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ABSTRACT

Although normative systems, or social laws, have provedet@b
highly influential approach to coordination in multi-ageystems,
the issue oftomplianceto such normative systems remains prob-
lematic. In all real systems, it is possible that some membér
an agent population will not comply with the rules of a norma-
tive system, even if it is in their interests to do so. It isréfere
important to consider the extent to which a normative sysiem
robust i.e., the extent to which it remains effective even if some
agents do not comply with it. We formalise and investigated¢h
different notions of robustness and related decision okl We
begin by considering sets of agents whose compliance issage
and/or sufficient to guarantee the effectiveness of a navenays-
tem; we then consider quantitative approaches to robustndere
we try to identify the proportion of an agent population thaist
comply in order to ensure success, and finally, we considesra m
general approach, where we characterise the complianciiticors
required for success as a logical formula.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
1.2.4 [Knowledge representation formalisms and methods

General Terms
Theory
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1. INTRODUCTION

Normative systems, or social laws, have been widely prochase
an approach to coordinating multi-agent systems [11, 13, @,
2]. The basic idea is that a normative system is a set of cinsdr
on the behaviour of agents in the system; after imposingthes-
straints, itis intended that some desirable overall prigpeill hold.
One of the most important issues associated with such niwenat
systems — and one of the most ignored — is thatahpliance
Put simply, what happens if some system participants doorat ¢
ply with the regulations of the normative system? Non-cdamae
may be accidental (e.g., a message fails and so some pantigip
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are not informed about the regulations). Alternativelyndy be de-
liberate but rational (e.g., a participant chooses to igribe norms
because it does not see them as being in its own best inferests
or deliberately irrational (e.g., a computer virus). Whatethe
cause, it seems inevitable that, in real, large-scale sgstaon-
compliance will occur, and it is therefore important to coes the
consequences of non-compliance. Existing research haessdadl

the issue of non-compliance in at least two ways.

First, one can design the normative system taking the goals a
aspirations of system participants into account, so thatptiance
is the rational choice for participants [2]. Using the temolbgy of
mechanism design [10, p.179], we try to make compliancen-
tive compatible Where this approach is available, it seems highly
attractive. However, given some desired objective for anative
system, it is not always possible to construct an incentbrapati-
ble normative system that achieves some outcome, and evene wh
it is possible, it is still likely that large, open systemdlvall prey
to irrational behaviour.

Second, one can combine the normative system with gEmalty
mechanism, to punish non-compliance [4]. The advantaghisf t
approach is that it can be applied to most scenarios, andttisat
familiar (this is, after all, how normative systems oftenrivin the
real world). There are many disadvantages, however. Fanpla
it may be hard to detect when non-compliance has occurratl, an
in large, Internet-like systems, it may be hard to imposeafiers
(e.g., across national borders).

For these reasons, in this paper we introduce the notiaw-of
bustnesgor normative systems. Intuitively, a normative system is
robust to the extent to which it remains effective in the évain
non-compliance by some agents. Following an introductiotihé
technical framework of normative systems, we introduceianels-
tigate three ways of characterising robustness. First, ansider
trying to identify coalitions whose compliancenscessarynd/or
sufficientto ensure that the normative system is effective. We char-
acterise the complexity of checking these notions of raiest, and
consider cases where verifying these notions of robusisessier.

In addition to verification we consider the complexityrobust fea-
sibility of a normative system: given a reliable coalition, doesgher
exist a normative system which is effective whenever thatiton
complies? We then consider a mayeantitativenotion of robust-
ness, called:-robustnesswhere we try to identify theumberof
agents that could deviate and still leave the normativeesysif-
fective. Finally, we consider a more genenalgical approach of
characterising robustness, whereby we define a predicatesets
of agents, such that this predicate characterises exduifetsets
of agents whose compliance will ensure the success of thmaior
tive system. We conclude with a brief discussion, includsogne
pointers to related and future work.



2. FORMAL PRELIMINARIES

In this section, we present the formal framework for normeti
systems that we use throughout the remainder of the papés. Th
framework is based on that of [8, 1, 2], which is in turn destszh
from [11]. Although our presentation is complete, it is sSact,
and readers are referred to [8, 1, 2] for details and disonssi

Kripke Structures: We useKripke structuresas our basic seman-
tic model for multi-agent systems [5]. A Kripke structuresissen-
tially a directed graph, with the vertex sgtorresponding to possi-
ble statesof the system being modelled, and the relatio@ S x S
capturing the possibleansitionsof the system;S° C S denotes
the initial statesof the system. Intuitively, transitions are caused
by agentsin the system performingctions although we do not in-
clude such actions in our semantic model (see, e.g., [Lby 8hbd-
els which include actions as first class citizens). An(are’) € R
corresponds to the execution of an atomic action by one of the
agents in the system. Note that we are therefore hetrenodelling
synchronousaction. This assumption is not essential, but it sim-
plifies the presentation. However, we find it convenient wude
within our model the agents that cause transitions. We tbere
assume a sefl of agents, and we label each transitionfnwith
the agent that causes the transition via a functionR — A. Fi-
nally, we use a vocabular® = {p, ¢,...} of Boolean variables
to express the properties of individual stafaswe use a function
V : S — 2% to label each state with the Boolean variables true (or
satisfied) in that state.

