
Distributed Multiagent Resource Allocation
in Diminishing Marginal Return Domains

Yoram Bachrach Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem, Israel
{yori, jeff}@cs.huji.ac.il

ABSTRACT
We consider a multiagent resource allocation domain where
the marginal production of each resource is diminishing.
A set of identical, self-interested agents requires access to
sharable resources in the domain. We present a distributed
and random allocation procedure, and demonstrate that the
allocation converges to the optimal in terms of utilitarian
social welfare. The procedure is based on direct interaction
among the agents and resource owners (without the use of
a central authority).

We then consider potential strategic behavior of the self-
interested agents and resource owners, and show that when
both act rationally and the domain is highly competitive for
the resource owners, the convergence result still holds. The
optimal allocation is arrived at quickly; given a setting with
k resources and n agents, we demonstrate that the expected
number of timesteps to convergence is O(k lnn), even in
the worst case, where the optimal allocation is extremely
unbalanced.

Our allocation procedure has advantages over a mecha-
nism design approach based on Vickrey-Clarke-Groves (VCG)
mechanisms: it does not require the existence of a central
trusted authority, and it fully distributes the utility obtained
by the agents and resource owners (i.e., it is strongly budget-
balanced).

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Theory, Economics

Keywords
Resource allocation, Multiagent systems

Cite as: Distributed Multiagent Resource Allocation in Diminishing
Marginal Return Domains, Yoram Bachrach and Jeffrey S. Rosenschein,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Multiagent resource allocation problems are an impor-

tant research area in the field of multiagent systems [12,
1]. These problems deal with allocating resources to au-
tonomous agents, who have preferences over alternative al-
locations.

Traditional work in mechanism design tries to maximize
the sum of the agents’ utilities, even when they rationally
follow their own selfish goals. Such procedures typically re-
quire a trusted central authority to gather information and
choose the proper outcome. However, an alternative ap-
proach is to use a decentralized procedure, based on direct
interaction among agents.

1.1 Centralized vs. Decentralized Procedures
The mechanism design approach assumes that a central

mechanism receives the agents’ preferences and chooses an
outcome, attempting to maximize social welfare. The prob-
lem is that agents have private information that the mecha-
nism needs, in order to find the optimal solution. The mech-
anism can query the agents regarding this private informa-
tion, but the agents may falsely reply, so as to increase their
own utilities. We are interested in the design of incentive-
compatible mechanisms (sometimes called strategy-proof, or
truthful mechanisms), whose payment schemes motivate the
participants to correctly report their private information.

One prominent mechanism design framework is that of
Vickrey-Clarke-Groves (VCG) mechanisms [5]. VCG has
pronounced advantages: it ensures that agents truthfully
report their private information, and finds the optimal out-
come; it does so by requiring certain payments from the
agents. VCG has the disadvantage of being only weakly
budget balanced—the net total payments the mechanism
receives may be relatively large, and not all the utility gen-
erated is redistributed to the agents.

Another disadvantage of the common mechanism design
approach is that a central mechanism may be inappropriate
in some distributed environments; for example, it may not
always be possible to establish a single trusted authority.
Also, in centralized solutions, scalability is a major concern,
as the central mechanism may soon become a bottleneck of
the system [9, 13, 3].

In some cases we can have agents actively participate in
choosing the outcome, without using a central mechanism.
This is the approach we take. We present a distributed and
random allocation procedure for the multiagent resource al-
location problem in certain settings, and demonstrate that
the allocation converges to the optimal in terms of utilitarian

(eds.),May,12-16.,2008,Estoril,Portugal,pp. 1103-1120.

1103

social welfare. The procedure is based on direct interaction
among the agents and resource owners (without the use of a
central authority). This type of solution is most appropriate
when we cannot establish a trusted central authority.

1.2 Applications and Limitations
Convergence in our procedure is guaranteed only in di-

minishing marginal production domains, and the negative
impact of strategic behavior is only eliminated in highly
competitive settings. However, these conditions are quite
suitable to certain real-world domains. For example, in grid
computing, computational agents residing on nodes in a sys-
tem typically require access to storage devices to perform a
computation. The same data is duplicated across several
such devices, which are directly attached to the network
(rather than to a specific node). Each agent needs to wait
for the data in order to perform the computation, and typ-
ically the waiting time increases as more agents share the
same storage device. Thus, the marginal utility obtained by
an additional agent added to the storage device decreases as
more agents share it. When there is a wide selection of stor-
age devices, for example in large grids, the setting is likely to
be highly competitive for the owners of the storage devices.

1.3 Related Work
Multiagent resource allocation problems have been stud-

ied in the context of several applications, including procure-
ment, manufacturing, allocation of satellite resources, and
allocation of resources in grid architectures [4, 7, 10]. Cheva-
leyre et al. [1] have provided a good multiagent resource
allocation survey.

Above, we contrasted our method of choosing an alloca-
tion with the mechanism design approach. VCG was de-
veloped in several papers (e.g., Groves’ seminal paper [5]).
VCG has many advantages, but relies on a central mech-
anism; we aspire to achieve similar results with no cen-
tral mechanism. Understanding the behavior of a system
(or market) as a whole, in the absence of a central mecha-
nism, is an important topic in microeconomics [8]. However,
economists generally attempt to model the conditions under
which an optimal allocation is reached without a central
mechanism. Our goal is the opposite—we attempt to design
a protocol for interaction among the agents, thus specifying
the appropriate conditions so that an optimal allocation is
reached despite the strategic nature of the agents. In this
sense, the work is related to distributed mechanism design,
and similar to Feigenbaum and Shenker’s approach [3].

An approach similar to ours was also taken by Heydenre-
ich et al. [6], who discuss a scheduling domain where jobs
choose the machine on which they are to be processed. That
domain is quite different from ours, and attempts to mini-
mize completion time, rather than maximizing production.
Also, that work focuses on a “myopic best response” solution
concept, and employs online analysis to reach a competitive
algorithm, whereas we reach the optimal solution.

