M
(—1.38,—28.61) —4.50 —22.52 M
(- —o00) —5.00 —22.03 M
ERALLTL | E—
(w'(s), vi(s) wvis) we(s) a’(s)
( 0.00,—15.72)
(—0.38,—18.52) —4.25 —22.94 M
(—1.38,—28.61) —4.50 —22.52 M
(—2.38,—44.43) —5.00 —22.03 M
(- —o0) —6.00 —21.43 P

Figure 6: MEU5-Optimal Value Functions

blocksworld problem has 162 states, which we describe aso$et
stacks by listing the blocks in each stack from bottom to tepr
example, the initial state iEVWBBW B} . We use the backward-
induction method to find atMEUs-optimal policy for the one-
switch utility functionUs(w) = w — 0.5 x 0.6. Figure 5 de-
picts thisMEU1s-optimal policy, and Figure 6 shows théEU -
optimal value functions in the form dfAList entries for the five
non-goal states that are reachable from the initial stdteeifagent
follows theMEU-optimal policy, where we use the shorthand no-
tation vi,(s) = vis(s,w’(s)) and also include the values for the
case where wealth leveb’ (s) is equal to the initial wealth level
wo = 0, which do not appear iWAList. The MEU,s-optimal ac-
tion in state{ \BB, B, W depends on the wealth level. It is a move
action for wealth level-1 or —2 and a paint action for wealth level
—3. It takes the backward-induction method only about; sec-
onds to obtain théMEUc-optimal policy on a Dell Latitude D600
laptop, while it takes functional value iteration abaut5 seconds,
although our backward-induction method in general is natrgo-
teed to be faster than functional value iteration and cafadt) be
slower. A more thorough study of the running times of funaéib
value iteration and the backward induction method is undgrw

8. CONCLUSIONS

The backward-induction method exploits the structure af-on
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switch utility functions to determine maximal expecteditiés for

given GDMDPs and one-switch utility functions in finite tigraif-

ferent from the previous functional value iteration mettiwat typi-
cally determines only approximately maximal expectedtigd. In

the future, we intend to study how to exploit the structuretbier
nonlinear utility functions in similar ways and develop imeds that
scale up to even larger planning problems.
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