Formally, anagent-labelled Kripke structuréover ®) is a 6-
tuple:

K =(S,8° R, A a, V),

where: S is a finite, non-empty set aftates S° C S (S° # 0) is
the set ofinitial states R C S x S is a total binary relation or¥,
which we refer to as theansition relation A = {1,...,n}isa
set ofagentsa : R — A labels each transition iR with an agent;
andV : S — 2% labels each state with the set of propositional
variables true in that state.

We hereafter refer to an agent-labelled Kripke structumepdy
as aKripke structure A path over a transition relatiorR is an
infinite sequence of states = s, s1,... such thatvu € N:
(Sus Su+1) € R. If u € N, then we denote by [u] the compo-
nent indexed byu in 7 (thus7[0] denotes the first element]1]
the second, and so on). A pathsuch thatr[0] = s is ans-path
Let ITr(s) denote the set of-paths overR; since it will usually
be clear from context, we often omit referenceRo and simply
write II(s). We will sometimes refer to and think of appath as a
possible computation, or system evolution, frem

CTL: We use Computation Tree LogictL), a well-known and
widely used branching time temporal logic, to expressdhgc-

tives of normative systems [5]. Given a sé& = {p,q,...} of

atomic propositions, the syntax offL is defined by the following
grammar, where € &:

pu=T|plw|leVe|EOe|EleUp) | ADp | AlpU )

The semantics of TL are given with respect to the satisfaction
relation “=", which holds betweepointed structuress, s, (where
K is a Kripke structure and is a state ink’), and formulae of the
language. The satisfaction relation is defined as follows:
K,s =T,
K,sEpiff pe V(s) (wherep € ®);
K,s | —ypiffnot K,s E ¢;
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K,sEpVyiff K,s =EporK,s = 1;

K,s = AOgiff Vr € I(s) : K, w[1] = ¢;

K,s = EOQgiff 3r € II(s) : K, w([1] = ¢;

K,s = A(peU ) iff Yo € TI(s),Ju € N, s.t. K, w[u] = ¥ and
Vo,(0<v<u): K,w[v] [=e¢

K,s = E(pU ) iff 3r € TI(s),Ju € N, s.t. K, 7[u]| = ¥ and
Vo,(0<wv<u): K,w[v] [=e¢

The remaining classical logic connectives\(;' “ —", “«<") are
defined as abbreviations in terms-6fV in the conventional way.
The remainingcTL temporal operators are defined:

A EQe E(TUp)
AQgp EOe A —p

We sayy is satisfiableif K, s = ¢ for some Kripke structuré(
and states in K; ¢ isvalid if K,s = ¢ for all Kripke structures
K and states in K. The problem of checking whethéf, s = ¢
for given K, s, ¢ (model checkingcan be done in deterministic
polynomial time, while checking whether a giveris satisfiable or
whetheryp is valid isexpTIME-complete [5]. We writeX |= ¢ if
K,s = gforall sy € S°, and= ¢ if K |= ¢ forall K.

Later, we will make use of two fragments ofrL: the universal
languagelL® (with typical element.), and the existential fragment
L¢ (typical element):

pr=T|L{p[=plpVu|pAp|AOu| Al | A(nl 1)
ex=T|L|p|-pleve|ene|EOe|E[le|E(eUe)

A(TU )
—EQ—p

The key point about these fragments is as follows. Let us say,
for two Kripke structuresk (S,8° Ri,A,0, V) and Ko =
(S,8° Rs, A, o, V) that K, is a subsystem ok and K is a su-
persystem of<1, (denotedK; C K3), iff R1 C R2. Then we have
(cf. [8]).

THEOREM1 ([8]). Supposek; C K», ands € S. Then:

Vee L°: Ki,sEe Ky, s E¢;
VYueLl": Ky, sEp Ki,s = p.

= and

=

Normative Systems: For our purposes, aormative systengor
“norm”) is simply a set of constraints on the behaviour of agents
in a systen{1]. More precisely, a normative system defines, for
every possible system transition, whether or not that ttansis
considered to be legal or not. Different normative systenay m
differ on whether or not a transition is legal. Formally, ama-
tive systemy (W.r.t. a Kripke structurek’ = (S, S° R, A, o, V))

is simply a subset oR?, such thatR \ 7 is a total relation. The
requirement that? \ 7 is total is areasonablenessonstraint: it
prevents normative systems which lead to states with ncessoc.
Let N(R) = {n: (n C R) & (R \ nistotal} be the set of nor-
mative systems oveR. The intended interpretation of a normative
systemn is that(s, s’) € n means transitiois, s’) is forbidden in
the context of). We denote themptynormative system by, i.e.,

ng = 0. Let A(n) = {a(s,s") | (s,s") € n} denote the set of
agents involved im).