Several papers have analyzed the related issue of negoti-
ations over resources [11, 2], but in these general domains,
the optimal outcome is only possible to achieve (so a sub-
optimal result may be reached).

1.4 Structure of the Paper
We consider domains where identical agents require access

to exactly one resource, which may also be shared with other

agents. Using a resource, agents can generate utility. Each
resource has a production function, mapping the number of
agents who share the resource to the total utility generated
by all those agents (the formal model appears in Section 2).

Two principle questions arise. First, how do we allocate
the resources to the agents so as to maximize the total utility
generated? Second, how should the total utility produced be
divided among the entities (agents and resource owners)?

We suggest, in Section 3, a distributed, random, and mar-
ket oriented allocation procedure, which is composed of a se-
quence of interactions among potentially self-interested en-
tities. The interaction proceeds in rounds, and is performed
directly between agents and resource owners; our method
does not require establishing and maintaining a central mech-
anism. During each round, only a polynomially bounded
number of messages is sent, so our protocol method is scal-
able. We also suggest interaction strategies for agents and
resource owners, in Section 4. When these strategies are
used in particular domains, the allocation converges to the
optimal allocation (demonstrated in Section 5). In Section 6,
we consider strategic behavior, and show that in certain set-
tings, which are highly competitive for the resource owners,
no agent or resource owner has any incentive to deviate from
the suggested strategy in a way that would affect the con-
vergence result. Expected time to convergence is discussed
in Section 7, and we conclude in Section 8.

2. PROBLEM FORMALIZATION

Definition 1. A single shareable resource allocation do-
main is composed of a set of identical agents Ag =
{a1, a2, . . . , an}; a set of resources R = {r1, r2, . . . , rk}; and
a set of production functions P = {p1, p2, . . . , pk}. Each pro-
duction function pi : N → R+ maps the number of agents
who are sharing the resource ri to the total utility produced
on that resource. The production on a resource is 0 when no
agents are using the resource, so for all ri we have pi(0) =
0.1

An allocation is a function A : Ag → R, mapping ev-
ery agent to the resource it is using. We denote by Ari =
{aj |A(aj) = ri} the set of agents that allocation A maps to
resource ri. Given an allocation A, we call Pi(A) = pi(|Ari |)
the production in resource ri in allocation A.

A utility division function for resource ri is a function di :
Ag → R+ that maps each of the agents who share resource
ri to its share in the utility produced in ri. If aj /∈ Ari

then di(aj) = 0 (i.e., when the agent aj is not allocated the
resource ri, it has no share in the utility division of resource
ri). The utility division function cannot divide among the
agents more than what was produced on the resource, so
for all the resources ri we have

Pn
j=0 di(aj) ≤ Pi(A). The

remainder of the utility produced is the share of the resource
owner of ri, and we denote dri = Pi(A) −

Pn
j=0 di(aj). A

utility division is the set of utility division functions for all
the resources D = {d1, d2, . . . , dk}.

We denote by P (A) =
Pk

i=0 Pi(A) the total production
in allocation A. Since all of the production is distributed

1When the agents are not identical, the production functions
are pi : 2Ag → R+, mapping the set of agents who are
sharing the resource ri to the total utility produced on that
resource. We are considering the specific case of identical
agents.

1104

either to the agents or the resource owners, for any alloca-
tion A we have P (A) =

Pk
i=0

Pn
j=0 di(aj) +

Pk
i=0 dri . The

marginal production of a resource ri when j agents are allo-
cated to that resource is mi(j) = pi(j)− pi(j − 1). We say
a production function pi has diminishing marginal return if
for all 0 < a < b < n we have mi(b) ≤ mi(a).

Given such a domain, we want to achieve the optimal
allocation A, maximizing P (A). Given the production func-
tions, P = {p1, p2, . . . , pk}, this is straightforward. With
diminishing marginal returns, a greedy algorithm which it-
eratively adds an agent to the resource with the highest
marginal return finds an optimal allocation. However, the
production functions are known only to the resource own-
ers. It is possible to ask each such resource owner to declare
its production function, find the optimal allocation for the
declared values, and divide the utility in any way we de-
sire. However, the resource owners are self-interested and
may declare false production functions in order to increase
their own utilities, depending on the way we choose the util-
ity division. How can we maximize P (A) without knowing
the production functions, while also taking into account the
self-interested nature of the entities?

Below, we show that it is possible to reach an optimal
allocation by allowing the agents and resource owners to
interact using a certain protocol, that determines both the
allocation and utility division. An alternative approach is
the mechanism design approach, using the VCG framework.
In order to highlight the advantages of our method over the
VCG mechanism for this particular problem, we first briefly
describe the VCG solution.

2.1 A Mechanism Design Approach
In the mechanism design solution, we construct a central

trusted authority, the mechanism, which is in charge of elic-
iting private information and choosing an outcome based
on this information. In our domain, the private informa-
tion is the set of production functions, and the outcome
is an allocation A and a utility division D for that alloca-
tion. A common framework for designing mechanisms is
VCG. In VCG, the mechanism chooses the optimal allo-
cation given the reported information a, but also requires
payments from the agents. If ai’s value from the chosen
outcome a is vi(a), the mechanism charges ai the quantity
ti = hi(v−i) −

P
j 6=i vj(a), where hi is an arbitrary fixed

function that does not depend on vi. An important feature
of VCG is that the payment rule results in truthful reports
from rational utility-maximizing participants.

A VCG solution achieves the optimal allocation, but it has
the disadvantage that the net payments to the mechanism
may be positive. This means that not all the generated
utility P (A) is distributed among the agents and resource
owners—some of it may need to stay in the mechanism’s
hands. Another disadvantage of VCG is that it requires a
central authority that all agents trust. Thus, this method
may be inappropriate for certain distributed domains.

3. ALLOCATION BY INTERACTION
Our method of obtaining an allocation is based on direct

interaction between the agents and resource owners, using a
particular protocol; we now define this protocol. For analysis
purposes, we divide the interaction into discrete time units
called rounds. In each round, an agent only has time to
interact with a single resource owner. For simple analysis,

we assume each agent in turn interacts with one resource.2

The protocol allows the following messages:
1. Resource Request. This message is sent from agent aj to
the owner of resource ri, indicating that the agent is con-
sidering using the resource, and requests an offer for the
payment it would get from the resource owner (other than
the payments to the agents, the resource owner keeps the
rest of the production generated on that resource).
2. Payment Bid. This message is sent from a resource owner
ri to an agent aj , and includes a parameter wi,j ∈ R+, in-
dicating the payment from the resource owner to the agent
if the resource is allocated to the agent. If the agent agrees
to this bid, this determines the share of the production of
that resource the agent would get. The share of the pro-
duction not paid to any agent is the share of the resource
owner. Thus, these messages determine the utility division
functions at the end of the round.
3. Accept. This message is sent from an agent to a resource
owner, indicating that the agent agrees to use the resource.
The set of accept messages determines the allocation at the
end of the round.
4. Decline. This message is sent from an agent to a resource
owner, indicating that the agent does not agree to use the
resource. It may be sent as a response to a Payment Bid, in-
dicating that the agent wants to keep on using the resource
that is currently allocated to him, or as a reaction to an in-
teraction with a different resource, indicating that the agent
does not want to use the current resource anymore, and is
switching to a new resource.
5. Payment Change. This message is sent from resource
owner ri to an agent aj , indicating that the resource owner
changes the payment it is willing to offer the agent. The
message includes a parameter wi,j ∈ R+, the new payment
the resource owner offers the agent. Such a message may
only be sent by the resource owner as a result of receiving
an accept message from some agent.
6. Round Payment. This is similar to the Payment Bid mes-
sage, except it is sent only at the beginning of each round.
The message is sent from a resource owner to all the agents
that have accepted the bid by that resource, and have not
sent a decline message to the resource. Like the payment bid
message, it indicates the payment the resource owner is will-
ing to offer the agent, and includes a parameter wi,j ∈ R+,
the new payment the resource owner offers the agent.

Each round proceeds as follows. First, each resource owner
sends a Round Payment message to each of the agents who
have accepted the resource’s payment bid (by sending it an
Accept message) and not yet declined it (by sending a De-
cline message). This message indicates the payment the
agent would receive if it decides to keep using the sending
resource, and not switch to a different resource. The Round
Payment message contains the fee the resource owner is will-
ing to pay agents who are allocated that resource. The rest
of the utility generated on that resource would belong to the
resource owner.

After the Round Payment messages, each agent in turn
may submit one resource request to one resource owner.

2Allowing concurrent interaction speeds up the interaction,
but requires some way of handling consistency and dead-
locks. We avoid having to deal with these issues by allowing
the agents to interact with the resources one at a time. It
also simplifies analysis of convergence times.

1105

This message indicates that the agent considers switching
to that resource. A resource owner replies to the Resource
Request message with a Payment Bid message, which con-
tains the fee the resource owner is willing to pay agents who
are allocated that resource. The rest of the utility generated
on that resource belongs to the resource owner.

An agent replies to the Payment Bid message with either
an Accept message (if it switches to the bidding resource) or
with a Decline message (indicating the resource allocated to
that agent does not change). If an Accept Message is sent,
a Decline Message must be sent to the old resource (owner)
the agent was using. Once an agent has accepted a resource
owner’s bid, the resource owner may change the payment it
offers the agents currently allocated that resource, by send-
ing them a Payment Change message. Such a message in-
dicates that the payment offered to these agents during the
next round would be different. Agents who get a Payment
Change message reducing their payment have a chance of
switching resources during the next round. This concludes
the interaction for this agent, and the round continues with
the next agent, who may submit his Resource Request. Once
all the agents have finished their interaction, the round ends,
and the process continues in the next round.

3.1 Chosen Allocation
We now define the allocation chosen after a round of in-

teraction. If during round r agent aj has sent an Accept
message to resource ri, then in the allocation Ar chosen at
the end of that round, resource rj is allocated to agent ai

so Ar(aj) = ri. Such an Accept message has been sent
in response to a Payment Bid message from ri to aj , with
a parameter wi,j . Unless Payment Change messages have
been sent later during that round from ri to aj , then this
bid determines the share of aj in the utility division of that
resource: di(aj) = wi,j . If Payment Change messages have
been sent from ri to aj later during that round, the parame-
ter wi,j of the last Payment Change message sent determines
aj ’s payment, and di(aj) = wi,j .

If agent aj replies with a Decline message to ri’s Payment
Bid, then the allocation for aj remains as in the previous
round: Ar(aj) = Ar−1(aj). In such a case, aj remains al-
located to some resource rx = Ar−1(aj). If rx has not sent
any Payment Change messages to aj during round r, then
the payment that agent aj gets from rx is as it was in the
parameter of the Round Payment message sent from rx to
aj , at the beginning of the round. If rx does send Payment
Change messages to aj during round r, then the parame-
ter wx,j of the last Payment Change message sent deter-
mines aj ’s payment, and dx(aj) = wx,j . Note that only the
bids that resulted in Accept messages and the last Payment
Change messages determine the utility division.

The total production given allocation A is, as defined in
Section 2, P (A) =

Pk
i=0 Pi(A). Our goal is to choose an op-

timal allocation Aopt such that for any allocation A′ we have
P (Aopt) ≥ P (A′). As also explained in Section 2, this max-

imizes social welfare, since
Pk

i=0

Pn
j=0 di(aj) +

Pk
i=0 dri =

P (A). Note that the protocol determines not only the allo-
cation, but also a utility division. When optimizing for util-
itarian social welfare, we do not consider how production
is distributed, and concern ourselves only with total pro-
duction. Other definitions of social welfare (such as Nash
product social welfare, egalitarian social welfare, etc.) addi-
tionally take into account the utility division among agents.

4. SUGGESTED STRATEGIES
We here suggest a strategy for the agents in our scenario,

and a strategy for the resource owners. Later we show that
these strategies have certain desirable properties.