The effect oimplementing normative system on a Kripke struc-
ture is to eliminate from it all transitions that are forbadaccord-
ing to this normative system (see [8, 1]).Afis a Kripke structure,
andn is a normative system ovéf, thenK {7 denotes the Kripke
structure obtained fronk by deleting transitions forbidden in.
Formally, if K = (S,S° R, A,a, V), andn € N(R), then let
Ktn = K’ be the Kripke structur&”’ = (5", S°" R, A’ o', V')
where:



e 5=5,8"=8" A=A andV = V/;
e R' =R\ n;and
e ¢ is the restriction ofx to R’:
oo [ oals, s’ if(s,s’) e R
a(s,s) = { undefined otherwise.

The next most basic question we can ask in the context of rorma
tive systems is as follows. We are given a Kripke structidrerep-
resenting the state transition graph of our system, and /gigen
acTL formulay, representing thebjectiveof a normative system
designer (that is, the objective characterises what a desigishes
to accomplish with a normative system). Tfeasibility problem
is then whether or not there exists a normative sysiesuch that
implementingn in K will achievey, i.e., whethetX | n = ¢. We
say that, is effective forp in K if K 11 = ¢.

We make use of operators on normative systems which corre-

spond to groups of agents “defecting” from the normativeesys
Formally, letK = (S,S° R, A,a, V) be a Kripke structure, let
C C A be a set of agents ovéf, and letn be a normative sys-
tem overK. Thenn | C denotes the normative system that is
the same ag except that it only contains the arcs #fthat cor-
respond to the actions of agents@ i.e.,n [ C = {(s,s") :
(s,s') € n& afs,s’) € C}. Also,n 1 C denotes the nor-
mative system that is the same g®xcept that it only contains
the arcs ofy that do not correspond to actions of agents (@

n1 C={(s,s):(s,s)eEn&al(s,s) & C}.

3. NECESSITY AND SUFFICIENCY

As we noted in the introduction, the basic intuition behiobust
normative systems is that they remain effective in the presef
deviation, or non-compliance, by some members of the agamt p
ulation. As we shall see, there are several different wayfef
mulating robustness. Our first approach is to try to charmsete
“lynchpin” agents — those agents whose compliance with tire n
mative system is somehow crucial for the successful omeraif
the system. This seems appropriate when there are “keyrglape
the normative system — for example, where there is a singl po
of failure. In this section, we therefore consider coafisovhose
compliance isiecessary and/or sufficietd ensure that the norma-
tive system is effective.

We say thatC' C A aresufficientfor » in the context ofK” and
 if the compliance ofC with 7 is effective, i.e., iff:

VC'C A (CCC) Kt C)E gl

The following example illustrates this notion of sufficignc

=

EXAMPLE 1. Consider four agents who are attending a con-
ference with an on-site computer facility. This serviceteehas
currently one printer, two scanners and three PCs availaBlgent
a has tasks that require access to a printer and PC, agemteds
a printer and scanner, agent is in need of a scanner and PC
and agentd will need a scanner only. The set of agentsdis=
{a, b, ¢, d}. They are interested in using resources of tyfae R2, Rs,
of each resource typ&; there arej instances of each:R;
{printer: }, Ra = {scannery, scanners}, Rs = {pc1, pcz, pcs}.

At a given point in time, a resource can be owned by an agem. Th
actions available to the agents are making available a resothey
currently own, or taking possession of a resource which &lav
able. We assume that the agents never act at exactly the game t
in particular we assume that actions are turn-based — firstan
perform some action, theln and so on. A state is a tuple

s = (0q, Op, Oc, Og, 1)
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where, for each € A, O; is the set of resources currently owned
by i.

The number of agents that own a resource of tymannot be
greater thary. Let, for each resourc®; and states, avail(j, s) be
the number of resources of typehat are not owned by an agent.
The componeni € A of s denotes whose turn it is: we write
turn(s) = i. If R;N O; # 0, we say that owns a resource of type
jand writeR; < O;.

Our agents are not equal. In order to fullfil his task, agent
would every now and then like to use resources of titpeand
R3 simultaneously. We writ&seful(a) = {R1, Rs}. Simililary,
Useful(b) = {R1, Rz}, Useful(c) = {R2, Rs} while Useful(d)
= {R2}.

Lets = (Oa, Oy, Oc, Oq,1) ands’ = (O, Oy, O, 0},1') be
two states. Thefs, s') € R iff

1.a =bb =c,c/=dandd’ = a;
2. forallk #iandallj: R; < Oy & R; < Oj;
3. if R; < Oj and R; 4 O; thenavail(j, s) > 0.

Furthermore,a(s, s') = i whenturn(s) = s.

Let the starting state of the system be such that it is agént
turn, and nobody owns any resource. If we call this systém
then a first normy, we impose ork is that no agent (i) owns two
resources of the same type at the same time, (ii) takes posexs
a resource that he does not need, (iii) takes possessionoafiew
resources simultaneously, and (iv) fails to take possassiGome
useful resource if it is available when it is his turn:

turn(s) = ¢, and

(35 :10{ N Rj| > 2, 0r

37 :10; N R;| > 1andR; & Useful(3), or
dz,y:x #y,z,y € O] andz,y & O;, or
Vi : (R; € Useful(i),|O: N R;| =0,
avail(j,s) > 0) = |O; N R;| =0).