A. Agents: Each agent keeps track of the current resource
allocated to it, Rcur, and his share of the utility produced on
that resource, CurPayment. On the first round CurPayment
is set to 0, and Rcur indicates the agent is not allocated to
any resource. In each round, each agent randomly chooses a
resource and requests use of that resource by sending a Re-
source Request message. If the Payment Bid message from
that resource indicates a higher utility than the agent cur-
rently has, it switches to that resource. The pseudocode for
the agents’ strategy is as follows:

1. Set CurPayment to the value of the Round Payment
message sent at the beginning of the round.

2. For each Payment Change message received, update
CurPayment to the value declared in this message.

3. Randomly choose a resource Rnew, and send that re-
source a Resource Request message. The resource would
reply with a Payment Bid message. Set OfferedPayment to
the value of that message.

4. If OfferedPayment > CurPayment:
(a) Send the current resource a Decline message;
(b) Send resource Rnew an Accept message.

5. If OfferedPayment ≤ CurPayment:
(a) Send resource Rnew a Decline message.

B. Resource owners: Each resource owner ri keeps a list
of agents allocated that resource, Ari , and their number,
numi = |Ari |. These are the agents who have sent an Ac-
cept message to the resource, and have not yet sent a Decline
message indicating that they have switched resources. Dur-
ing the first round, Ari is an empty list, and numi is 0. At
the beginning of each round, the resource owner sends the
agents who are allocated that resource a message, indicating
that their share of the utility is the current marginal produc-
tion in that resource. The resource then waits for Resource
Request messages, and replies to each such message with a
payment bid of the next marginal production on that re-
source. Agents who send an Accept message are added to
Ari (and thus the resource is allocated to them as well), and
agents who send a Decline message are removed from Ari

(and thus the resource is no longer allocated to them). If
an agent switches to a resource, the resource owner updates
the offered payment to all the agents it is allocated to be
the new marginal production on that resource, after adding
the new agent, by sending Payment Change messages. The
pseudocode for the resource owners’ strategy is as follows:

1. For each agent aj in Ari , send aj a Round Payment
message with value of wi,j = mi(numi).

2. For each Resource Request message received from an
agent aj :

(a) Reply with a Payment Bid message of the marginal
production, assuming aj would accept the offer: wi,j =
mi(numi + 1) = pi(numi + 1)− pi(numi);

(b) If agent aj replies with a Decline message, ignore
that message (nothing needs to be done);

(c) If aj replies with an Accept message:
i. send a Payment Change message to any agent ax

in Ari (any agent who is currently allocated this resource),
with a parameter wi,x = mi(numi + 1);

ii. set numi = numi + 1.

1106

We now consider what happens when the entities follow
these suggested strategies. The first round occurs with an
allocation A0, when no agent is allocated any resource. In
A0 the production on any resource ri is pi(0) = 0; all the
resource owners get dri = 0, and all the agents get payments
of di(aj) = 0 for any resource i and agent j. The resources
are not allocated to any agent, and thus no Round Payment
messages need to be sent.

During round r, a new allocation Ar is constructed, by
improving the previous allocation Ar−1. During round r,
agents attempt to improve their own utilities, by switching
to a resource that gives them a higher payment, according to
their own self-interest. Each resource owner chooses a pay-
ment according to the marginal production on that resource,
and updates all the agents to which it is allocated regard-
ing this fee. Therefore, when an agent accepts a Payment
Bid from a resource owner, this means the agent is now al-
located a resource with a higher marginal production. The
production in the agent’s old resource (the one allocated
to it during round r − 1) decreases, since in round r fewer
agents would use that resource, and the production in the
new resource increases. However, the production gain in the
new resource is greater than the production loss in the old
resource, since the marginal production in the new resource
is higher than in the old resource.

5. PROCEDURE CONVERGENCE
We now consider a single sharable resource allocation prob-

lem, where agents and resource owners interact using the
allocation protocol defined above in Section 3. We have
a set of identical agents Ag = {a1, a2, . . . , an}, and a set
of resources R = {r1, r2, . . . , rk} with production functions
P = {p1, p2, . . . , pk}, which have diminishing marginal pro-
duction. We prove that the suggested strategies result in
convergence to an optimal allocation, and that in certain
settings no rational strategic behavior changes this conver-
gence result.

Theorem 1 (Monotonic improvement). Let Ar−1 be
the allocation chosen at round r− 1. If during rounds r and
r − 1 the entities follow the suggested strategies, as defined
in Section 4, then the allocation chosen at the end of round
r, Ar, is no worse than the allocation in the previous round,
so P (Ar) ≥ P (Ar−1).

Proof. Each round is a series of interactions between an
agent aj and a resource owner ri. Each such interaction ei-
ther changes the allocation by allocating a different resource
to a single agent (when that agent sends an Accept message
to the new resource), or leaving the allocation as it is (when
that agent sends a Decline message to the new resource). If
the resource owners follow the suggested strategy, then after
each such change in the allocation, the payment to the agents
who are allocated that resource is changed to the marginal
production on that resource (when the resource owner sends
a Payment Change message).

Let A′ be the allocation during round r, just before aj ’s
interaction with ri. Let rx be the resource allocated to aj at
the end of round r − 1. Let numx be the number of agents
to whom resource rx is allocated prior to the interaction
between ri and aj . Let numi be the number of agents to
whom ri is allocated at that time. The production on rx is
px(numx), and the payment that agent rj gets is dx(aj) =
mx(numx) = px(numx)− px(numx − 1). The payment bid

sent by ri to aj is sent with a parameter wi,j = mi(numi +
1) = pi(numi + 1)− pi(numi).

Agent aj only accepts that bid if he gets a higher payment,
so if that bid is accepted mi(numi + 1) > mx(numx). Oth-
erwise, aj declines, and the allocation remains unchanged,
and the total production remains the same. If aj accepts,
the allocation A′ is changed to A′′ by allocating aj the re-
source ri instead of rx. The total production in rx drops
by mx(numx), and rises in ri by mi(numi + 1). Since
mi(numi) > mx(numx), we have P (A′′) > P (A′). Note
that if aj switches to ri, the payment that the agents ri

are allocated to get decreases, and the payment that agents
rx are allocated to get increases (due to the new Round
Payment set in the next round), but the total production
increases. Since each round is composed of a series of inter-
actions, each either changing the allocation in a way that
increases the total production or not changing the alloca-
tion, we have P (Ar) ≥ P (Ar−1).