Let K1 = Ko T no. Now, in order to formulate some objectives of
the system, let? denote that agent owns a resource of tygeand
similarly for the other agents. Let

A @

R; € Useful(i)

happy (i) =

Thus happy (i) means that is in possession of all his useful
resources, simultaneously. Our first objective is:

o1 =A \ AQhappy(i).

€A
The normative system that we will use for it is
m = {(s,s") | turn(s) = i & O; = Useful(i)& O; # B}

In words: if at some point an agent simultaneously owns &l th
resources that are useful for him, then he will make themlalvks

if it is his turn. Which coalitions are sufficient for this morin the
context of K, and ¢1? First of all, consider a coalition without
agenta. If a does not comply with normy,, then he can grab
the printer and hold on to it forever. Thus, agentwill not be
happy, because there is only one printer. The same argunodatg h
for a coalition without agenb. Thus, it seems that any sufficient
coalition must include both agentsand b. But {a, b} alone is
not a sufficient coalition, as the following scenario ilkages: (1)

a grabs a PC; (2)b grabs the printer; (3)c grabs a scanner; (4)
d grabs the other scanner. Now,dfand d do not comply withy,,

it might be that they never give up their scanners, in whickeca



b never will be happy. However, if and b are joined byc in
complying withr;, the objective is obtained:

Kif(m [{a,b,c}) =

— it is easy to see that in fadta, b, ¢} is sufficient forn; in the
context ofK; and ;. But{a, b, ¢} and its extensiofa, b, ¢, d}
are not the only sufficient coalitions in this contexta, b, d} is
also sufficient.

Now, associated with this notion is a decision problem: we ar
given K, n, ¢, and C, and asked whethef are sufficient for
n in the context of K and ¢. It may appear at first sight that
this is an easy decision problem: don't we just need to chieak t
K 1(n ! C)E ¢? The answer is no. For suppose the objective is
anexistentialpropertyn € L. Thenthe factthak { (n | C) = n
and C C ¢’ does not guarantee thaf 1 (n | C') E n. In-
tuitively, this is because, if more agents th@ncomply, then this
might eliminate transitions fronk’, causing the existential prop-
erty n to be falsified.

EXAMPLE 2. We continue Example 1. To demonstrate that suf-
ficiency for a norm in the context of a system and an objective i
not monotonic in the coalitior”, consider the following existen-
tial objective:

2 = E[[1=happy(b)
That is, it is possible thab is forever unhappy (we will not dis-

cusswhy the designer of the normative system might have such an

objective). We have that:

Kif(m [{b}) = 2.

That s, ifb complies with the norm;, the objective is true. This is
because, for example, agemtcan blockbd’s access to the printer.
However, as we saw in Example&; 1 (n1 [ {a, b, c}) E —p2,
so{b} is not sufficient for the objectivg;.

We can prove that, in general, checking sufficiency is coayput
tionally hard.

THEOREM 2. Deciding C-sufficiency is casp-complete.

PROOF Membership of cavp is straightforward from the def-
initions of the problems. We prove hardness by redudingT,
the problem of showing that a formul® of propositional logic is
a tautology, i.e., is true under all interpretations. ket. .., zx
be the Boolean variables @f. The reduction is as follows. For
each Boolean variable; we create an agent;, and in addition
create one further agent,. We create3k + 3 states, and create
the transition relatiorR and associated agent labellingand valu-
ation V as illustrated in Figure 1(a): inside states are the propo-
sitions true in that state, while arcs between states arelléab
with the agent associated with the transition. 18t = {s,} be
the singleton initial state set. We have thus defined the Kerip
structure K. For the remaining components, defite= 0, n =
{(s0, 52), (2, 83), (83, 85), (85, 6), - - -, (S3k+2, S3p4-3) } (i.e., all the
lower arcs in the figure), and finally, defigeto be the formula ob-
tained from¥ by systematically replacing each Boolean variable
by E<>:m Now, we claim that is C-sufficient forp in K iff ¥
is a tautology. First, notice that sin€g = 0, then for allC’ C A,
we haveC C €', and so the problem reduces to the following:

VC'CA:[Kt(n] C) gl

The correctness of the reduction is illustrated in Figul® \here
we show the Kripke structure obtained when only agent 1 defec
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Figure 1: lllustrating the reduction used in Theorem 2: (a) the
Kripke structure produced in the reduction; (b) how the con-
struction corresponds to a valuation: if only agent1 defects,
then the Kripke structure we obtain corresponds to a valuaton
in which z; is true (a state in whichz; is true is reachable in the
resulting structure — E<>a:1 in the objective we construct) and
all other variables are false (i.e., are true in unreachablstates).

from the normative system; in this case, the Kripke struectue
obtain corresponds to a valuation ®f which makes variable;
true and all others false.[

However, the news is not all bad: foniversalobjectives, check-
ing sufficiency is easy.

CoROLLARY 1. Deciding C-sufficiency for objectiveg € L*
is polynomial time decidable.

PROOF Simply check thats t (n
the fact thatk { (n | C’) = p for all
Theorem 1. [

[ C) = w; sincep € LY,
C C ¢’ C A follows from

Next, we consider the obvious counterpart notion to sufficye
that of necessity We say thatC' arenecessaryor 7 in the context
of K andy iff C' mustcomply withr in order for it to be effective,
i.e., iff:

VC'CA[KT(n] C') E ¢l

The following example illustrates necessity.

= (CcC.

ExampPLE 3. We continue Example 1. We observed thath, ¢}
and{a, b, d} are sufficient fom, in the context ofK; and¢; . In-
deed{a, b} is necessary fon, in the context oK, and¢;. Both
a and b mustcomply with the norm for the objective to be satisfied.

THEOREM 3. Deciding C-necessity is cotP-complete.

PrROOF Membership of cavp is obvious from the statement of
the problem, so consider hardness. Note that proof of The@e
does not go through for this case: since weGet () in the reduc-
tion, C are trivially necessary. However, we can use the same basic
construction as Theorem 2 to prone-hardness of the complement
problem toC'-necessity, i.e., the problem of showing that

IC"C ALKt ] C)EglA=(CC ).



We reducesAT. Given asAT instancel’, we follow the construction
of Theorem 2, except that set the input coaliti@rio be C = {d}.
Itis now easy to see, using a similar argument to Theorema2ith
is satisfiable ifHC C A: [K1(n| C) Ep]A-(CCC'). O

The following sums up some general properties of the coscept
we have discussed so far. Here, “sufficient” (“necessary€pns
“sufficient (necessary) fay in the context ofK’ andy”.

PROPOSITION 1.

. There might be no sufficient coalitions.

. There is always a necessary coalition: the empty coalitio

. There might be two disjoint sufficient coalitions.

. There might be no non-empty necessary coalitions.

. If C'is necessary and’ sufficient, therC' C C’.

. If there are two disjoint sufficient coalitions, then thés no
non-empty necessary coalition.

o0 WNBE

PrROOFR

1. Trivial. Take, e.g., a system consisting of a single stk
a self-loop and wherg is true, and letp = EQ —p. n must
be empty, ang can never be true.

. Immediate.

. Take again the system from the first point, anddet EO p.
Both{a} and{b} are sufficient, for any, # b.

. Take the system and formula in the previous point.

. Let C be necessary and@” sufficient. From sufficiency of
C’ we have thatk 1 (n | C’) = », and from necessity of
C it follows that C C C".

. Immediate from the above point.

N

O

Note that point 5 above implies that every necessary coalit
contained in the intersection of all sufficient coalitioriBoes the
other direction hold, i.e., is the intersection of all su#fitt coali-
tions necessary? In the general case the answer is “no” ,eas th
following example illustrates.

ExAamPLE 4. Take the systemin Figure 2, and{et= EOAQO p.
It is easy to see that:

e {a} is sufficient;

e Ki(nl{b}) Fo

e None of{b}, {c} or {b, ¢} are sufficient.

From the first and last point it follows thdta} is the intersection
of all sufficent coalitions; from the second point it follothsat { a }
is not necessary.

However, for universal objectives the greatest necessaayi-c
tion is exactly the intersection of the sufficient coaliton

LEMMA 1. When the objective is a formula itt*, the intersec-
tion of all sufficient coalitions is a necessary coalition.

PROOF. Lety € L* and letC = (N, sufficientC’- Assume
that K 1 (n | C2) | ¢; we must show thaC' C C>. From
Theorem 1 we havél 1 (n | C3) = ¢ for any Cs such that
C> C (3. It follows that Cs is sufficient. ButtherC' C C>. O

Thus, for the case of universal objectives the necessaliljtiona
are exactly the subsets of the intersection of the sufficieati-
tions. Indeed, in Examples 1 we saw that the intersectiomef t
sufficient coalitions, consisting of ageniésand b, is a necessary
coalition.
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Figure 2: A normative system. The dashed lines indicate “ii-
gal” transitions. The uppermost state is the single inital tate.

3.1 Feasibility of Robust Normative Systems

So far, our technical results have focussedverifying robust-
ness properties of normative systems. However, an equafpii-
tant question is that deasibility. As we noted earlier, feasibility
basically asks whether there exists some normative systemm s
that, if this law was imposed (and, implicitly, everybodyngalies),
then the desired effect of the normative system would beesehii
In the context of robustness, we ask whether a hormativesyst
is robustlyfeasible. In more detail, we can think about robust fea-
sibility as follows. Suppose we know that some subSetf the
overall agent population is “reliable”, in that we are coefitlthat
C can be relied upon to comply with a normative system. Then in-
stead of asking whether there existsaahitrary normative system
7 that is effective for our desired objectiye we can ask whether
there exists a normative systemsuch thatC' is sufficient forn
in the context ofp. We call this propertyC-sufficient feasibility.
Formally, this question is as follows:

IneNR): (KitnkE @) A
VC'CA:(CCO)=[KT(n!l ) E¢l

It turns out that, under standard complexity theoretic ag#ions,
checking this property is harder than the (ep-complete) verifi-
cation problem.