Theorem 2 (Stability in Optimum). Once the opti-
mal allocation Aopt is reached, it never changes. If the al-
location at the end of round r is Ar = Aopt, it remains the
same during round r + 1 and Ar+1 = Aopt.

Proof. The allocation only changes when some agent ac-
cepts the bid of some resource owner. In such a case, as
shown in Theorem 1, a new allocation A′ is chosen, and
the total production increases, so P (A′) > P (Aopt). But
that contradicts the fact that Aopt is an allocation with the
highest possible total production.

Theorem 1 shows the allocation in a given round never
becomes worse than that of the previous round. That by
itself is not enough to guarantee convergence to the global
optimal allocation, as the procedure can be stuck in a local
optimum. The next theorem shows that for the suggested
strategies, there are no such local optima: once the proto-
col reaches an allocation that cannot be improved by any
round using the protocol (a local optimum), it is an optimal
allocation (global optimum).

Definition 2. Protocol stable allocation. Let Ag and R
be sets of agents and resource owners, interacting using the
protocol defined in Section 3. Let the strategies the agents
are using be sa1, . . . , san, and the strategies the resources are
using sr1, . . . , srk. Allocation A is a protocol stable alloca-
tion for that strategy profile if, once reached, no interaction
between the agents and resource owners using these strate-
gies would result in a change in A. [Unless otherwise stated,
when discussing protocol stable allocations, we are referring
to the suggested strategies, as defined in Section 4.]

If A is a protocol stable allocation (for the suggested
strategies), there is no agent aj who can send a resource
request message to some resource rj which would result in
a price bid that aj would accept. Since the protocol pro-
ceeds in rounds, and each round is composed of a series of
interactions between single agents and resource owners, this
means that there is no single agent that would be better off
by switching to a different resource alone.

Theorem 3 (Protocol Stable Allocation is Optimal).
If A is a protocol stable allocation (for the suggested strate-
gies), then it is an optimal allocation.

1107

Proof. Let Aopt be an optimal allocation. Let A be a
protocol stable allocation, that differs from Aopt. We con-
struct a series of allocations Aopt = A1, A2, . . . , Am = A.
Each such allocation is the same as the previous one, ex-
cept that it allocates one of the agents a different resource.
We show that they all have equal production, so for all
2 ≤ i ≤ m we have P (Ai) = P (Ai−1). Therefore A is
also an optimal allocation.

Let A1 = Aopt. A differs from A1, so there are some re-
sources that are allocated to more agents in A1 than in A.
Thus, there are also some resources that are allocated to
fewer agents in A1 than in A (since both allocations allo-
cate resources to the same number of agents). Let ra be a
resource that is allocated to more agents in A1 than in A,
and let rb be a resource that is allocated to fewer agents in
A1 than in A. We denote a = ma(|A1

ra
|), b = ma(Ara),

c = mb(|Arb |), d = mb(A1
rb

).
Since all the resources have diminishing marginal produc-

tion, we have a ≤ b, and c ≤ d. Let b1 = ma(|Ara)| + 1),
b2 = ma(|Ara)| + 2), b3 = ma(|Ara)| + 3) and so on, until
for some i we have bi = ma(|Ara)| + i) = a (possibly i = 1
if this is the next marginal production on that resource). In
the same way, let d1 = mb(|A1

rb
)|+ 1), d2 = mb(|A1

rb
)|+ 2),

d3 = mb(|A1
rb

)| + 3) and so on, until for some j we have

dj = mb(|A1
rb

)|+j) = c. Again, due to diminishing marginal
production, we have b ≥ b1 ≥ b2 ≥ . . . ≥ bi = a and
d ≥ d1 ≥ d2 ≥ . . . ≥ dj = c. Allocation A is protocol stable.
In A, agents Ara obtain a payment of b, the marginal pro-
duction on ra, and agents Arb obtain a payment of c, the
marginal production on rb. Thus, b1 ≤ c, since otherwise (if
b1 > c) one agent from rb could do better by switching to
ra. We thus have a ≤ b1 ≤ c ≤ d1 ≤ d, so a ≤ d1.

Let aj be some agent that A1 allocates the resource ra.
We define A2 to be the same allocation as A1 = Aopt, except
that A2 allocates aj the resource rb instead of ra.

A2(ai) =

(
Aopt(ai) if ai 6= aj ;

rb if ai = aj ;

The difference in total production in A2 and A1 is only
due to the change in allocation of the resource for aj . A2

produces less in ra and more in rb than A1. In ra, A2 pro-
duces ma(|A1

ra
| = a) less than A1 (since we moved exactly

1 agent, and this was the marginal production in ra). In
rb, A2 produces d1 = mb(|A1

rb
)| + 1) more than A1, since

we have added 1 agent to that resource. We showed that
a ≤ d1, so P (A2) − P (A1) = d1 − a ≥ 0. But A1 is an
optimal allocation, with maximal production, so P (A2) =
P (A1) = P (Aopt), so A2 is also an optimal allocation.

We can continue the same process as long as there is a
difference between the newly-built optimal allocation and
A, our protocol stable allocation. Since there are a finite
number of allocations, eventually, for some i we will have
Ai = A, so A is also an optimal allocation.

When entities use the suggested strategies, the allocation
only improves in the next round, and if we have not reached
the optimal allocation yet, there is a possible round which
can increase the allocation quality. Since there are a finite
number of allocations, this shows that our procedure even-
tually converges to an optimal allocation. However, agents
may choose not to follow the suggested strategies, so we may
converge to a sub-optimal allocation. In the next section, we
consider such strategic behavior.