THEOREM 4. Deciding C-sufficient feasibility iS25-complete.

PrROOF We deal with the complement of the problem, which
we show to bel’-complete. The complement problem is that of
deciding:

Vne N(R): (KinkEp) =
IC"CA(CCOYVN(Kt(nC) o).

Membership is immediate from the definition of the problenor F
hardness, we reduce the problem of determining whettess v
formulae are true [9, p.96]. An instance QBF. v is given by a
quantified Boolean formula with the following structure:

@)

inwhich z; and; are disjoint sets of Boolean variables, ay(d: , 72 )
is a propositional logic formula (thmatriX) over these variables.
Such a formula is true if for all assignments to Boolean \@&s
71, there exists an assignmentig such thaty(z, 72 ) is true un-
der the overall assignment. An example @jBr, v formula is:

Vi 35z x (41, 42)

V:E13I2[(:L‘1 Vv l‘2) A (:El Vv —L’EQH (2)

LIt may at first sight seem strange that we consider this proble
why not simply look for a normative systemsuch thatA(n) =
C? Our rationale is that thevorst casecorresponds to only(C
complying with the normative system; it may well be that wé ge
betterresults if more agents comply.




The reduction is related to that of Theorem 2, although filjgh
more involved. Lett = {z1, ..., z,} be the universally quantified
variables in the input formula, lgt = {y1, ..., y»} be the existen-
tially quantified variables, and let(z, y) be the matrix. We create
a Kripke structure witt8(3(g + h) + 3) states ang + h agents.
We create variables correspondingzt@nd 7, and in addition to
these, we create a variabted. The overall structure is defined to
be as shown in Figure 3; note thatd is true only in the final state
of the structure. We sef' = {1,..., g}, and create the objective
ptobe

p=(-EQend) v (X (2, 7))
wherex*(z, y) is thecTL formula obtained from the propositional
formula x(z, ) by systematically substitutingE<{>v) for each
variablev € z U y. Correctness follows from construction. Since
the complement problem H%-complete, C-sufficient feasibility
is X5-complete. [

4. K-ROBUSTNESS

The notions of robustness described above are based oiifydent
ing some “critical” coalition, whose compliance is eithecessary
and/or sufficient for the correct functioning of the ovenatirma-
tive system. In this section, we explore a slightly diffarantion,
whereby we insteaquantifythe extent to which a normative sys-
tem is resistant to non-compliance. We introduce the notibn
k-robustnesswherek € N: intuitively, saying that a normative
system isk-robust will mean that it remains effective as longkas
arbitrary agents comply.

As with C'-compliance, we can considércompliance from the
point of view of both sufficiency and necessity. Whére> 1, we
say a normative systemis k-sufficient(w.r.t. somekK, ) if the
compliance ofany arbitrary & agentsis sufficient to ensure that
the normative system is effective with respectstoFormally, this
involves checking that:

VOCA:(IClzk) =  (KilC)Ee

As with checkingC'-sufficiency, checking:-sufficiency is hard.

THEOREM 5. Decidingk-sufficiency is caosp-complete.

PROOF Membership of cavpis obvious from the problem def-
inition; for hardness, we reduceauT, constructing the Kripke
structure, normative system, and objective as in the prb®heo-
rem 2; and finally, we set = 0. The correctness argument is then
asin Theorem 2.

We define theesilienceof a normative system (w.r.t. K, ) as
the largest number of non-compliant agents the system tenate.
Formally, the resilience is the largest numlée: < n, such that

VCCA(CI<k) = (Kt O)Ee.

wheren is the number of agents. It is easy to see that the resilience

of n is the largest numbeét such that; is (n — k)-sufficient. Ob-
serve that the resilience ismdefinedff the objective does not hold
even if all agents comply to the nornk(f n £ ¢). Itis immedi-
ate that computing the resilience of a normative system-sr0
complete with respect to Turing reductions.

ExAMPLE 5. We continue Example 3. While bofl, b, ¢}
and {a, b, d} are sufficient coalitionsy; is not 3-sufficient wrt.
K1, p1 because nogverythree-agent coalition is sufficient. Itis 4-
sufficient (the objective is satisfied if the grand coalittmmplies).
Thus, the resilience is equal to 0.
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Now consider the situation whetehas left the computer facil-
ity; b, ¢, d remains. LetK7,n}, ] be the corresponding variants
of K1, andps. Now, each of b, ¢}, {b, d} and{c, d} are suf-
ficient. Thusy) is 2-sufficient wrt. K7, ', and the resilience is
1.

We then defing-necessity in the obvious wayi+Hs k-necessary
(w.rt. K, ) iff:

VCCA(KimIC)Ee = (C]>h).

THEOREM 6. Decidingk-necessity is cotP-complete.

PrROOF Membership of cavp is again obvious from the prob-
lem definition; for hardness, we redusaT to the complement
problem, proceeding as in Theorem 3; whérs the number of
Boolean variables in theAaT instance, we set = [ + 1. Correct-
ness of the reduction is then straightforward.]

We say that) is k-robust & > 1, if it is both k-sufficient andk-
necessary. In other words, is k-robust if it is effective exactly
in the event of non-compliance of any arbitrary coalitionupfto
n — k agentsy is k-robust iff

VCCA:(Cl<n—k) & (Kt 0) ke

where n is the number of agents. From the results above, it is
immediate that checking-robustness is catP-complete.

EXAMPLE 6. We continue Example 5. While, b} is the largest
necessary coalitiom; is 3-necessary wrtK7, o1 because at least
three agents must comply (in this case, eitherb, ¢} or {a, b, d}).

It is not k-robust for anyk, because it is 4-sufficient but not 3-
sufficient, and 3-necessary but not 4-necessary.

n} is both 2-sufficient and 2-necessary Wiy, ¢}. It is thus
2-robust. Thus, the objective will be maintained if and dflgt
least 2 agents comply.

EXAMPLE 7. We continue Example 6. Consider yet another
variant: the agents are again all fout, b, ¢, d, but their needs
have changed. Now each agent only needs a PCliseful(a) =
Useful(b) = Useful(c) = Useful(d) = {R3}. Now we have that
no singleton coalition is sufficient and every two-agentlitioa is
sufficient. The system is 2-sufficient, 2-necessary, 2staind its
resilience ist — 2 = 2.

The following sums up some general properties of the coscept
of k-robustness. Here k*sufficient” (“k-necessary”) meansk*
sufficient -necessary) in the context &f and”.

PROPOSITION 2.

1. Any system i8-necessary.

2. If the system i&-sufficient, thenC' is sufficient for anyC
such thaf C'| > k.

3. If C'is necessary, then the systemi@§-necessary.

4. If the system ig-sufficient fork < n, then no non-empty
coalition is necessary.

5. k-robustness is unique: if the systemksgobust andk’-
robust, therk = &'.

PROOF

1.-3. Immediate.
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Figure 3: lllustrating the reduction used in Theorem 4.

4. Letk < n and assume that the systemkisufficient and
that C # () is necessary. LeC’ be a coalition such that
|C’| > k. By k-sufficiency,K t (n | C') E ¢, and by
necessity ofC, C C (’. SinceC’ was arbitrary, we have
that C' C (j¢r»; C'- Assume that € C. Let|Ci| = k.
a € C1. Nowletb € A\ C: (b exists becauske < n = |A]),
and letCy = 4 \ {a} U {b} |02| =k, buta ¢ C> which
contradicts the assumption thate C. Thus, C must be
empty.

5. Ifthe system i%-robust and:’-robust fork > k' andC’ is a
coalition of sizek’, then by k’-sufficiency(K t (n | C))
o and byk-necessity it follows thatC| > & which is not the
case.

A LOGICAL CHARACTERISATION OF
ROBUSTNESS

We have thus far seen two different ways in which we might want
to consider robustness: try to identify some “lynchpin” iitan,

or try to “quantify” the robustness of the normative systenterms

of the number of agents whose compliance is required to nfake t
normative system effective. Often, however, robustnespqities
will not take either of these forms. For example, here is @uar
ment about robustness that one might typically see: “théesys
will not overheat as long as at least one sensor works andreith
one of the relief valves is working or the automatic shutdde/n
working”. Clearly, such an argument does not fit any of thes/p

of robustness property that we have seen so far. So, how are w

to characterise such properties? The idea we adopt is tachar
terise the robustness by means afaalition predicate Coalition
predicates were originally introduced in [3] as a way of difgimg
over coalitions. A coalition predicate, as the name suggeéssim-
ply a predicate over coalitions: # is a coalition predicate, then it
denotes a set of coalitions — those that sati3fy

We first introduce the language of coalition predicates(ff8]),
and then show how this language can be used to charactebis&tro
ness properties. Syntactically, the language of coalpi@uicates
is built from three atomic predicatesbseteq, supseteq, andgeq,
and we derive a stock of other predicate forms from theser-
mally, the syntax of coalition predicates is given by thddaing
grammar:

P ::= subseteq(C) | supseteq(C) | geg(n) | =P | PV P

2In fact, we could choose a smaller base of predicates to withk w
deriving the remaining predicates from these, but the dédims
would not be succinct; see the discussion in [3].
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(S)

eq(C) = subseteq(C) N supseteq(C)
subset(C) = subseteq(C) N\ —eq(C)
supset(C) = supseteq(C) A —eq(C)
incl(i) = supseteq({i})
excl(i) = —incl(i)
any = supseteq((
nei(C) = V,cqincl(i)
ei(C) = -mei(C)
gt(n) = geq(n+1)
it(n) = —geq(n)
leg(n) = lt(n+1)
maj(n) = geg([(n + 1)/2])
ceq(n) = (geq(n) A leg(n))

Table 1: Derived coalition predicates.

whereC C A is a set of agents and € N is a natural number.