6. STRATEGIC BEHAVIOR
We now show that no agent or resource owner has an in-

centive to deviate from the suggested strategies in a way
that would change the final allocation. We consider a do-
main with a set of agents Ag and a set of resources R. When
the entities interact using the protocol defined above in Sec-
tion 3, and using the suggested strategies defined above in
Section 4, Theorem 3 showed that the allocation would con-
verge into an optimal allocation Aopt, and a certain util-
ity division D = {d1, d2, . . . , dk}. Let aj ∈ Ag be one of
the agents. Let rx = Aopt(aj), and the utility of aj in
Aopt is urj (Aopt) = dx(aj). Let ri ∈ R be one of the

resources. The utility of ri in Aopt is uri(Aopt) = dri =
Pi(A

opt)−
Pn

j=0 di(aj).

Theorem 4 (Agent Deviations). Let s′aj
be some strat-

egy for aj. Let S′ be the strategy profile where all the enti-
ties follow their suggested strategies, except aj who follows
strategy s′aj

. If under S′ the allocation converges to some

protocol stable allocation A′ such that uaj (A′) > uaj (Aopt),

then P (A′) = P (Aopt), and A′ is also an optimal allocation.
In other words, if aj used some strategy and managed to in-
crease its utility, then the optimal allocation is still reached.

Proof. Allocation A′ is a protocol stable allocation un-
der S′, and thus, after a certain round r, aj is allocated a
certain resource rx, and never leaves it (otherwise A′ is not
a protocol stable allocation under S′). Let the allocations in

the following rounds be A1′ , A2′ , . . . Due to the same reasons

in Theorem 1, P (Ai+1′) ≥ P (Ai′) (since aj never switches to
a different resource, and if any of the other agents switches,
the production improves). When A′ is reached, no agent
except (maybe) aj can do better by switching resources.

If there is some optimal allocationAopt such thatAopt(aj) =
rx, due to the same reason as in Theorem 3, A′ is also an
optimal allocation. If no such Aopt exists, take any optimal
allocation Aopt. Starting in round r, aj does not affect the
considerations of the other agents: once a protocol stable al-
location is reached, none of them would switch to rx even if
aj was not allocated that resource, and since aj is allocated
that resource, the payment rx offers any of them is even
lower. The payment aj gets on rx is dx(rj), lower than the
next marginal production on any of the resources in Aopt.
In Aopt agent aj is allocated some resource ry, and agent aj

gets the next marginal production on ry, with a higher util-
ity. Thus, if aj sticks to some resource to which some agents
are allocated in some optimal allocation, the protocol con-
verges to some optimal allocation, and if aj sticks to some
resource rx that no optimal allocation allocates any agent,
his utility is smaller than in any optimal allocation.

We define a condition under which resource owners have
no incentive to deviate from the suggested strategy. Let
S∗ be the strategy profile where all the entities follow the
suggested strategies. As shown in Section 3, under S∗ the
allocation converges to some optimal allocation Aopt. Let
w∗i be the payment that resource ri offers agents who are
allocated that resource in that allocation. Let the number
of agents who are allocated ri there be l∗i = |Aopt

ri
|.

We later show that ri has no incentive to offer any pay-
ment higher than w∗i . However, in some cases ri does have
an incentive to offer a payment below w∗i . When ri offers
a smaller payment, w∗i − ε, for some ε > 0, every agent
who finds a resource where the next marginal production

1108

is higher than w∗i − ε would switch to that resource. Since
the marginal productions diminish when a resource is allo-
cated to more agents, eventually no such resources would be
found, and we would once again reach a stable allocation.
Thus, when the resource owner drops its suggested payment
to w∗ − ε, some agents would switch to different resources,
thus decreasing the number of agents who are allocated ri

from l∗i to lci (lci being a function of the payment change ε,
so lci is shorthand for lci (ε)). The total payments ri gives the
agents would then drop from l∗i ·w∗i to lci ·(w∗i −ε). However,
the production also drops from pi(l

∗
i) to pi(l

c
i).

For payment w∗i , we know that the marginal production of
each of the agents to which wi is allocated in Aopt was higher
than w∗i (since the marginal production is diminishing, and
w∗i was the marginal production of the last agent on ri:
w∗i = mi(l

∗
i)). We denote the utility ri obtained from the

l’th agent allocated that resource as gi(l) = mi(l) − w∗i .

So, pi(l
∗
i) − pi(l

c
i) =

Pl∗

l=lci +1(gi(l) + w∗i) = (l∗i − lci) · w∗i +Pl∗

l=lci +1 gi(l). Thus, when ri reduces the suggested payment

by ε, from w∗i to w∗i − ε, its utility increases by:
Πi = l∗i · w∗i − lci · (w∗i − ε)− (pi(l

∗
i)− pi(l

c
i)) =

(lci + (l∗i − lci)) · w∗i − lci · w∗i + lci · ε− (pi(l
∗
i)− pi(l

c
i)) =

l∗i · w∗i − lci · w∗i + lci · ε− (pi(l
∗
i)− pi(l

c
i)) =

l∗i · w∗i − lci · w∗i + lci · ε− ((l∗i − lci) · w∗i +
Pl∗

l=lci +1 gi(l)) =

(l∗i − lci) · w∗i + lci · ε− (l∗i − lci) · w∗i −
Pl∗

l=lci +1 gi(l)) =

lci · ε−
Pl∗

l=lci +1 gi(l))

Our protocol allows the resource owners to “compete” for
agents, by allowing them to offer higher parts of the utility
generated on the resource. When there are many resources
with similar production functions, even a small reduction of
ε in the payment that resource ri offers the agents results
in many agents leaving the resource and switching to other
resources. The number of agents who would leave ri when
ri reduces the payment by ε is ∆l(ε) = l∗i − lci (ε). Agent ri’s
competition are the resources whose next marginal produc-
tions are higher than w∗i − ε (which determine ∆l(ε)). Thus,
the bigger ∆l is, the smaller lci is. Since gi(l) depends only

on w∗i and pi, the larger ∆l(ε) is, the higher
Pl∗

l=lci +1 gi(l) is.

We now define a competition condition that causes resource
owners to lose utility, when they reduce the offered payment
below what they would offer under the convergence achieved
when using the suggested strategies.

Definition 3. Highly competitive settings. Let S∗ be the
strategy profile where all the entities follow the suggested

strategies. If for every ε > 0 we have lci ·ε <
Pl∗

l=lci +1 gi(l)) =Pl∗

l=lci +1(mi(l)− w∗i), we say the setting is highly competi-

tive for ri.

If a setting is highly competitive for ri, then ri cannot
gain by lowering the payment it offers agents who request

to use its resource, since Πi = lci · ε−
Pl∗

l=lci +1 gi(l)) < 0.

Theorem 5 (Resource Deviations). Consider a highly
competitive setting for ri. Let s′ri

be some strategy for ri.
Let s′ be the strategy profile where all entities follow the
suggested strategies, except ri who follows strategy s′ri

. De-
note by S′ = {sa1 , . . . , san , sr1 , . . . , s

′
ri
, . . . srk}. If under S′

we converge to some protocol stable allocation A′ such that
uri(A′) > uri(Aopt), then P (A′) = P (Aopt), and A′ is also

an optimal allocation. In other words, if ri managed to in-
crease its utility, then an optimal allocation is still reached.

Proof. Let S∗ be the strategy profile where all the enti-
ties follow the suggested strategies. We denote by l∗i = |Aopt

ri
|

and by w∗i = mi(l
∗
i) the payment ri offers agents to which

it is allocated. Under S∗, we have u∗ri
= pi(l

∗
i)−w∗i · l∗i . Let

A′ be the protocol stable allocation reached under S′. We
denote by nl = ml(|A′rl

|+ 1) the next marginal production
on resource rl, and n′ = maxn

l=0nl. We denote by w′ the
minimal payment ri publishes at the beginning of any round
after A′ is reached.
A′ is protocol stable, so we have w′ > n′, since otherwise

one of the agents may try to request access to some resource
that would pay him more than he is offered on ri. If w∗i >
w′ = w∗i − ε for some ε > 0, then since the setting is highly
competitive, uri(A′) < uri(Aopt) for any Aopt. If w∗i < w′ =
w∗i +ε for some ε > 0, we denote by la the maximal number of
agents such that mi(l

a) > w′. We denote by lc the number
of agents to which A′ allocates ri, so lc = |A′ri

|. Since
the marginal production on ri diminishes as more agents
are allocated that resource, la < l∗. The utility of ri is
uc

ri
= pi(l

c)−
Pn

j=1 di(aj) < pi(l
c)− w′ · lc.

If lc ≤ la, then
u∗ri
− uc

ri
> pi(l

∗
i)− w∗i · l∗i − (pi(l

c)− w′ · lc) =
pi(l
∗
i)− w∗i · l∗i − pi(l

c) + w′ · lc =Plc

l=1mi(l)+
Pl∗i

l=lc+1mi(l)−w∗i (lc+(l∗i −lc))−
Plc

l=1mi(l)+

w′ · lc =Pl∗i
l=lc+1mi(l)− w∗i · lc − w∗i · (l∗i − lc) + w′ · lc.

But, w′ > w∗i , so u∗ri
−uc

ri
>

Pl∗i
l=lc+1mi(l)−w∗i ·(l∗i −lc)) =Pl∗i

l=lc+1(mi(l)− w∗i).
But w∗i = mi(l

∗
i), and the marginal production diminishes,

so for any l < l∗ we have (mi(l)−w∗i) ≤ 0. Thus, u∗ri
−uc

ri
>

0, and ri’s utility only decreases in A′.

If lc > la, then pi(l
c) − w′ · lc =

Plc

l=1(mi(l) − w′) =Pla

l=1(mi(l)−w′)+
Plc

l=la+1(mi(l)−w′). But since resource

la was the last one where mi(l
a) ≥ w′, and the marginal

production diminishes, the second sum is of non-positive

values. Thus, uc
ri

= pi(l
c) − w′ · lc ≤

Pla

l=1(mi(l) − w′) =
pi(l

a) − w′ · la. But pi(l
a) − w′ · la is the utility of ri for a

choice of lc = la, and even for that choice we have shown
that ri’s utility is not better than u∗ri

.
Thus, ri cannot gain by having w′ < w∗i (due to the highly

competitive setting for ri), and cannot gain by having w′ >
w∗i . So ri chooses bids such that w′ = w∗i . Since w′ is the
minimal payment offered, if any agent is offered a higher
payment, ri’s utility decreases. Thus, ri has no incentive to
deviate from the suggested strategy.

The above theorems show that in highly competitive set-
tings, strategic behavior cannot cause us to reach a sub-
optimal allocation. Our results so far only show that ra-
tional behavior cannot cause us to converge to a protocol
stable allocation that is non-optimal.

7. EXPECTED TIME TO CONVERGENCE
We now consider the expected time to convergence of the

above protocol. Consider a setting with n agents Ag and
k resources R, interacting using the suggested strategies.
We first consider the case where the marginal returns for a
certain resource rk′ ∈ R are higher than any other resource,
for any number of agents who are allocated this resource.
That is, for any resource rk ∈ R, rk 6= rk′ and any number

1109

of agents 0 ≤ i, j ≤ n we have mk′(i) ≥ mk(j). In this case
the optimal allocation allocates rk′ to all the agents: for any
agent a ∈ A, Aopt(a) = rk′ .

Let X be a random variable indicating the number of
rounds to convergence to Aopt, and Xi be a random variable
indicating the number of rounds until agent ai is allocated
resource rk′ . Once it is allocated that resource, it is always
allocated that resource, since the marginal production on
any other resource is lower, so the agent would not switch.
In the optimal allocation Aopt, all the agents are allocated
the resource k′, so we have X = maxi{Xi}.

Lemma 1. P (Xi > tk lnn) ≈ n−t

Proof. Once a single agent requests access to the re-
source k′ he switches to using that resource, and never switches
to a different resource. Thus, an agent has a chance of 1− 1

k
of missing the resource k′ at any given round. Thus, P (Xi >

tk lnn) = (1− 1
k

)tk ln n = (1− 1
k

)kt ln n

≈ e−t ln n = n−t

We now bound the probability that the convergence for
all the agents takes more than tk lnn steps.