The circumstances under which a coaliticlh C A satisfies
a coalition predicateP are specified by the satisfaction relation
“I=¢p", defined by the following rules:

Co =cp subseteq(C) iff Co C C

Co =cp supseteq(C) iff Co O C

Co =ep geq(n) iff |Co| > n

Co Ecp —Piffnot Co Eep P

CO ':cp P1VP2iff CO ':(;p P10|’Co ):cp P>

We assume the conventional definitions of implicatien)( bicon-
ditional (<), and conjunction £) in terms of— andVv. We also
find it convenient to make use of the derived predicates dgfime
Table 1.

Now, given a Kripke structurd(, normative system, objec-
tive o, and coalition predicat®, we say thatP characterises the
robustness of; iff the compliance of any coalition satisfying is
sufficient to ensure that is effective (w.r.t.K, ). More formally,
P characterises the robustnessofi.r.t. K andy iff:

VOCA: (CkgP) (K11 Q) Ee).
Now, consider the following simple coalition predicate.

=

®)

Expanding out the semantics, we have that (3) charactetfiges
robustness of a normative systemv.r.t. K,  iff:

VC'CA: (CCC) (K1l C) ke

In other words, (3) expresses th@tare necessary and sufficient.
As another simple example, the predicate (k) characterises the

supseteq(C)

=



robustness of; iff 7 is k-robust. The decision problem d?- true on a pathr, if for all paths inAl(x), and itself, ¢ is true.

characterisatioris that of checking whether a given coalition pred-  So, A is true in an-complient path, if it is true in all paths that
icate P characterises robustness in the way described above. Sincehave at most ong-forbidden transition. This is a way of bringing
we can useP-characterisation to express necessary and sufficient robustness in to the object language. However, note thaf]in [

coalitions, we have the following.
COROLLARY 2. DecidingP-characterisation is covP-complete.

Notice that P-characterisation is fully expressive with respect to
robustness properties, in thay robustness property can be char-
acterised with a coalition predicate of the form:

eq(Ch) V eq(C2) V - -V eq(Cy).

for somewu € N. In the worst case, of course, we may need a
coalition predicate where may be exponential in the number of
agents.

there is no notion ofgency only the system can deviate from or
comply with a norm. Ify is a universal formula, thei’, sp =

P A would imply (in our framework) that there is a single agent
1 such thatd \ {:} is sufficient forEy, given K andn. Although

it seems a good idea for future work to incorporate such ‘tieen
like’ operators in the object language, even the semanfig] @s
quite different from ours: whereas [7] focusses on the nunolbe
illegal transitions, we are concerned with the number of gioant
agents, or compliant coalitions.

7. REFERENCES

Let us consider some example coalition predicates, and what [1] T-Agotnes, W. van der Hoek, J. A. Rodriguez-Aguilar,

they say about robustness. Recall the informal example wd us
in the introduction to this section. Let be a set of sensors, let
R be the set of relief valves, and letbe the automatic shutdown
system. Then the following coalition predicate expressesro-
bustness property expressed in this argument.

net(S) A (nei(R) V incl(a))

The coalition predicateny expresses the fact that the normative
system is trivial, in the sense that it is robust against awadion
(in which case it is unnecessary, since the objective will lod the
original system). The coalition predicateiny expresses the fact
that the normative system will fail w.r.t. its objectiveaspective of
who complies with it.

6. CONCLUSIONS

We have investigated three types of robustness: necegsaigra
sufficient coalitions; the number of non-compliant agehts tan
be tolerated; and, more generally, a logical charactéoisaif ro-
bustness.

Fitoussi and Tennenholz [6] formulate two criteria whena$o
ing between different social lawS&implicitytries to minimise, for
each agent, the differences between states in terms ofltiveeal
actions. The idea behinghinimality is to reduce the number of
forbidden actions that are not necessary to achieve thetilge
Obviously, these two criteria typically conflict: one maycsfice
one in favour of the other. One would expect that there is detra
off between minimality and robustness, and that minimatity,
would coincide with the grand coalitioA being necessary for it.
This match is not perfect, however: first of all, if the lattandi-
tion holds, there still may be more transitions forbidden Aothan
necessary to guarantee the objectiveSecondly, it might be that
not all agents in4d are constrained by. But what wedo have is
that a minimal normy must haveA(n) (the agents involved in it)
as a necessary coalition.

Recently, Frenclet al. proposed a temporal logic of robustness
[7]. A brief description of the main ideas, using our fornsatis, is
as follows. Letn be a norm. A pathr complies withy if for no
n € N, (w[n],7[n 4+ 1]) € 7, i.e., no step inr is forbidden. Let
Oy mean thatp is obligatory: it is true ins if for all n-compliant
s-paths,p holds. Py (¢ is permitted) is-O—¢p. Given ans-path
T, let

Al(n) = {«' |« iss-path,3j € NVi < jn(i) = n'(i) &
'[j + r'[j + 2] ... complies withn}

In words: 7' € Al ifitis like = up to some poing, in j it
may do an illegal step, but from then on complies with the norm
Frenchet al. then define an operatay (‘robustly, ¢") which is
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