Lemma 2. P (X > tk lnn) ≈ n1−t

Proof. We apply the union bound, and use Lemma 1.
P (X > tk lnn) = P (maxi{Xi} > tk lnn) = P (∃Xi that Xi >
tk lnn) ≤

Pn
i=0 P (Xi > tk lnn) =

Pn
i=0 n

−t = n1−t.

This gives us a bound on the probability that the conver-
gence takes more than tk lnn rounds. We now analyze the
expected time to convergence. We define qj = P (maxi{Xi} =
j) and pj = P (maxi{Xi} > j). We have E(X) =

P∞
j=0 j·qj .

Theorem 6. The expected time of convergence is O(k lnn),
or more precisely, E(X) < 4k lnn.

Proof. E(X) =
P∞

j=0 j ·qj = 0 ·q0 +1 ·q1 +2 ·q2 +3 ·q3 +

. . . = (q1 + q2 + . . .) + (q2 + q3 + . . .) + (q3 + q4 + . . .) + . . . =P∞
j=1 qj +

P∞
j=2 qj +

P∞
j=3 qj + . . . = p1 + p2 + p3 + . . . =P∞

j=1 pj =
Psk ln n

j=1 pj +
P2sk ln n

j=sk ln n+1 pj +
P3sk ln n

j=2sk ln n+1 pj +
. . .

The function pi is monotonically dropping in i. Denote
x = sk lnn, and we get:
E(X) ≤

Px
j=1 p1 +

P2x
j=x+1 px +

P3x
j=2x+1 p2x + . . . ≤Psk ln n

j=1 1 +
P2sk ln n

j=sk ln n+1 n
1−s +

P3sk ln n
j=2sk ln n+1 n

1−2s + . . .

= (sk lnn) · (1 + n
ns + n

n2s + n
n3s + . . .)

For s = 2 and n > 2 we get: E(X) ≤ (2k lnn) · (1 + 1
n

+
1

n3 + 1
n5 + . . .) ≤ (2k lnn) · 2 = 4k lnn.

This proves a convergence time of O(k lnn) for an ex-
tremely unbalanced case. We now show that this unbal-
anced case is the worst case in terms of expected time to
convergence. The analysis relies on Lemma 1. Since agents
randomly choose a resource, if the agents are required to
choose one specific resource, the probability of choosing that
resource in a certain round is low. However, when the opti-
mal allocation has several resources which are allocated to
some agents, since the agents are identical, during the first
rounds agents have a higher probability of randomly choos-
ing one of these resources. Thus, the bounds for the proba-
bility that Xi > tk lnn decreases. Using the same methods
as in Section 2, we can see that the probability that the
procedure does not converge to the optimal allocation after
tk lnn rounds, P (X > tk lnn), also decreases. Since E(X)
sums smaller values, it is also smaller. Thus, the procedure
converges to the optimal allocation in O(tk lnn) rounds.

8. CONCLUSION
We have studied a setting of a multiagent resource alloca-

tion problem where the marginal production of each resource
is diminishing, and suggested a market-based protocol for it.
Rational action in highly competitive settings for resource
owners would cause convergence to the optimal allocation,
even for self-interested entities. The procedure has several
desirable properties: it rapidly converges to the optimal allo-
cation, and, as opposed to VCG, it is fully budget-balanced
and operates without a central trusted authority.

It remains an open question to see whether similar ap-
proaches can be used in other domains as well.

9. ACKNOWLEDGMENT
This work was partially supported by Israel Science Foun-

dation grant #898/05.

10. REFERENCES
[1] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang,

M. Lemaitre, N. Maudet, J. Padget, S. Phelps, J. A.
Rodriguez-Aguilar, and P. Sousa. Issues in multiagent
resource allocation. Informatica, 30:3–31, 2006.

[2] U. Endriss, N. Maudet, F. Sadri, and F. Toni.
Negotiating socially optimal allocations of resources.
JAIR, 25:315–348, 2006.

[3] J. Feigenbaum and S. Shenker. Distributed
algorithmic mechanism design: Recent results and
future directions. In 6th Int. Workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications, pages 1–13. ACM Press, 2002.

[4] P. Gradwell and J. Padget. Distributed combinatorial
resource scheduling. In AAMAS Workshop on Smart
Grid Technologies (SGT-2005), pages 295–308, 2005.

[5] T. Groves. Incentives in teams. Econometrica, pages
617–631, 1973.

[6] B. Heydenreich, R. Müller, and M. Uetz.
Decentralization and mechanism design for online
machine scheduling. In 10th Scandinavian Workshop
on Algorithm Theory (SWAT 2006), 2006.

[7] G. Jonker, J.-J. C. Meyer, and F. Dignum. Towards a
market mechanism for airport traffic control. In 12th
Portuguese Conference on Artificial Intelligence
(EPIA 2005), pages 500–511, 2005.

[8] A. Mas-Collel, W. Whinston, and J. Green.
Microeconomic Theory. Oxford University Press, 1995.

[9] E. Ogston and S. Vassiliadis. A peer-to-peer agent
auction. In 1st Int. Joint Conference on Autonomous
Agents and Multi-Agent Systems, pages 151–159, 2002.

[10] T. W. Sandholm. An implementation of the contract
net protocol based on marginal cost calculations. In
12th Int. Workshop on Distributed Artificial
Intelligence, pages 295–308, 1993.

[11] T. W. Sandholm. Contract types for satisficing task
allocation: Theoretical results. In AAAI 1998 Spring
Symposium: Satisficing Models, 1998.

[12] O. Shehory and S. Kraus. Methods for task allocation
via agent coalition formation. Artificial Intelligence,
101(1–2):165–200, 1998.

[13] B. Yu and M. P. Singh. Distributed reputation
management for electronic commerce. Computational
Intelligence, 18(4):535–549, 2002.

1110

